Seiberg-Witten Gauge Theory

Matilde Marcolli



Contents

1 Introduction

I Seiberg—Witten on four-manifolds

2 Preliminary Notions
2.1 Clifford Algebras and Dirac Operators . . . . . . . ... ... ..
2.2 Spin and Spin. Structures . . . .. ... ..o L.
2.3 Spinor Bundles . . ... .. ... ... o oo
2.4 Topology of the gauge group . . . . . .. .. ... ... .....
2.5 Symplectic and K&hler Manifolds . . . . . ... .. ... ... ..
2.6 Theindex theorem . . . . . . . ... .. .. ... ... ...
2.7 Equivariant cohomology . . . . .. ... ... ... . oL,
2.8 Sobolevnorms . . ... ...l
2.9 Fredholm properties . . . ... .. ... ... ...,
2.10 Exercises . . . . . . ...

3 The Functional and the Equations
3.1 The Equations . . . . .. ... ... ... e
3.2 The Gauge Group . . . . . . . . . L.
3.3 The Seiberg—Witten Functional and the Variational Problem . .
3.4 Analytic properties of the Seiberg—Witten functional . . . . . . .
3.4.1 The Palais—Smale condition: sequential compactness . . .
3.5 Exercises . . . .. . e e e

4 Seiberg—Witten invariants of 4-manifolds
4.1 The Moduli Space . . . ... .. ... ... ..
4.1.1 Computation of the Dimension . .. ... .........
4.1.2 Compactness . . . . . . . .. i
4.1.3 Orientation . . . . . . . .. ..o
4.2 The Invariants . . . . . . . . . . . ...
4.3 Finiteness . . . . . . . ..
44 A Cobordism Argument . . .. ..... .. ... .........

II Seiberg—Witten on three-manifolds

5 Three-manifolds

6 A three-manifold invariant
6.1 Dimensional reduction . . . . . ... .. .. ... .. ...,
6.2 The moduli space and the invariant . . . . . .. .. ... ... ..
6.3 Cobordism and wall crossing formulae . . . ... ... ......

12

13
13
15
16
17
18
21
22
25
27
28

30
30
30
31
34
35
39

40
40
40
45
46
47
49
50



6.4 Casson invariant and Alexander polynomial . . . . ... ... .. 65

7 Seiberg—Witten Floer homology 72
7.1 The Chern-Simons-Dirac functional . . . . . . . .. ... ... .. 73
7.2 Hessian and relativeindex . . . . . . .. ... ... .. 75
7.3 Flow lines: asymptotics . . . . . . . .. .. ... .. .. ... .. 78
7.4 Flow lines: modulispaces . . ... ... .. ... .. ....... 80
7.5 Homology . . . .. . . . e 84
7.6 The cobordism argument . . . ... .. ... ... ... ... .. 88
7.7 Equivariant Floer homology and wall crossing . . . . . . ... .. 91
7.8 Exacttriangles . . . .. ... Lo Lo 96
7.9 The relation to instanton Floer homology . . . . . ... ... .. 99
7.10 Summary . . ..o oL . e e e e e e e e e e 100
7.11 Exercises . . . . . . . . . 100

III Topology and Geometry 105

8 Computing Seiberg—Witten invariants 106
8.1 Connected Sum theorem . . . . . . ... .. ... .. ....... 106
8.2 The blowup formula . . . .. ... ... 0oL oL 106
8.3 Kahler Surfaces . . . . . . . .. ..o 107
8.4 Symplectic Manifolds . . . . .. .. ... ... L. 112
8.5 Pseudo-holomorphiccurves . . .. ... .. ... ... ...... 116
8.6 Beyond the symplecticworld . . .. ... ... ... ... .. 118
8.7 Algebraic Surfaces . . . ... ... ... oL 120

9 Topology of embedded surfaces 123
9.1 The Thom Conjecture . . . .. ... ... ... ... ..... 124
9.2 Contact structures . . . . . . . ..o 127
9.3 Three-manifolds: Thurston norm . . . . . . ... ... .. .. .. 130

10 Further applications 131
10.1 Exercises . . . . . . o o i e e e e e e e 132

IV Seiberg—Witten and Physics 137

11 Mathai-Quillen formalism and Euler numbers 138
11.1 The finite dimensional case . . . . . . ... ... ... .. .... 138

11.1.1 The Mathai-Quillen form . . . . ... ... ... ... .. 138
11.1.2 Intersection theoretic approach . . . . ... ... ... .. 141
11.2 The infinite dimensional case . . . . . . .. ... .. .. ... .. 142
11.2.1 The localised homological Euler class. . . . . .. ... .. 143

11.2.2 Equivariant homology and the Atiyah-Jeffrey formalism . 145



11.3 Euler numbers in Seiberg-Witten theory . . . . . . ... ... .. 146

11.3.1 Atiyah-Jeffrey description . . . . .. ... .. ... .... 148

11.3.2 Seiberg—Witten Invariants Revisited . . .. ... ... .. 150

1133 Remarks . . . . . . . ... o 152

11.4 N = 2 symmetry and the Euler characteristic . . . . ... .. .. 153
11.4.1 Three dimensional Atiyah-Jeffrey formalism . . . . . . .. 155

11.5 Quantum Field Theory and Floer homology . . . . ... ... .. 156
11.5.1 Relative Seiberg—Witten invariants . . . . . . .. ... .. 158

11.6 Exercises . . . . . . . . . . .. L 159
12 Seiberg—Witten and Donaldson theory 163
12.1 The Physics way: S-duality . . . . ... ... ... ... ..... 165
12.1.1 Maxwell equations . . . . . . .. .. ... .. ... .... 165

12.1.2 Modular forms . . . .. .. ... ... . ... 166

12.1.3 Weak and strong coupling . . . . .. ... ... .. .. .. 168

12.14 Thewu-plane . . . . . . . . . . .. .. 169

12.1.5 Ellipticcurves . . . .. . . . .. ... 171

12.2 The Mathematics way . . . . . . . . ... . ... .. .. .... 171
12.2.1 Non-abelian Monopoles . . . . . .. . ... ... ... .. 173

V Appendix: a bibliographical guide 180



1 Introduction

Where the fire is churned, where the wind wafts, where the Soma juice flows
over —there the mind is born.

Svetasvatara Upanisad 2.6

In the fall of 1994 E. Witten announced a “new gauge theory of 4-manifolds”,
capable of giving results analogous to the earlier theory of Donaldson, but where
the computations involved are “at least a thousand times easier” (Taubes). The
dawn of the new theory began with the introduction of the monopole equations,
whose roots lie in the depths of the still rather mysterious notion of S-duality
in N = 2 supersymmetric Yang-Mills theory (IX: [59], [60])2.

The equations are in terms of a section of a spinor bundle and a U(1) con-
nection on a line bundle L. The first equation just says that the spinor section 1
has to be in the kernel of the Dirac operator twisted with a connection A. The
second equation describes a relation between the self-dual part of the curvature
of the connection A and the section 7 in terms of the Clifford action.

The mathematical setting for Witten’s gauge theory is considerably sim-
pler than Donaldson’s analogue: first of all it deals with U(1)-principal bundles
(hermitian line bundles) rather than with SU(2)-bundles, and the abelian struc-
ture group allows simpler calculations; moreover the equation, which plays a role
somehow analogous to the previous anti-self-dual equation for SU(2)-instantons,
involves Dirac operators and Spin.-structures, which are well known and long
developed mathematical tools.

The main differences between the two theories arise when it comes to the
properties of the moduli space of solutions of the monopole equation up to
gauge transformations. As was immediately observed, the moduli space of
Seiberg—Witten equations turns out to be always compact, essentially due to
the Weitzenbock formula for the Dirac operator: a fact that avoids the com-
plicated analytic techniques that were needed for the compactification of the
moduli space of SU(2)-instantons.

In Witten’s seminal paper (I:[19]) the monopole equation is introduced, and
the main properties of the moduli space of solutions are deduced. The dimen-
sion of the moduli space is computed by an index theory technique, following
an analogous proof for Donaldson’s theory; and the Seiberg—Witten invariant
(which depends on the Chern class of the line bundle L) is defined as the number
of points, counted with orientation, in a zero-dimensional moduli space. The
circumstances under which the Seiberg—Witten invariants provide a topological
invariant of the four—manifold are illustrated in a similar way to the analo-

IThe quotes from the Upanisads are from the Oxford University Press edition, in the
English translation of P. Olivelle.
?References listed in the Introduction refer to the bibliographical appendix.



gous result regarding the Donaldson polynomials. Again as a consequence of
the Weitzenbock formula, the moduli space turns out to be empty for all but
finitely many choices of the line bundle L. Another advantage of this theory
is that the singularities of the moduli space only appear at the trivial section
¥ = 0, since elsewhere the action of the gauge group is free. Thus, by perturbing
the equation, it is possible to get a smooth moduli space.

Shortly after the new equations were introduced and their properties anal-
ysed, an impressive series of new results were proven in the span of a few months.
As pointed out many times, the experts in the field had all the right questions
to ask, questions that were too difficult to attack with the tools provided by
Donaldson theory, and suddenly the new tool of Seiberg—Witten theory became
available. A very rapid advancement in the field was thus possible.

The invariants were first computed for Kahler manifolds, and then, in ex-
tending the technique to the world of symplectic manifolds, Taubes uncovered a
deep relation between Seiberg—Witten invariant and pseudo-holomorphic curves.
The non-vanishing results for Seiberg-Witten invariants of symplectic mani-
folds led to conjecture that these constitute the most “basic” (indecomposable)
kind of four-manifolds. The conjecture was later disproved, again by means of
Seiberg—Witten theory, and there is at present no reasonable conjecture that
would identify the “building blocks” of smooth four-manifolds. Thus, although
in a way Seiberg—Witten theory helped proving several new results in four-
manifold topology, it also showed that our understanding of the structure of
four-manifolds is still very limited.

Among the very first applications of the new gauge theory was the proof of
the Thom conjecture for embedded surfaces in CP?, in (II: [21]), later generalised
to obtain various estimates on the minimal genus of embedded surfaces realising
a given homology class in a four or three-dimensional manifold. This application
led directly to the development of the three dimensional Seiberg—Witten theory
and of an associated Floer homology which is in many ways analogous to the
instanton homology constructed by Floer within the context of Donaldson the-
ory. The Seiberg—Witten Floer homology, however, presents some interesting
phenomena, of metric dependence, due to non-trivial spectral flows of the Dirac
operator.

In the original string-theoretic context, in which Seiberg-Witten theory
arose, this can be seen as equivalent to Donaldson theory, the two being two
different asymptotic limits of one common theory, which get interchanged under
the symmetry of S-duality. Unfortunately, at present there is no clear math-
ematical understanding of this picture, but the equivalence of Donaldson and
Seiberg—Witten theory is the object of current studies that are leading towards
a proof, based on a slightly different perspective. The main idea is to realise
both the Donaldson and the Seiberg-Witten moduli spaces as singular strata
within a larger moduli space of solutions of twisted PU(2)-Seiberg—Witten equa-
tions. The corresponding relation between the Donaldson polynomial and the
Seiberg—Witten invariants explained and justified (I: [19]) only at the level of



physical intuition, is that the Seiberg—Witten invariants should coincide with
the invariants derived by Kronheimer and Mrowka in the structure theorem for
Donaldson polynomials.

After this brief recollection of the exciting days that saw the “change of
paradigm” in gauge theory, we can discuss briefly how the material in this book
is organised.

The first part of these notes, Seiberg—Witten on four-manifolds, collects
some preliminary notions that are needed through the rest of the book, and
then proceeds to give an introduction to Seiberg-Witten gauge theory on four-
manifolds. It follows closely the original paper by Witten (I: [19]). We introduce
the Seiberg—Witten equations as a variational principle, and discuss the ana-
lytic properties of the corresponding functional. Then, we proceed to introduce
the moduli space of solutions. We describe reducibles and how to avoid them
with a suitable perturbation. We discuss the compactness of the moduli space,
the transversality result, and the orientation. Then we introduce the Seiberg—
Witten invariants of a smooth four manifold X. We give a finiteness result, and
discuss the independence of the metric and perturbation for the case b5 (X) > 1,
and the wall crossing formula for b} (X) = 1.

The second part, Seiberg—Witten on three-manifolds, deals with the dimen-
sional reduction of the gauge theory. We first describe how to derive Seiberg—
Witten equations on a three-manifold Y and construct a moduli space and a
corresponding invariant, as in the four-dimensional case. We discuss the metric
dependence of the invariant in the case of rational homology spheres, and the
dependence on the cohomology class of the perturbation in the case of man-
ifolds with b (Y) = 1. We then illustrate the relation between the invariant
and classical invariants such as the Casson invariant, Milnor torsion, and the
Alexander polynomial. We proceed to reinterpret the moduli space as the set of
critical points of the Chern-Simons-Dirac functional, and the four-dimensional
equations as its downward gradient flow. We describe the Hessian and the rel-
ative index of critical points, and give a gluing theorem for the moduli spaces
of flow lines. This allows us to define compactification by lower dimensional
strata of the spaces of flow lines. This is a crucial technical step in the con-
struction of a boundary operator that connects critical points of relative index
one. The corresponding homology is the Seiberg—Witten Floer homology, and
the numerical invariant previously introduced can be reinterpreted as its Euler
characteristic. We illustrate the construction of the equivariant Floer homology
that bypasses the problem of metric dependence and reproves the wall crossing
formula for the invariant. We finally discuss the problem of the exact triangles
and surgery formulae.

The third part, Topology and Geometry, is an attempt to summarise in a
somewhat coherent picture the current literature on the subject of topological
and geometric results obtained via Seiberg-Witten theory. The results covered
in these chapters span a wide range staring from Kahler manifolds and the Van
de Ven conjectures for algebraic surfaces, to Taubes results on symplectic man-



ifolds and the relation to pseudo-holomorphic curves and Gromov invariants,
continuing with the estimates on the genus of embedded surfaces in four and
three-manifolds, with related results on three-manifolds with contact structures.
With the purpose of presenting the largest possible spectrum of results, in this
part we often give only a brief sketch of the proofs, and we refer the reader
to the appropriate sources in the literature, where she/he can find the detailed
arguments. Given that this is still a field in ever increasing and rapid expansion,
it is impossible to present all the contributions with a uniform level of attention
and detail. Therefore a choice has to be made. This is forced upon by the
specific research interests and taste of the author.

Through all these parts of the book, Seiberg-Witten gauge theory is con-
sidered as a completely self-contained subject and no a priori knowledge of
Donaldson theory is assumed. In fact, all the sections that refer to Donaldson
theory can be skipped by the reader who is not familiar with the non—-abelian
gauge theory, and this will not affect the comprehension of the remaining sec-
tions.

It is the author’s belief, supported in this by more authoritative sources like
(I: [19]) or (VIIIL: [2]), that it is inappropriate and in some sense misleading to
present Seiberg—Witten theory without mentioning the context of physical theo-
ries that are responsible for the very existence of this new piece of mathematics.
It is a hard and ambitious task to present quantum field theoretic results in a
form that may be comprehensible and useful to a mathematician.

Thus, we have decided to enclose a fourth and last part in the book, ded-
icated to Seiberg—Witten and Physics. In this a fairly detailed description of
the Mathai-Quillen formalism and the mathematically rigorous formulation of
the regularised Euler class of Fredholm bundles have been included precisely
to the purpose of making the reader familiar with the mathematical meaning
of certain quantum field theoretic statements. This construction behaves par-
ticularly nicely when applied to Seiberg—Witten theory, since the compactness
of the moduli space reduces some of the technicalities involved in the rigorous
definition of the regularised Euler class.

This first step does not lead us close to the real heart of the matter. There-
fore, we patiently proceed to attempt a brief exposition of some of the ideas
of the theory of S-duality. This is especially difficult, since at the moment no
clear mathematical understanding of the concept of S-duality is available and
similarly for many of the physical concepts involved. However, this is by itself
a good reason to include a brief discussion of what seems to be a promising
direction for future studies and research.

We have also included a chapter where the mathematical approach to proving
the equivalence of Seiberg—Witten and Donaldson theory is outlined. Some
knowledge of SU(2)-gauge theory is needed in order to approach the content of
this section.

The reader that approaches this fourth part of the book must keep in mind
that the author is not a physicist, therefore the content of these chapters will



inevitably appear to the eyes of a Physics-oriented reader as overly simplified.

In particular, due to the fact that the field is expanding so fast, the au-
thor should apologise to all the colleagues whose work might not have received
the necessary attention in these notes. This especially applies to the Physics
literature, where it is well known that the expansion rate of the set of new
contributions to the subject is some orders of magnitude faster.

Because of all these and other limitations, these notes do not intend to be
a comprehensive introduction to the Seiberg-Witten gauge theory. An initial
version of these notes was prepared for a series of seminars that the author gave
at the University of Milano in the summer 1995, intended mainly for an audi-
ence of first or second year doctorate students, and of advanced undergraduate
students in Mathematics or Physics who were preparing their laurea dissertation
in topology, differential geometry, or quantum field theory. The purpose of the
set of notes was to help the students in reading the references available on the
subject: strictly speaking, the purpose of the notes was to provide a guide on
“how to approach the study of Seiberg—Witten gauge theory”. As prerequisites,
in fact, we assumed only some knowledge of the topology of fibre bundles, and
notions like that of connection and curvature, that are usually covered in a Eu-
ropean undergraduate course of algebraic topology or differential geometry; as
well as of theoretical or mathematical physics. Some other concepts are briefly
introduced, and the reader who is not familiar with the subject is addressed to
references, where she/he can find more detailed information.

This initial version of the notes, roughly covering part one and part three,
with a draft of part four, is still available on the electronic preprints as dg-
£a/9509005, and it had the short-lived privilege of being the first available
expository work that collected a good part of the existent literature on the
subject. Many valuable references had since then appeared, which fulfill the
same purpose, with particular attention to different mathematical orientations
of the reader. Among these we recommend (I: [5]), but the reader should check
the appropriate section of the bibliographical guide at the end of this volume
for more references. Thus, it became in the least advisable to revise and update
these notes. A first revision was made in the spring 1996, when the Interna-
tional Press Lecture Series took place at Irvine and many experts presented
new results (among these Taubes’ results on holomorphic curves, a first outline
of Kronheimer and Mrowka’s work on the interplay between three-dimensional
Seiberg—Witten theory and contact geometry, and Furuta’s progress in the di-
rection of the 11/8 conjecture: the latter is certainly a sin of omission from this
book). Shamelessly, I let other two years pass before attempting a final revision
of the book.

Acknowledgements are due to many people. First of all to T.R. Ramadas
for his careful editing of these notes and for offering me the opportunity of pub-
lishing them in the Texts and Readings in Mathematics series. Many thanks
are due to Paolo de Bartolomeis, for carefully reading the manuscript and sug-
gesting several corrections and improvements, and to Paolo Aluffi and Arthur



Greenspoon for spotting innumerable typos and providing useful feedback.
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Part 1
Seiberg—Witten on four-manifolds

You have the glow of a man who knows brahman! Tell me —who taught you?
‘Other than human beings’ he acknowledged. ‘But if it pleases you, sir, you
should teach it to me yourself, for I have heard from people of your eminence
that knowledge leads one most securely to the goal only when it is learnt from a

teacher’.

Chandogya Upanisad, 4.9.2-3
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2 Preliminary Notions

We introduce here the basic concepts that are needed in order to define the
Seiberg—Witten equations and invariants. This introduction will be rather
sketchy: occasionally we will refer to more detailed references listed in the bib-
liography.

2.1 Clifford Algebras and Dirac Operators

Definition 2.1 The Clifford algebra C(V) of a real vector space V with an
inner product (,) is the algebra generated by the elements of V, subject to the
relations

e-e +e-e=-2¢€).
The multiplication of elements of V' in the Clifford algebra is called Clifford
multiplication.

Given an orthonormal basis {e;} of V,

€n

€1
€ ey,

where €; = 0 or 1, is a vector space basis of C'(V).

If dimV = 2m, there is a unique irreducible representation of C(V) on
a complex inner product space S, such that the elements of V' act by skew-
hermitian operators. This representation (which is usually called the complex
spinor representation) has dimension 2™. The representation S has a spectral
decomposition S = ST @ S~ with respect to the action of the volume form of
c(V).

In particular, given a Riemannian manifold X we shall consider the Clifford
algebra associated to the tangent space at each point.

Definition 2.2 The Clifford algebra of the tangent bundle of X is the bundle
that has fibre over each point x € X the Clifford algebra C(T,X). We shall
denote this bundle C(TX).

For the rest of this section we assume that the dimension of X is even.

Definition 2.3 A spinor bundle over a Riemannian manifold X is a hermitian
vector bundle W of complex rank 2™, with a map I' : TX — End W satisfying
T'(v) + T*(v) = 0 and T(v)[*(v) = —|v|*Id, for all v € TX. A spin connection
on W is a connection compatible with the Levi—Civita connection VIC, that is,
a connection

V:iC®(W) - C®(T*X W)
such that, given any two vector fields u and v on X, and any section s of W we

have
Vu(v-8) = VEC(v) - s +v-Vu(s).

13



Not all manifolds admit a spinor bundle: the existence of such a bundle is
equivalent [21] to the existence of a Spin.—structure on the manifold X: we
shall discuss Spin.—structures in the next paragraph. If a spinor bundle exists,
it splits as a direct sum of two vector bundles,

W=Wwtew-", (1)

where the splitting is given by the internal grading of the Clifford algebra. The
determinant line bundles of W+ and W~ are canonically isomorphic. =~ We
denote this bundle by L. A spin connection leaves W+ and W~ invariant, and
it induces the “same” connection on L. Clifford multiplication by elements of
TX takes WT to W~.

The following lemma is an easy consequence of Definition 2.3.

Lemma 2.4 Let X be a manifold that admits a spinor bundle W. Let {e;} be
a local orthonormal basis of sections of the tangent bundle TX and <,> be the
Hermitian structure on W. Then, for any section ¢ € T(X, W), and for i # j,
the expression

< eiej, ) >

is purely imaginary at each point © € X.

Proof: In fact, by skew—adjointness of Clifford multiplication and the fact that
the basis is orthonormal,

<eiej), P >=— < ejh,ei) >=< 1P, ejen) >=
- < 1,[1,61'63"(/1 >= =< ez-eﬂ/),t/} >.
QED

Definition 2.5 Given a spinor bundle W over X, endowed with a spin con-
nection, the Dirac operator on W is the first order differential operator on the
smooth sections

D:T(X,Wt) - T(X,W")

defined as the composition
D:T(X,WHJ3TX,WHeTX) S T(X, Wt TX) ST(X, W), (2)

where the first map is the covariant derivative with respect to the spin connec-
tion, the second is the Legendre transform, that is, the isomorphism given by
the Riemannian metric, and the third is Clifford multiplication.

It is easy to check (for more details see [21]) that this corresponds to the
following expression in a local orthonormal system of coordinates:

Ds = Zek - Vis.
k

14



Considered as an operator on the space of sections of the full spinor bundle
W = W+ @ W—, the Dirac operator of the form

0 D
D 0
is formally self adjoint.
An essential tool in Spin geometry, which is very useful in Seiberg—Witten
gauge theory, is the Weitzenbdck formula.
Theorem 2.6 The Dirac operator D satisfies the Weitzenbick formula:
—i
4

where V* is the formal adjoint of the covariant derivative k is the scalar curva-
ture on X, F' is the curvature of the induced connection on L, and s € T(X, W)

D%s = (V*V + g + LF)s,

Proof: In terms of local normal coordinates

D?s = Ze,-V,-(ejVjs) = ZeiejViVjs =
] i3

= — Z VES + Z e;e; (VZV] — VJV,)s
i i<j
The first summand is V*V ([21] pg. 28), and the second splits into a term which
corresponds to the scalar curvature on X ([21] pg. 126) and the curvature —iF
of the induced connection on L (we identify the Lie algebra of U(1) with iIR).
QED

2.2 Spin and Spin,. Structures

The group Spin(n) is the universal covering of SO(n).
The group Spin.(n) = (Spin(n) x U(1))/Z, is an extension

1— Zy — Spins(n) = SO(n) x U(1) — 1. (3)

This yields the exact sheaf—cohomology sequence:

- o HY(X; Spine(n)) » HY(X;SO0(n)) @ HY(X;U(1)) > H*(X;Z,) (4)
Recall that H'(X;G) represents the equivalence classes of principal G-
bundles over X. It can be shown [14] that the connecting homomorphism of the
sequence (4) is given by
6 : (Pso(n); Pu)) = w2(Pson)) + a1 (Puq)),

where ¢1(Py(1) is the reduction mod 2 of the first Chern class the principal
bundle PU(l) and ws is the second Stiefel-Whitney class.

15



Definition 2.7 A Spin.—structure on an oriented n-dimensional Riemannian
manifold X is a lift of the bundle Fr of oriented orthonormal frames to a prin-
cipal Spin.(n) bundle. A Spin—structure is a lift of the bundle Fr to a principal
Spin(n) bundle.

We shall refer to the set of Spin. structures on a Riemannian manifold X
as S(X), or simply S when the manifold X is understood.
We have the following criteria for the existence of Spin. and Spin-structures.

Lemma 2.8 A manifold X admits a Spin.—structure iff we(X) is the reduction
mod 2 of an integral class. It has a Spin—structure iff wo(X) = 0.

We have the following theorem, which was proven originally in [10].

Theorem 2.9 FEvery oriented J—manifold admits a Spin.—structure.

2.3 Spinor Bundles

Two equivalent descriptions of spin bundles are possible. One is in terms of
principal bundles, and the other in terms of vector bundles as in Definition 2.3.
We briefly recall the principal bundle description following [14]. The equivalence
of these two descriptions in the case of a four-manifold is dealt with in exercises
at the end of the chapter.

Both Spin(n) and Spin.(n) can be thought of as lying inside the Clifford
algebra C(IR™). Therefore to a principal Spin(n) or Spin.(n) bundle we can
associate a vector bundle via the unique irreducible (complex, hermitian) rep-
resentation of the Clifford algebra. This will be the bundle of Spinors over X
associated to the Spin. or Spin structure, as defined in 2.3.

It is instructive to think in terms of transition functions. Let g,g be the
transition functions of the frame bundle over X, which take values in SO(n).
Then locally they can be lifted to functions §os which take values in Spin(n),
since on a differentiable manifold it is always possible to choose open sets with
contractible intersections that trivialise the bundle.

However, if the manifold is not Spin, then the g,s will not form a cocy-
cle, since goggpyGya = 1 would imply that the second Stiefel-Whitney class
vanishes.

If a Spin, structure exists we know that ws is the reduction of an integral
class ¢ € H%(X, Z), which represents a complex line bundle, say with transition
functions A,p with values in U(1). Locally such functions will have a square

root /\yﬁ? . However, the line bundle will not have a square root globally (in

which case )\;/52 will not form a cocycle).
However, the relation ws(X) 4+ ¢ = 0 mod 2 that comes from (4) says that
the product

oAy (5)

16



is a cocycle. These are the transition functions of S ® v/L, where S would be
the spinor bundle of a Spin structure and v/L would be the square root of a
line bundle: neither of these objects is defined globally, but the tensor product
is. Thus, we can represent the spinor bundle W as W* = S* @ /L.

We should point out that a Spin. structure can also be defined as a lift of
Fr x Py, where Fr is the oriented frame bundle, as before, and Py ) is a
principal U(1) bundle satisfying ¢ (Py(1)) = w2(X) (mod 2). We can refer to
the set of Spin. structures defined this way as S’. Then there is a surjective map
&' — S. The fibre of this map is a homogeneous space for H' (X, Z)/2H (X, Z).
Notice, moreover, that there is an injection of the set of Spin structures into
S', but the composite map to S is not an injection in general. There is
an action of the group H2(X,Z) of equivalence classes of line bundles on X
on the set S, given by W — W ® H, for H € H*(X,Z). The set S is in
fact a principal homogeneous space for H%(X,Z). The map S — H*(X,Z)
given by (W*,T) — L = det(W) is equivariant with respect to the action of
H?(X,Z), where the action on the right hand side is given by L — H? ® L, for
He H*(X,Z).

Remark 2.10 If we choose a U(1)-connection A on L, then we can write the
Dirac operator on W+ as a twisted Dirac operator on ST @ /L. This is well
defined, since it is defined in terms of local quantities. The Weitzenbick formula
2.6 holds true for the twisted Dirac operator on ST ® /L.

2.4 Topology of the gauge group

Recall that the gauge group of a G-bundle is defined as the group of self equiv-
alences of the bundle, namely the group of smooth maps

Ao Uy = G

)‘ﬂ = gﬂa)\aga,@a

where the bundle is trivial over U, and has transition functions g,g.

The gauge group is an infinite dimensional manifold. It is made into a
Banach manifold with the choice of some fixed Sobolev norm. The definition
of the L?-Sobolev norms will be recalled later in this section. In the following
we always assume to work with L?-gauge transformations, with k > 3, since we
think of the configuration space of pairs (A,v) endowed with the Li_l—norm.
If the structure group is abelian, or if the G-bundle is topologically trivial, then
the gauge group has a simpler description as G = M(X,G), the space of maps
from X to G. We have the following easy lemma.

Lemma 2.11 In the case G = U(1), the set of connected components of the
gauge group G is H (X, Z).
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2.5 Symplectic and Kéahler Manifolds

Recall that a manifold X is endowed with a symplectic structure if a closed 2—
form w is given on X such that it is non-degenerate, that is, its highest exterior
power is nowhere vanishing.

An almost complex structure J on a manifold X is a complex structure on
the tangent spaces J, : T, X — T, X, J2 = —1. Given such a J and a non-
degenerate 2-form w on X, we say that the two are compatible if the expression
g(v,w) = w(v, Jw), with v and w tangent vectors, defines a Riemannian metric
g on X, and J is orthogonal with respect to g. A symplectic form w is said to
tame an almost-complex structure J if it satisfies w(v, Jv) > 0 for all non zero
vectors v.

Notice that the condition that w is non-degenerate is necessary for g to be
a Riemannian metric, but w does not need to be closed, hence it may not give
rise to a symplectic structure. A non-degenerate form w supports a family of
compatible almost-complex structures J, and corresponding metrics. The set
J of almost-complex structures J that are w—compatible is contractible.

When J is defined by an actual complex structure on X we say that J is
integrable. If J is integrable, and the 2-form w is closed, that is, if X is both
symplectic and complex, then X is a K&hler manifold, w is the Kahler form and
g(v,w) = w(v, Jw) a compatible Kahler metric.

A condition equivalent to the integrability of J can be used to characterise
complex manifolds. In fact, on an almost complex manifold, the cotangent
bundle can be written as

T* (X)q: — T*(X)I @ T*(X)II’

with the splitting given by the almost complex structure, and the complex of
forms splits correspondingly as

APD(X) = {a € APTI(X)|a € AP(T*X)' ® AY(T*X)"}.
On a complex manifold, the differential takes the form
d=0+0: AP 5 AP+Ld) g A(Patl),

If J is not integrable, the differential on A9 also has components with values
in A(P—1.a+2) g A(P+2.0-1)  Thege components can be expressed in terms of the
Nijenhuis tensor

Nj(v,w) = [v,w] + Jv, Jw] + J[Jv,w] — [Jv, Jw],

and a theorem of Newlander and Nirenberg asserts that the vanishing of the
Nijenhuis tensor is in fact equivalent to the integrability of J. This property
will be useful in discussing some aspects of Seiberg—Witten equations on Kahler
and on symplectic manifolds.
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The picture can be summarised as follows. We are considering three possible
kinds of data on an even dimensional manifold X: a Riemannian metric g, an
almost complex structure J and a 2-form w. There is a compatibility condition
expressed by the relation g(v,w) = w(v,Jw): this implies that the 2-form is
non-degenerate, but it is not sufficient to guarantee that it is closed.

If, in addition, the 2-form w is closed, we obtain a symplectic manifold.
Regardless of whether w is closed, we can instead require another additional
condition, which is the vanishing of the Nijenhuis tensor: this implies that the
almost complex structure J is integrable, hence the manifold is complex.

If we require both conditions to hold simultaneously, dw = 0 and N; = 0, this
is equivalent to the condition VJ = 0 with respect to the covariant derivative
induced by the Levi—Civita connection of g, and the manifold X is Kahler.

It is known that all symplectic structures are locally the same. (In fact by
the Darboux theorem it is always possible to find a set of coordinates in which
the symplectic form reduces to the “standard one”: w = >, dx; A dy;.) In
this sense symplectic geometry can be thought of as something more rigid than
C>°—geometry but less rigid than Riemannian geometry.

Note that, unlike symplectic geometry, which is less rigid than Rieman-
nian geometry, Kihler geometry is much more rigid, as expected in passing
from smooth to analytic geometry. In this sense, the condition of being Kéhler
is rather exceptional, although it may be non-trivial to provide examples of
compact symplectic manifolds that are not Kéhler, particularly in the simply
connected case; see e.g. [17] and [9].

We recall some useful notions about group actions on symplectic manifolds.
The action of a group on a symplectic manifold is said to be symplectic if it
preserves the form w.

Definition 2.12 A symplectic action of a Lie group G on (X, w) is Hamiltonian
if each vector field v on X, given by the infinitesimal action of the Lie algebra
L — Vect(X), lifts to a map H, € C*(X), via the relation

w(v,-) = dH,(-).

A Hamiltonian action is called Poisson if the map L — C*(X) given by v —
H, is a Lie algebra homomorphism with respect to the Poisson bracket {,} on

C®(X).

The difference between Hamiltonian and Poisson actions is measured by a Lie
algebra cocycle as explained in [18]. Notice that often a different terminology
is encountered where “weakly Hamiltonian” is used instead of “Hamiltonian”
and “Hamiltonian” is used instead of “Poisson”.

Definition 2.13 The moment map of a Poisson symplectic action of G on X

is the map
w:X — L
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z - (u): L= R)
() (v) = Hy(x).

If a Riemannian manifold X is endowed with an orthogonal almost complex
structure J, then there exists a canonical Spin.—structure, namely, the spinor
bundle S given by

s = AP (x)

The Clifford multiplication on S is given by
(@) 4+ a3 = /2(a%Y A B — a0 3),

k . . .
where a(1:0) |3 = Dk grea197 36 Notice that, in the principal bundle de-
scription, the existence of a canonical Spin.—structure associated to an almost
complex structure depends on the embedding

U(n) — Spin.(2n)

One last observation that will be useful in discussing Seiberg—Witten theory
on Kahler and symplectic manifolds is the following simple remark.

Remark 2.14 let V be a 4—dimensional real vector space endowed with a pos-
itive definite scalar product <, >. Let J be an orthogonal complex structure on
V, and let w(v,w) =< v, Jw >. Then we have a decomposition

A2 ®C =Cw @ A0 @ A2,

Symplectic geometry plays a prominent role in Seiberg—Witten gauge the-
ory. Computation of the invariants is made easier in the presence of a symplectic
structure and it is a deep result of Taubes that the Seiberg—Witten invariants
are connected to other invariants of symplectic manifolds introduced by Gro-
mov. The fact that the Seiberg—Witten invariants of symplectic manifolds have
a “more basic” structure also led to a conjecture, suggested by Taubes, that
symplectic manifolds may be among the most basic building blocks of the whole
geometry of 4—manifolds. The conjecture was disproved by Z.Szabd: in fact,
there seems to be currently no reasonable guess as to what the “basic building
blocks” of smooth four-manifolds could be.

A good reference for the notions introduced in this section is [18].
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2.6 The index theorem

We recall here very briefly some essential results of index theory. A very readable
reference is the book by R. Boos and D.D. Bleecker, [2].

Recall that a bounded linear operator acting between Banach spaces is Fred-
holm if it has finite dimensional kernel and cokernel.

A differential operator of order m, mapping the smooth sections of a vector
bundle E over a compact manifold Y to those of another such bundle F', can
be described in local coordinates and local trivialisations of the bundles as

D= Z aq(z)D®,
laj<m
with @ = (a1, ...,a,). The coefficients ay(z) are matrices of smooth functions
and D% = BLQIB—Q"
T, Tn

Definition 2.15 The principal symbol associated to the operator D is the ex-
pression

om(D)(z,p) = z aq(x)p”.

|a|=m

Given the differential operator D : T'(Y, E) — I'(Y, F), the principal symbol
with the local expression above defines a global map

Om 7 (E) = 7 (F),

where T*Y 5 Y is the cotangent bundle, that is, the variables (z,p) are local
coordinates on T*Y.

Consider bundles E;, i = 1...k, over a compact n-dimensional manifold Y.
Suppose there is a complex I'(E) formed by the spaces of (local) sections I'(E;)
and differential operators d; of order m;:

0= D(E) S ... "' 1(E,) — 0.

Construct the principal symbols o, (d;); these determine an associated sym-
bol complex

omg_q(dr—1)

mq (d
0— " (E)° ) LRN 7 (Eg) = 0.

Definition 2.16 The complex T'(E) is elliptic iff the associated symbol complex
is exact off the zero section.

In the case of just one operator D of order m, this means that o, (D) is an
isomorphism off the zero section. On a compact manifold Y the condition of
ellipticity ensures that the differential operator D is Fredholm [2]. The Hodge
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theorem states that in this case the cohomology of the complex I'(Y, E) coincides
with the harmonic forms; that is,
; Ker(d;)
HYE) = ——=Ker(4;
(B) = g5 Ker(A),
where A; = drdz + dz',ld:;_l.
Without loss of generality, by passing to the assembled complex

Et=E'¢Fo---
E-=E’9FE'9-- -,

we can always think of one elliptic operator D : T'(Et) — I(E™), D =

>oi(dai 1 +d5y).
The index theorem can be stated as follows.

Theorem 2.17 Consider an elliptic complex over a compact, orientable, even
dimensional manifold Y without boundary. The index of D, which is given by

Ind(D) = dim Ker(D) — dim Coker(D) = Z(—l)i dim KerA; = —x(E),

i

Xx(E) being the Euler characteristic of the complex, can be expressed in terms of
characteristic classes as

_ gz ch(Ci (1) [E])
Ind(D) = (-1)"? < Ttd(:mft),[yp.

In the above ch is the Chern character, e is the Euler class of the tangent
bundle of Y, and td(TYg) is the Todd class of the complexified tangent bundle.

2.7 Equivariant cohomology

We recall some basic notions of equivariant cohomology with real coefficients.
These will be useful in discussing the approach to Seiberg—Witten gauge theory
through Quantum Field Theory and in the construction of the Seiberg—Witten-
Floer homology. The brief exposition presented here partly follows [4], which
we recommend as a very good reference for the role of equivariant cohomology
in Quantum Field Theory.

The basic idea is the following: when a group G (which we assume in the
finite-dimensional case is a compact connected Lie group) acts freely on a mani-
fold X, the quotient is a manifold. Thus we can compute the ordinary cohomol-
ogy H*(M/G,IR). However, if the action is not free, i.e. there are fixed points,
the quotient fails to be a manifold. Equivariant cohomology is the algebraic
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object that plays the role of the ordinary cohomology of the quotient in this
case.

In the case of ordinary cohomology, many different definitions can be given.
All of them are proved to be equivalent since they satisfy the Steenrod axioms.
Something similar happens with the equivariant cohomology. Since we are only
interested in the case with real coefficients, we shall concentrate on a de Rham
version of equivariant cohomology.

Let us recall the notions of a classifying space and the universal bundle. The
latter is a principal G-bundle EG over a space BG which is defined uniquely up
to homotopy, such that, given any principal G-bundle P over X, this is obtained
as a pullback of the universal bundle via a classifying map f : X — BG. The
total space EG is contractible.

Definition 2.18 Let X be a manifold with an action of a compact connected
Lie group G. Consider the space X x EG. This has a free action of G induced
by the action on X and the free action on EG. Thus we can compute the
ordinary cohomology of the quotient XG = (X x EG)/G. This is the equivariant
cohomology of X :

H{(X,R) = H*(XG,R).

The space XG is called the homotopy quotient of X.

Let p : XG — X/G denote the map induced by the projection X x EG — X.
Then the fibre is
p~!([z]) = EG/G.,

where G, is the stabiliser of the point € X. Thus, in general the map p is not
a fibration. On the other hand, if the action of G is free, then the map p is a
fibration with fibre EG. Since EG is contractible, the map p gives a homotopy
equivalence.

Thus, in the case of a free action, the equivariant cohomology is just the
ordinary cohomology of the quotient,

HA(X,R) = H*(X/G, R).

In other words, the idea underlying the above definition is that the product
with EG makes the action free without changing the topology of X, since EG
is a contractible space. If X = pt is a point the equivariant cohomology is the
cohomology of the classifying space BG,

H%(pt,R) = H*(BG, R).

This example shows that the equivariant cohomology is in general highly non-
trivial.

There is an axiomatic version which is analogous to the Steenrod axioms
for ordinary cohomology. Namely, equivariant cohomology is uniquely specified
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by the requirements that it coincides with the cohomology of the quotient in
the case of a free action, that an equivariant homotopy equivalence induces an
isomorphism, and that there is a Mayer-Vietoris sequence with open sets that
are G-invariant.

The de Rham model that we are going to present is based on the construction
of an “algebraic analogue” of the classifying space.

Definition 2.19 The Weil algebra of a compact connected Lie group G is the
differential graded algebra

W(g) = 5*(&) © A*(g),

where g is the Lie algebra of G and g is the dual.
W(g) is graded by assigning degree one to every element

¢ €gCAY(g),
and degree two to the corresponding element
u € g C S*g).

Thus, if {X1,...,Xn} is a basis of g and {@',...,¢"} is the dual basis of
g, the algebra W(g) is freely generated as supercommutative graded algebra by
R L AN T

Let 0 € gog C A(8)®g be defined as 6(X) = X. Let Q be the corresponging
element in S(g) ® g. We can write 0 = ¢" ® X, and Q = u" ® X3, with an
implicit sum over repeated indices.

The differential on W(g) is defined as follows. For every ¢ € & C A(g) and
every u € g C S(g) set

1
dw(4) = 6(Q = 510, 6)),
and
dw (u) = u([<, 6]).
Extend dw as degree one derivation. In particular, we have
dw¢* = u® - Cg,¢°¢
dwu®* = Cg,ul¢,

where sums over repeated indices are understood. The Cg ’s are the structure

constants of the Lie algebra g with respect to the given basis. It can be checked
that d, = 0, hence (W(g), dw) is a differential graded algebra.
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It is not hard to see that the cohomology of W(g) with respect to the differ-
ential dy is trivial in degree higher than zero and is equal to IR in degree zero.
We think of W(g) as an algebraic analogue of the contractible space EG.

We introduce contractions and Lie derivatives (with respect to elements of g)
in W(g). Contractions with respect to elements of the dual basis of g are defined
as I;(67) = 6] and I() = 0 and the Lie derivative is the graded commutator of
Ii and dw, L, = [I“dw]

The subcomplex B(g) of W(g) of elements that are killed by such contrac-
tions and Lie derivatives is the analogue of the space BG. In fact we have
that

H*(B(g), R) = 5*()°,

the G-invariant polynomials on g. It is a well known theorem that for a con-
nected compact Lie group G this is in fact the cohomology of the classifying
space BG (with real coefficients), i.e.,

H*(BG,R) = S*(g)°.

Given any principal G bundle P over X, a connection on P yields an algebra
homomorphism (the Weil homomorphism) from W(g) to the de Rham complex
A*(P). The subcomplex B(g) is mapped to the basic forms, i.e. the forms
on P that are obtained as pullback of forms on X. These are killed by the
contractions and the Lie derivatives, since they have no vertical component
and are G-invariant. Let A% (X) denote the subcomplex of basic forms in
W(g) ® A*(X).

We can construct a de Rham complex that computes equivariant cohomology
of a manifold X with a G-action.

Proposition 2.20 The subcomplex
AG(X) cW(g) ® A*(X) (6)

of basic forms with differential dw ® 1 + 1 ® d computes the equivariant coho-
mology of X,
H*(ALH(X),dw ®1+1®d) = H: (X, R).

2.8 Sobolev norms

It is well know since [20] and the subsequent [23] (see also [8]) that in gauge
theories the appropriate way of endowing the infinite dimensional spaces of
connections and sections with a manifold structure is by appropriate Sobolev
norms. We recall here a few basic notions.

Let X be a compact oriented n-dimensional manifold. On the space of C*°
(real) functions on X we define

|V€f|2 — vm - Vuzfvm - v#zfv
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where a sum over repeated indices is understood.
With this notation, we define the space L% (X), with & > 0 an integer and
p > 1 a real number, to be the completion of C*°(X) in the norm

1/p

Iflee = | D0 IV ey | (7

0<t<k

We shall occasionally consider non-compact complete Riemannian manifolds.
In this case, we can choose whether to complete in the norm (7) the space of com-
pactly supported smooth functions C°(X) or the space {f € C®(X)||V‘f| €
L?(X),0 < ¢ < k}. If the Riemannian manifold is complete, the two spaces thus
obtained coincide, but this is not the case on a non-complete manifold [1]. Sim-
ilarly, the two completions can be considered for the case of smooth manifolds
with boundary, and again (in cases where the boundary is a smooth compact
(n — 1)-dimensional manifold without boundary) the two spaces coincide [1].

The definition of L spaces of functions extends to L} spaces of forms or
sections of vector bundles over X, by patching together norms of the form (7)
with a partition of unity. It is easy to show that different choices of the cutoff
functions lead to equivalent norms. When p = 2 we have Hilbert spaces L2 (X).

It is very useful, for many of the results discussed in the following chapters,
to recall the Sobolev embedding theorems.

Proposition 2.21 Let k and £ be positive integers with k > £ > 0, and p and
q real numbers with 1 < p < q. Let r be a positive integer. Let X be an
n-dimensional compact manifold. Then we have the following results:
(1) If% > % — =L there is an inclusion L}(X) < L{(X) that is a bounded
k—¢

map; the inclusion is compact if% > 11—, ~

(2) If - > 11—) there is a continuous inclusion L (X) — C"(X).

Again the embedding theorem can be reformulated for the case of non-
compact manifolds. The same result holds for complete Riemannian manifolds
with bounded curvature and injectivity radius § > 0 ([1] pg.45) or for smooth
manifolds with boundary ([1] pg.51). In these cases the space C"(X) has to be
replaced by the space C(X) of C" functions that are bounded together with
all derivatives up to order r on X. Proposition 2.21 then holds in this case as
well. However, the Sobolev embedding has to be modified in a more essential
way whenever the domain is such that the space of compactly supported func-
tions is not dense in the Sobolev space. A good reference for Sobolev spaces on
manifolds is [1].

As an example, consider the case of a compact 4-manifold X. If we want to
guarantee that we are dealing with continuous functions we can choose to work
in the space LY(X) with p > 4. In the case of the Hilbert spaces L% (X), it is
sufficient to choose k > 2.
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The reason why we choose to work with Sobolev norms, is that they give a
good control over the regularity of functions via the embedding theorems, but
they also give rise to a Banach or Hilbert structure, thus enabling us to use an
infinite dimensional analogue of the implicit function theorem which would not
be available in the smooth topology. The implicit function theorem is a crucial
tool in order to show that, after a generic perturbation, the moduli spaces of
solutions of elliptic equations modulo gauge symmetries are smooth manifolds.

In a later chapter, in order to construct a gauge theory of three-manifolds,
we shall consider the Seiberg—Witten equations on a tube X =Y xIR, where Y is
a compact oriented three-manifold without boundary. In this case it is possible
to introduce weighted Sobolev norm, with a choice of a weight function that
forces a certain rate of decay at +oo. A reference for weighted Sobolev spaces is
[16]. We shall consider X =Y x R endowed with the cylindrical metric dt* + g.

We choose a weight function es(t) = %, where § is a smooth function with
bounded derivatives, 0 : R — [=4, ] for some fixed real number J > 0, such
that o(t) = —6 for t < —1 and §(t) = 6 for t > 1. The L} ; norm is defined as
I £ll2,k,6 = lles fll2,x- The weight es imposes an exponential decay as asymptotic
condition along the cylinder.

Again, we have a Sobolev embedding theorem.

Proposition 2.22 Let X be a cylinder X =Y x R, with Y a compact three-
dimensional manifold. We have

(i) The embedding Lj 5 — L;_, 5 is compact for all k > 1.

(i1) If k > m + 2 we have a continuous embedding L%,& — C™.

i) If k > m + 3 the embedding L2 ; — C™ is compact.

k.6

() If 2 < k' and k < k' the multiplication map L%,é ® Li,’é i Li’% 18

continuous.

2.9 Fredholm properties
Suppose given a differential operator
D= Z aq(z)D?,
la|] <m

of order m, acting on the smooth sections of a vector bundle E over a compact
manifold X. Then D is bounded in the Sobolev norms

D Li-i—m(X’ E) - L%:(Xa E)

As we recalled in the brief introduction to the index theorem, on a compact
manifold if D is elliptic, this is a condition sufficient to ensure that it is Fredholm.
However, if the manifold X is non-compact this is no longer true. Again, we are
interested in the particular case where X = Y X IR, with Y a compact three-
manifold. We are also interested in one particular type of operators, namely D
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a first order elliptic operator, such that, for |t| > Tp on the cylinder, D is of the
form

D=0+ T+,
where the T s are first order operators on Y, the “asymptotic” operators,
and € is a correction term that is small for |¢t| > Tp. We consider D acting on
the Sobolev spaces

D: L 4(B) — L3(E),
where FE is the pullback of a bundle on Y.

We have the following result [16], [19] pg.135, that imposes a constraint on

the choice of the weight § in the weighted Sobolev norms we want to consider
on X =Y xIR.

Proposition 2.23 An elliptic operator D on X =Y X IR that is of the form
D= 8t +T:|:oo,6 + €,

for |t| > To, is Fredholm if and only if the operator Tyo s — %Id acting on
L2-sections is invertible, i.e. if g is not in the spectrum of Tyoo 5.

2.10 Exercises

e Let A be an element of the gauge group G. Prove that the connected
component of G to which X belongs is identified with the class [Z2A~'d)]
in H'(X,Z), under the isomorphism of lemma, 2.11.

e Prove that, if W+ @ W~ is a U(2) x U(2)-spinor bundle over the four-
dimensional manifold X, in the sense of definition 2.3, then the structure
group admits a reduction to Spin.(4) = {(g,h) € U(2) x U(2)|det(g) =
det(h)}.

e Let X be a four-manifold endowed with a Spin.(4)-principal bundle that
lifts the frame bundle. Let W= be the irreducible Clifford modules for
C(R*), and consider the bundle Pspin. (4) X Spin.(4) W=, For simplicity we
also denote this bundle W*. Then, W+ is a spinor bundle in the sense of
definition 2.3.

e Given a smooth vector bundle E over a Spin.—manifold X and a con-
nection A on E, the twisted Dirac operator Dy : (X, Wt @ E) —
I'X,W~ ® E) is the operator acting on a section s ® e as the Dirac
operator on s and the composite of the covariant derivative V4 and the
Clifford multiplication on e:

Du:T(X,W+eE) "*B*VAn(x, Wt ® E® T*X)

LTX, Wt E®TX)ST(X,W~ ®E).
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The twisted Dirac operator satisfies the Weitzenbock formula

K =i
D%s= (ViVa+ 1T 7 Fa)s,
where V% is the formal adjoint of the covariant derivative with respect
to the Spin—connection on the Spinor bundle, and with respect to the
connection A on E, V4 = V®1+1Q Vya; k is the scalar curvature on
X, F4 is the curvature of the connection A, and s € [(X, W' @ E).

The choice of a connection A on the determinant line bundle L determines
a unique spin connection. This shows existence of spin connections.

Suppose given (X,g,J) a Riemannian manifold with metric ¢ and an
orthogonal almost complex structure J. Show that, with respect to the
canonical Spin.—structure with spinor bundle S = A(JO’*)(X ), the Dirac
operator is of the form

D=v20+38)+Q,

with ) an endomorphism of S. Show that () vanishes if X is K&hler. We
shall return to this in discussing Seiberg—Witten theory on Kahler and
symplectic manifolds.
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3 The Functional and the Equations

In all the following we consider X to be a compact, connected, orientable,
differentiable 4-manifold without boundary.

3.1 The Equations

The Seiberg—Witten equations are given in terms of a pair (4,1), where A is
a spin connection and v is a section of WT. For the present we assume that
A and 1 are smooth. To stress the dependence of the Dirac operator on A, we
denote it by D 4, we let A denote the induced connection on L and we similarly
denote by F'; the curvature of the induced connection on L.
The equations are
Dayp=0 (8)

1 ) ;
F;{:Z <6i6j’(p,’(/)>€z/\6], (9)

Here {e;} is a local basis of TX that acts on ¢ by Clifford multiplication (see
the exercises), {e'} is the dual basis of 7*X, and <, > is the inner product on
the fibres of WT.

The reader should be warned that the use of notation is not uniform in the
literature. Here we chose to follow [12], but other references [13] [24] use a
different notation. The main difference corresponds to interpreting the terms
in the curvature equation (9) as purely imaginary self dual 2-forms, as we do,
or as traceless hermitian endomorphisms of the positive spinor bundle. The
equivalence of these notations is left as an exercise at the end of this chapter.

3.2 The Gauge Group

The gauge group G of VL is well defined although +/L is not globally defined
as a line bundle, since the definition of the gauge group is given just in terms
of the transition functions. In particular, as in the case of a line bundle, G =
M(X,U(1)).

There is an action of the gauge group on the space of pairs (A,)), where A
is the spin connection and 9 a section of W, given by

i (4,9) = (A= X"td)\ \p). (10)
Notice that the induced action on A will give A —2ix"td).

Lemma 3.1 The action defined in (10) induces an action of G on the space of
solutions to the Seiberg—Witten equations.

Proof: Tt is enough to check that

Da_x-1ga(M)) = AD vy +dX - — dX - 9.
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In the second equation

Fl gy = FF—2d"(\71d)) = Ff,
and < e;jej A, Ay >:| A |2< eiej i, >=<e;e;), P >.
QED

It is clear from (10) that the action of G on the space of solutions is free iff
1 is not identically zero; while for ¢ = 0 the stabiliser of the action is U(1), the
group of constant gauge transformations.

3.3 The Seiberg—Witten Functional and the Variational
Problem

Given a moduli problem formulated in terms of differential equations, one may
consider a functional of which the solutions represent the absolute minima: an
example is the case of the Yang—Mills functional, and the anti—self-dual equation
for SU(2) Donaldson gauge theory.

In the case of the Seiberg—Witten equations, it is not hard to figure out what
such a functional could be:

Definition 3.2 The Seiberg—Witten functional of a pair (A, ) is given by

S(A, ) = /X(| Day | + | F} - i <eejh,p >et el |P)dv.  (11)

Lemma 3.3 Via the Weitzenbick formula (theorem 2.6) the Seiberg—Witten
functional (11) can be rewritten as

K 1
S(A,¢) = / (IVap P+ | FL P +o 19 I? +g ¥ “)dv. (12)
X
Proof: In fact we have that
1
< Dl >=< ViVa, > +5 | [ +3 < Fu, 6 >

and 1
| F} - 1< eiej, ) > et Nel [P=

=| Fz |2 —Z(Fg,< eiej i, > e Nel) + 16 |< esejib, b > et Aed |2,

where (, ) denotes the pointwise inner product of two—forms: (a, 8)dv = a A *0.
But (F'F,e'Ael) = F}ij and 3(FF, < eejip,ip > e Nel) =< %F}ijeiejgb,lb >,
which is the expression of the action of F7 on I'(X, W), via Clifford multi-

plication. Thus two terms cancel out in tﬁe sum, as in the first summand of
(11) only the self-dual part of the curvature acts non—trivially on the section
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1 (see the exercise at the end of the section). Moreover | e! A e/ |?= 1 and
|< eie;, P >|2: 2 | P |4.
QED

Some properties that follow from introducing the Seiberg—Witten functional
are summarised in the following lemma.

Lemma 3.4 If the scalar curvature of X is non-negative, all solutions of the
Seiberg—Witten equations have ¢ = 0. If, further, X has bf > 0 then for a
generic choice of the metric, the only solutions will be 1) = 0 and A flat.

Proof: Under the assumption about the scalar curvature, (12), or equivalently
the Weitzenbdck formula, clearly implies ¢ = 0. Thus, the curvature equation
becomes simply Fj{ = 0. The first Chern class of the line bundle L, which is

given by ¢1(L) = 5=[F;4], is an integral class modulo torsion. The equation
implies that we have

%[FA] € H*(X;R)N H*(X;Z)/T,
with 7' the torsion subgroup of H?(X;Z). The set H*(X;Z)/T is a lattice
in H2(X;R), and, under the assumption that we have by > 0, the space
H?~(X;R) is a proper subspace. For a generic choice of the metric, this sub-
space is in general position with respect to the lattice H2(X;Z)/T and does
not intersect it outside the origin F' = 0. This shows that A is a flat connection.
QED

The above argument fails in the case bf = 0. Clearly the following holds
true as well.

Corollary 3.5 If, moreover, the first Chern class of L in H*(X;Z) is not a
torsion element, under the assumptions of the above lemma, we obtain that the
only possible solution is the trivial one A =0, ¢ = 0.

In the case where ¢ (L) is torsion, we can still get rid of the flat connections
by suitably perturbing the equations.

Definition 3.6 The perturbed Seiberg—Witten equations are obtained by intro-
ducing a real self-dual two—form n as a perturbation parameter:

Dyyp =0,

o 13
Fz+in=i<e,~ej¢7¢>e’/\ej. (13)

The corresponding perturbed functional will be

Sudw) = [((FF P+ Va0 P+ | P)aos
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1 . )
Frnain+ [ |~ <ee, >e Ael —in|? dv.
x 4 x 4

Notice that the corresponding equations, given in definition 3.6, no longer have
solutions with ¢ = 0 and A a flat connection, since that would correspond to

1 ) .

| 1 < €i€j¢7¢ >e'Nel —in |= 0,

which is not compatible with ¢ = 0 and 5 # 0. The reducible solutions for the
perturbed equations are of the form ¢ = 0 and A satisfying Fj{ +in=0.

Corollary 3.7 Consider the perturbed Seiberg—Witten equations on a manifold
X with bf > 0. Then, for any choice of a non-trivial self-dual 2-form 7, the
equations (13) admit no reducible solutions (A, ) with ¥ = 0.

Proof: Under the assumption that b3 > 0, we can guarantee that the equation
F;{ +in = 0 has no solutions. In fact, there is a generic set of forms 7 such that
the elements 5-[n] € H?>*(X;IR) avoid the the projection on H?>*(X;IR) of the
elements 5—[F;] in the lattice H*(X; Z)/T.
QED

It is a general fact in gauge theory that, given a functional like (11), one may
look at the absolute minima, or just at the extremals, i.e. at solutions of the
Euler-Lagrange equations. The equation for minima is in general a first order
problem, while the Euler-Lagrange equations will give a second order problem.
For instance, the functional considered in Donaldson theory is the Yang-Mills
functional. The anti-self-dual connections are the absolute minima; while the
corresponding variational problem gives rise to the Yang—Mills equation (see
[22]).

The variational problem for the Seiberg-Witten functional (11) was analysed
n [12], where it is proven that the Euler-Lagrange equations are of the form

] 1
D% — %F} - <eiejh, i > eiejp =0 (14)

and

1 . . ) )
d*(F;{ 1 < eie; i, >e Nel) + %Im < Dyt,eqp > e =0. (15)

Moreover, using the Weitzenb6ck formula, these equations can be rewritten
as

VAVaY+ St L9 P =0 (16)
and

d*F;{ + %Im < Vith,p > et =0.

It is known that in some gauge theoretic problems there is an equivalence
of the first and second order equations, namely there are no critical points
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that are non-minimising [22]. One can formulate a similar question in the case
of Seiberg—Witten theory. In our case, one would expect to find extra criti-
cal points that satisfy the Euler-Lagrange equations but do not minimise the
energy. In fact, the intuitive reason is that, otherwise, one would have a contrac-
tion of the configuration space along the gradient flow lines of the functional
down to the absolute minima. Since it is known that, in our case, the con-
figuration space has non-trivial topology (in fact it has the homotopy type of
CP> x K(H'(X;Z),1)), there must be other critical points. However, in order
to make this argument precise, one has to show that the functional (11) has a
gradient flow that extends for all times, hence it is at least necessary to show
that the functional has the Palais—Smale condition: this is proven in [12]. If in-
deed there are non-minimising critical points of the Seiberg—Witten functional,
a natural question to ask is what is the geometric meaning of these solutions,
and, in particular, whether they contain any more topological information on
the differentiable manifold X. Usually, in a variational problem, coercivity en-
sures the existence of minima, whereas Palais-Smale gives some control over the
existence of other critical points. In fact, Palais—-Smale implies a deformation
result, which is the analogue of the Morse lemma on the homotopy deformation
of sub-level sets. This can be regarded as an existence result for a local gradi-
ent flow. In turn, this deformation lemma implies the Ambrosetti-Rabinowitz
Mountain Pass theorem which is an existence result for critical points. In the
context of Seiberg—Witten theory, an infinite dimensional Morse theory plays
an essential role in the three-dimensional context, where it appears under the
shape of Floer theory, which we shall discuss in a different part of the book.
However, in the four-dimensional case, even if we have the right analytic prop-
erties for the functional, it is hard to use them to obtain significant geometric
results. The reason for this difference between the three-dimensional and the
four-dimensional case can be ascribed to the peculiar nature of Floer theory,
where the gradient flow exists with respect to a weak L? inner product, and
is given by the four-dimensional Seiberg—Witten equations. The Palais—Smale
condition that we are going to discuss here in the four-dimensional context only
ensures the existence of a local gradient flow with respect to a strong Sobolev
metric. This makes the information more difficult to interpret geometrically.
For existence and extension of local gradient flows for a Palais—Smale functional
we refer to [3], and for a brief general overview of coercivity and Palais-Smale
the reader can consult a textbook like [11].

Some analytic properties of the Seiberg—Witten functional have been anal-
ysed in [12] and will be described briefly in the next section.

3.4 Analytic properties of the Seiberg—Witten functional

Here we introduce some analytic properties of the Seiberg—Witten functional,
following [12].
We first discuss the coercivity of the Seiberg—Witten functional (11), and
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then the Palais-Smale condition and the related property of compactness of the
moduli space. Notice that exactly this property of compactness is the major
difference between Seiberg—Witten and Donaldson gauge theory.

Let A be the space of connections and spinor sections,
A=CxT(X,WH).

Here we assume as analytic data L2 (W+) and L2(C), where the first denotes the
completion in the L? Sobolev norm of the space of smooth sections I'(X, W)
and the second is the L?—completion of the space of 1-forms associated to the
affine space of connections, given a fixed smooth connection Ay. We shall also
consider, as gauge transformations, the space G3, which is locally the completion
of G in the Lgfnorm. These are all infinite dimensional Hilbert manifolds.

There is an action of G2 on L#(W™) x L?(C), which is differentiable and is
given by (10).

Consider the Seiberg—Witten functional on the space

LY(A) = LI(W™) x Li(A).
It is proven in [12] that this functional is coercive, i.e. that the following holds.
Lemma 3.8 There is a constant ¢ such that, for some X € G2,

S(A, ) 2 ¢ H(IMllz + (1A = A dAl2) — e

Given a weakly lower semicontinuous functional S defined on a Hilbert space,
the property of coercivity, namely the fact that S(zy) — oo whenever ||zg| —
00, is enough to guarantee that the functional attains a minimum.

In our case this guarantees that there is an element (A,1)) that satisfies
minimises the Seiberg-Witten functional. Notice that this is not enough to
guarantee the existence of solutions of the Seiberg—Witten equations, since, on
a given manifold with a given choice of Spin,. structure, the minima of S(A,)
need not be zeroes or absolute minima. However, if on X with a given s € S(X)
we have

inf S(A, ) = 0,

the coercivity properties ensures the existence of solutions.

3.4.1 The Palais—Smale condition: sequential compactness

In order to introduce the Palais—-Smale condition, we need to recall the following
definition:
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Definition 3.9 Suppose given a Hilbert manifold Y with the action of a (pos-
sibly infinite dimensional) Lie group G and a smooth functional f : Y — IR,
which is G invariant. Then f satisfies the Palais—Smale condition if, for any
sequence {zr} CY such that

(i) f(zy) is bounded and

(i) df (x) = 0, as k — o0,
there is a subsequence {x}.} and a sequence {gr} C G such that gy} — x, with
df (x) = 0 and f(z) = limy, f(x).

The Palais—Smale condition for a C! functional on a Hilbert (Banach) space
is stronger than coercivity. The most important use of the Palais Smale condi-
tion in four-dimensional Seiberg-Witten theory is the convergence result, which
proves the sequential compactness of the moduli space.

In order to prove that the Seiberg—Witten functional over the space

Li(W*) x L3 (C)
has the Palais—Smale condition, we need some preliminary results.

Lemma 3.10 Let (A,1)) be a solution of the Seiberg—-Witten equations. Then
the following estimate holds:

2 .
o < — .
[9]|Ze < max(0, — min #(z))

Proof: Note that, since we are considering the equations in L?-spaces, we are
not assuming any regularity.

We can assume that the scalar curvature k > —1. We want to show that the
set S of points where | ¢ |> 1 is of measure zero.

Define
b= { (19l =g ity > 1
0 otherwise.

As we computed in (16), using the Weitzenbock formula together with the
Euler-Lagrange equations we obtain

« K 1
VaVay + Z¢ + Z|¢|2¢ =0.

This gives

/S(< Vag, Vag > +g <4, 4> +ilwl"’ <1, ¢ >)dv =
J(< T, V> + m) (101 = Dl e
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> [(< Vb, Vg >+ = (1] - DIl
S

now a straightforward computation shows that < V41, Va¢ >> 0, hence S is
of measure zero.
QED

Notice that the proof of [12] that we presented here does not assume any
regularity of the solution 1. A simpler proof of the bound 3.10 can be given
as in [13], if we assume more regularity to start with: enough to allow us to
differentiate [1|? twice and use 0 > Al1)|? at a point where |)|? achieves a local
maximum. The Laplacian is then estimated using the Weitzenbock formula and
this results in a bound in terms of the scalar curvature as in 3.10. The initial
assumption of regularity, which amounts to a choice of one particular Sobolev
space to work with, is somewhat arbitrary. In fact, as we are going to see in
theorem 3.12, we are really working with smooth solutions of the Seiberg—Witten
equations.

Lemma 3.11 Fiz a smooth connection Ag. Given a connection A € L2(C),
there exists a gauge transformation \ in the identity component of G2 such that
the 1-form

A—XdA— 4

18 co—closed.

Proof: Consider an irreducible element (A4, 1)) in the configuration space .A. The
directions in the tangent space 7 4,).4 spanned by the action of the gauge group
G are given by the image of the map

G : A(X) =i AY (X))@ T(X,WT)

given by
[ (=df,ify).
The tangent space 7[4,4)B to the quotient B = A/G is then identified with

@AY (X) @ T(X, W) /Tm(G (4,4))-

In particular, this means that we can gauge transform (A,1)) by an element A
in the identity component of the gauge group to obtain that A(A4,) is in the
orthogonal complement to the image of Gy(4,y), with respect to the L2-inner
product, that is, it is in the kernel of d*.
QED

Notice that, fixing a background connection Ay, one can work in the Coulomb
gauge. This is a global gauge fixing, and leaves only the ambiguity of constant
gauge transformations and of large gauge transformations A such that A='dA\ is
an integral harmonic 1-form.
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Theorem 3.12 Given a sequence {(Ag, )} of solutions of the Seiberg—Witten
equations in L3(W+) x L3(C), there exist a subsequence {(Ay,%r)} and a se-
quence of gauge transformations {\i'} in G2, such that the sequence

{(Ar = AwdAer, Aw i)}

converges with all derivatives to a smooth solution (A,v) of the Seiberg—Witten
equations.

Proof: Using lemma 3.11 we can assume that {Ak - Ao} is a sequence of co—
closed 1-forms. Notice that we have A — Ag = 2(Ar — Ag). Moreover, since
Fj = dAy, we have dFy = 0. Thus, d*F;, = (d+d*)F; and d*dA; =
(d*d + dd*)fik, where both d + d* and d*d + dd* are elliptic operators.
Hypothesis (i) of definition 3.9 holds, since S(Ag,vx) = 0, and, since the
Seiberg-Witten functional is coercive, this means that we have

Akl 2, and||Ax — AedAx — Ao| 2

are bounded (possibly after composing with another family of gauge transfor-
mations).
The bound on the L}—norm of the connections gives an L? bound:

lAr — Aollze < [|Ak — Aoll2-

In order to show that there is a subsequence that converges with all deriva-
tives, it is sufficient to show that all Sobolev norms are bounded and use the
Sobolev embedding theorem.

To bound the higher Sobolev norms observe that we have

d"Fy, =2d°Ff = —imek V ik, i >)e’.
J

This follows from the variational equation (15) and the identities *d * F' =
#*dF*t —xdF~ and 0 = *dF = *dF* 4+ «dF . This gives a bound on ||d*F|| 2,
and therefore on ||d*dAg||z>.

Now the elliptic estimate applied to the operator dd* + d*d gives

IAkllzz < c(lld*dAgllp2 + 1Akl z2)-

It is clear that this procedure can be carried over for all higher Sobolev norms.
The result for the sections 1, follows from lemma 3.10, which gives an L?
bound, and the coercivity property of the Seiberg—Witten functional, which
gives the L? bound. The bounds on the higher norms are obtained by applying
the elliptic estimate to the Dirac operator. The transformed sequence is smooth
provided Ag is chosen smooth.
QED
The result of theorem 3.12 holds true also for solutions of the variational
problem (14), (15). Moreover, the argument given here can be slightly modified
in order to show the following result (whose proof is given in [12]).
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Theorem 3.13 The Seiberg—Witten functional (11) satisfies the Palais—Smale
condition of definition 3.9.

3.5 Exercises

e The equation (9) is often written in terms of endomorphisms of WT.
Following [6] we can consider the map v : TX — Hom(S*,S™) given in
local coordinates by v(e;) = o;, where the o; are the Pauli matrices; ST
and S~ are complex 2-plane bundles. This induces an action of the 2-forms
A2 on ST given by the expression eAe’(s) = —v*(e)y(e')s, where x denotes
the adjoint ([6] pg. 76). Check that A?~ acts trivially, and therefore this
can be considered as an action of the self-dual 2-forms. Hence we get a
map p : A2t — End(St). Check that (9) can be written as

p(F7) =0 @),

where o is the projection on the traceless part of End(ST ® VL) = St ®
S+,

e Check that the map p in the above problem changes norms by a factor 2.
e The equations (8), (9) can be written as
Dayp=0
and )
(Ff)ij = _%'(/_}Fz’jd);
where the I';; = [0;,0;] are defined in terms of the Clifford matrices (see

[24]). Since ¢ € T'(X,St ® VL), ¢ € I'(X,S5t ® (vVL)~!) and thus the
right hand side can also be read as

Y- e(X, 8T ®St) = Hom(SH,S™T).
Check that this sheaf splits as
Hom(ST,8T) = AYTX) @ A*H(TX)

due to the Clifford action, and that, in the second equation, the self-
dual part of the curvature has to coincide with the projection of ¥ - ¢ on
A2H(TX).

e Complete the details of the proof of lemma 3.10.

e Prove that |< e;ejh, 1 >[*>=2 |y |*.
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4 Seiberg—Witten invariants of 4-manifolds

4.1 The Moduli Space

We can consider the moduli space of solutions of (8) and (9) modulo the action
of the gauge group. The purpose of studying the topology of the moduli space
is to have a somehow “simpler” model of the manifold X by means of which to
compute invariants associated to the differentiable structure of X.

Definition 4.1 The moduli space M is the set of solutions of the Seiberg—
Witten equations, modulo the action of the gauge group. M depends on the
choice of the Spin. structure s € S.

In principle, by the above definition, it seems that we are considering a
whole, possibly infinite, family of moduli spaces, according to the choice of the
Spin. structure s € S; however in the following we shall see that only finitely
many choices will give rise to a nontrivial moduli space.

Some of the most important geometric properties of the moduli space are
finite dimensionality, compactness, orientability, and the fact that it has at most
very “nice” singularities. We are going to present these results in the rest of the
section. We follow mainly the original paper of Witten [24], and occasionally
[13].

4.1.1 Computation of the Dimension

Here we are going to see an interesting application of the Atiyah—Singer index
theorem, namely, how the Fredholm property of the linearisation of the equa-
tions, together with the index theorem, allows us to estimate the dimension of
the moduli space of solutions. This is a procedure that is well known from many
different contexts: roughly, whenever one wishes to compute the dimension of
the moduli space of solutions of certain differential equations modulo the action
of some large symmetry group, one tries to construct a local model of the moduli
space by linearising the equations to some Fredholm operator and then fit the
linearisation into a short chain complex (the deformation complex) such that
its Euler characteristic, computed via the index theorem, gives the dimension
of the moduli space.

This procedure works in some generic case (e.g. for an open dense set of
metrics). For metrics that are “non—generic” in that sense, the moduli space may
have a dimension that is not the expected one. This phenomenon corresponds to
an obstruction that lies in the second cohomology of the deformation complex.
A case in Seiberg—Witten theory where the obstruction is non-vanishing, that
is, where the actual dimension of the moduli spaces exceeds the expected one,
occurs when one considers Kahler metrics. We shall discuss this case in Part
I11.
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In order to compute the dimension of M, we shall linearise (8) and (9)
in a neighbourhood of a solution (Ag, ). It should be pointed out that the
computation of the virtual dimension that we are going to present relies on the a
priori assumption that the moduli space is non-empty. If the virtual dimension
thus obtained is negative, this is enough to guarantee that, under a generic
perturbation, the moduli space M is empty. However, generic moduli spaces
can be empty even though the virtual dimension computed by the index theorem
is positive.

The linearisation of (8) and (9) is easily obtained as follows.

Lemma 4.2 The linearised Seiberg—Witten equations at a pair (Ag, o) are
Dpgp+ia-19o =0
and 1
dta— §Im(< eiejio, d >)et Ael = 0.

where « is a real 1-form, and ¢ a section of W+.

Now consider the infinitesimal action of the gauge group on the solution
(Ao, o). If we write an element of the gauge group as a map A = e for some
f+ X = IR, this means that the infinitesimal action is given by the map

(Ao, o) + (Ao — idf,ifibo),

according to the definition (10) of the action of G.
Now consider the following short sequence of spaces and maps:

05 A SN aT(X,WH) L iA2r @ T(X, W) = 0. (17)
Here G is the map given by the infinitesimal action of G

G(A,¢) (f) = (_dfa /wa)a

T is the operator defined by the linearisation of the Seiberg—Witten equations,
i.e. the left hand side of the equations in lemma 4.2, A? is the space of real
gforms on X, and T'(X,WT) is the space of smooth sections of the spinor
bundle. We define the operator G* as the adjoint of G with respect to the
L2-inner product.

Lemma 4.3 The sequence (17) is a chain complex. We shall denote this com-
plex by C*. The operator T & G* on the assembled complex

0= Al eT(X, W) T iAo T(X,WH) @ A° =0

18 Fredholm.
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Proof: We need to check that T o G = 0. But in fact
D a, (i f1po) —idf -1po = 0,

because of (8), and

dt(df) + %Im(< eiejio,ifo >)e' Ael =

= Im(% < e;e;jvo, Yo >)et Aed = 0.

Here we used the facts that dtd = pp2+ o d?> = 0 and that < eiejtho, o > is
purely imaginary (as proved in lemma 2.4).

The complex (17) is elliptic and the assembled operator T'® G* is Fredholm
since, up to zero—order terms, it is given by the elliptic differential operators
d* +d* and Dy, as we discuss in the proof of theorem 4.4.

QED

By definition, the tangent space of M at the point (Ag, o) is the quotient
Ker(T)/Im(G): in fact we consider the linear approximation to the Seiberg—
Witten equations modulo those directions that are spanned by the action of
the gauge group. Thus we need to compute H'(C*) to get the virtual tangent
space. The index theorem provides a way to compute the FEuler characteristic
of C* in terms of some characteristic classes.

Theorem 4.4 The FEuler characteristic of C* is
—x(C*) = Ind(D4 +d* + d),
where d* is the adjoint of the exterior derivative.

Proof: Up to zero—order operators G can be deformed to the exterior derivative
d; and T can be deformed to the pair of operators

Ds:T(X, W) 5 T(X,W™)
and
dt : A' = AP

Hence the assembled complex becomes
0= AL @ T(X, W) PATE+0" A0 g A2+ g (X, W) = 0.

The Euler characteristic of the original complex is not affected by this change,
hence:
—x(C*) = Ind(D 4 +d™ +d*).
QED
Note that, since v/L is not really a line bundle, its first Chern class is defined

to be ¢; (VL) = clg—L), and it makes sense in the coefficient ring Z[1].
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Corollary 4.5 The index of the complex C* is equal to

2x + 3o
(VD) - X2,

where x is the Buler characteristic of X, o is the signature of X, and c1(vV'L)? is
the cup product with itself of the first Chern class of /L integrated over X (with
a standard abuse of notation we write c;(v/L)? instead of < ¢;(vVL)?,[X] >).

Proof: Use the additivity of the index. By the index theorem for the twisted
Dirac operator it is known that

Ind(Da) = — / h(VI)A(X).

X

The Chern character is ch(vVL) = 2(1 + ¢ (VL) + tei(L)? +--+) (the rank of L

over the reals is two). The A class is A(X) =1 — 2=p1(X) + -+, where p (X)
is the first Pontrjagin class of the tangent bundle. Thus the top degree term
of ch(vIL)A(X) will be +p1(X) + c1(L)%. On the other hand, by the index
theorem for the signature operator it is known that % [, p1(X) = o, hence we
get

(o

Ind(Dy) = ¢; (VL)% — 1

The index of d* + d* can be read off from the chain complex
0 A% 4 AT I A2 0,
The Euler characteristic of this complex turns out to be
* -+ 1
—Ind(d*+d™) = 5()(—}— o),

by another application of the index theorem.
Summing up together it follows that
2x + 30

X(C") = e (VI - X0

QED
Now, in order to obtain from this index computation the dimension of the
moduli space, we need the following lemmata:

Lemma 4.6 The tangent space T(a,y)M at a regular point ¢ # 0 can be iden-
tified with H*(C*).
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Proof: H'(C*) describes exactly those directions that are spanned infinitesimally
at the point (A,1)) by the solutions of the Seiberg—Witten equations, modulo
those directions that are spanned by the action of the gauge group.
QED

Notice that in the following, unless otherwise specified, we use the notation
M to denote the moduli space corresponding to a fixed choice of the Spin,
structure in S, and for a generic choice of the metric and of the perturbation.
Sometimes the dependence on the Spin, structure is stressed by adding a sub-
script Mg, with s € S.

Lemma 4.7 In the above complex H°(C*) = 0 and, under a suitable perturba-
tion of the Seiberg—Witten equations, also H*(C*) = 0.

Proof: H°(C*) = 0 since the map G, which describes the infinitesimal action
of the gauge group, as in (17), is injective. In order to show that H?(C*) = 0,
we use the following strategy. We allow the perturbation to vary in A%2t, and
consider at a given point (4,1, n) the operator

~ 1 . .
Taspn(@:6:€) = (Dagd + i Yo, d¥a + ¢ = 3Im < eiejifo, 6 > ¢ A o),

that maps the L2-tangent space to the L2_, one. Here (4,%) is a solution of
the perturbed equations as in definition 3.6, with perturbation 5. We prove that
the operator T + G*, with
0o Al A o T(X,WH) "5 A2 o (X, WH @ A® 0,

is surjective. This implies, by the infinite dimensional Sard theorem, that, for a
generic choice of the perturbation 7, the original operator T' 4+ G* is surjective,
hence H?(C*) = 0.

The operator T has closed range. Suppose there is a section in A2+ @T(S+®
L) that is orthogonal to the image of T in the space of L? | sections. We want
to show that such an element must be identically zero. By an argument of
[21], this is enough to prove that T is surjective on smooth sections as well. So
assume that (x, 8) is orthogonal to any section of the form

1 ) ,
(Dayd +ia - o, d o +n — §Im < eiejho,d > e Nel).

This means that
< DA0¢+ia'¢07X >= 07

with the inner product of sections of W, and

1 . .
(da+n— SIm < eiejipo, ¢ > e’ e, f) =0
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as 2-forms. Using the fact that (x, 3) is in the kernel of T*, which is an elliptic
operator with L? coefficients, we can assume that (x, 3) is in fact in L. By the
arbitrariness of a and €, both x and 8 must be zero.
QED

The above lemmata and computations yield the following result.

Theorem 4.8 The dimension of the moduli space M at a regular point is given
by
dim(M) = ¢, (VL)? - @.

The result proven here is an infinitesimal result; the technique for passing
to a local result is the same used in the SU(2) gauge theory: as a reference we
can point to [6].

Theorem 4.8 and the previous lemmata 4.7 and 4.6 can be read as follows.
There are two sources of obstruction that make moduli space non-regular at
a given point (4,1). One is, in fact, an obstruction to the smoothness of the
moduli space at (A,1), and is represented by the H°(C*) of the deformation
complex: if the infinitesimal action of the gauge group at (A, ) is not injective,
then the gauge class [A, ] is not a smooth point in the quotient B. Results like
corollary 3.7 guarantee the vanishing of this obstruction. The other obstruction,
which is given by the H?(C*) of the deformation complex measures the lack of
transversality, that is, the excess intersection, as we shall explain in Part IV.

4.1.2 Compactness

Even though everything needed in order to prove compactness of the moduli
space is contained in theorem 3.12, we recall it here, since this property of com-
pactness is precisely the main feature that distinguishes Seiberg—Witten theory
from other gauge theories. In particular it makes it more tractable than Don-
aldson theory where the analytically complicated Uhlenbeck compactification is
needed.

We proved in theorem 3.12 that every sequence of solutions of the Seiberg—
Witten equations has a convergent subsequence, up to gauge transformations.
This implies the following.

Theorem 4.9 Any sequence of points in the moduli space of connections and
sections (A, 1)) that satisfies the Seiberg—Witten equations, modulo the action of
the gauge group G, has a convergent subsequence. Therefore, the moduli space
18 compact.

Notice that we want to consider the perturbed Seiberg—Witten equations
as in definition 3.6. The compactness argument carries over to this case upon
modifying the estimate of lemma 3.10. We obtain

[4]|Z 0 < max(0, — min (x(z) — 20n|%).
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The rest of the argument follows analogously.

4.1.3 Orientation

The proof of the orientability of the moduli space just mimics an analogous
argument in Donaldson theory: the orientation is given by a trivialisation of the
determinant line bundle associated to the linearised Seiberg—Witten equations.

There is another proof of orientability given for Donaldson theory [8], which
does not go through to the Seiberg—Witten case unless some stronger assump-
tions are made on the manifold X, for example that X be simply connected.
Though this proof is not as good, it is a sufficient simplification for our purposes,
therefore we shall present it briefly.

We have seen that, under a generic choice of the perturbation, we have no
reducible solutions, moreover, as seen in lemma 4.7, the moduli space M is a
smooth manifold that is cut out transversely by the equations. Following [§],
we can now describe a way to give an orientation of M. There is an embedding
of M in the space A/G of gauge equivalence classes of pairs (A4, ) with ¢ # 0,

M — A/G.

The action of G on A is free.

It is known (see e.g. [2]) that a family of Fredholm operators on a space Y’
determines an indez bundle [Ind(D)] € KO(Y), in K-theoretic language. By
definition [Ind(D)] is orientable iff the characteristic class wq([Ind(D)]) = 0.
Recall that, for an element in KO(Y), the Stiefel-Whitney class is given by
w1 (€ =€) == wi(§) —wi(() in Z>.

Moreover, if the space Y is simply connected, then every bundle over Y is
orientable.

Thus, the strategy to prove the orientability of the moduli space is to realise
the tangent bundle TM as a subbundle of the index bundle of a family of
Fredholm operators over a simply connected space.

According to lemma 4.6, the fibre of TM over (A,4) is given by H(C*).
In other words, the complex C* corresponds to an assignment of a Fredholm
operator to the point (A4,4). Hence we get a family of Fredholm operators
parametrised by all possible choices of (4,1), 1 # 0, namely the linearisation
of the Seiberg—Witten equations at the chosen connection and section modulo
the action of the gauge group. By theorem 4.4 this family of Fredholm operators
may be thought of as the following;:

T(Aﬂ/,) =DA+d++d*.

To make this argument precise we should consider the appropriate Sobolev
norms on G and on the space of sections where the family 7' acts. We address
the reader to [8], where the analysis for SU(2) gauge theory is developed.
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Consider the index bundle of the above family T'. By construction TM is
the pullback of [Ind(T')] via the embedding of M in A/G.
Thus, we have the following:

Theorem 4.10 Suppose that the manifold X has H'(X;Z) = 0. Then the
moduli space M is orientable.

Proof: We want to show that the bundle TM is orientable. By the above
argument, it is enough to show that A/ G is simply connected.
Consider the fibration A .
G- A— A/G.

The space of all pairs of a connection A and a section 9 is contractible as product
of an affine and a vector space. The subspace A is obtained by imposing the

condition that ¢ # 0. Thus it satisfies the condition 7 (A) = 0.
Thus, in the long homotopy sequence of the fibration, we have

s (G) o m(A) = 71'1(./1/9) = m(G) = mo(A);

where we have that 71 (A) = 0. Moreover, by lemma 2.11, 7o(G) = H(X; Z),
which is trivial by hypothesis. Hence 7 (A/G) = 0.
QED

As already pointed out in the beginning of this paragraph, a more general
proof can be given of the orientability, which does not assume any hypothesis
on the cohomology of X. Note, moreover, that a technical difficulty we omitted
to mention in the above argument arises in considering the K-ring K 0(A/)G),
since A/G is not a compact space. We refer the reader to [2] or [8] for a more
detailed treatment of this problem.

4.2 The Invariants

Throughout this section we shall assume that the result of lemma 4.7 holds,
namely, that the moduli space M contains no reducibles and is cut out trans-
versely by the equations.

When the Spin, structure s € § is such that the dimension of M satisfies

2x + 30
(I - X
there are generically no solutions to the Seiberg-Witten equations, hence we
define the Seiberg—Witten invariant N; to be zero.
If the Spin, structure s € S is such that the dimension of M; is zero, then

we have 9 43
a(VD? = X2,

hence generically the moduli space M consists of a finite number of points, due
to the compactness property. Since we also have an orientation of the moduli
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space, we can associate to M a number, which is obtained by counting the point
with a sign given by the orientation.

Definition 4.11 The Seiberg—Witten invariant, relative to a choice of a Spin.
structure s € S with

. 2 3
a(VI)? — % -0,

N, = Z €p,

peEM

is given by

with €, = £1 according to the orientation of M at the point p.

It is more difficult to define the invariant when the dimension of the moduli
space is positive. In fact a priori there are many possible ways to get a number
by evaluating some cohomology class over the cycle M, so as to generalise the
counting of points.

We shall adopt the following definition. Consider the group of all gauge
transformations that fix a base point, G, C G. Take the moduli space M? of
solutions of the Seiberg—Witten equations modulo the action of Gp. Since we
are considering perturbed equations and M contains no reducibles, we have the
following.

Lemma 4.12 This space M? fibres as a principal U (1) bundle over the moduli
space M .

Let £ denote the line bundle over M associated to this principal U(1) bundle
via the standard representation. Then we introduce the following invariant.

Definition 4.13 The Seiberg—Witten invariant, relative to a choice of s € S
such that the dimension of M is positive and even,

_2x+3a

>0

d= C1(\/z)2

is given by the pairing of the (d/2)th-power of the Chern class of the line bundle
L with the moduli space M,

NSE/ e (L)%,
M

If the dimension of M is odd, the invariant is set to be zero.

In the section regarding the quantum field theoretic approach to Seiberg—
Witten theory we spend some more words on how to define the invariants. In
fact, when the moduli space has positive dimension, it seems that there is a
certain arbitrariness in the choice of the cohomology class to integrate in order
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to obtain the invariant. The choice of Definition 4.13 is in a sense canonical, in
fact the space A/G is a model for the classifying space of G. Thus we have a
homotopy equivalence

AJG ~CP™ x K(H'(X,Z),1).

There is a canonical line bundle that has Chern class given by the generator of
the CP> factor in H2(A/G,Z). The corresponding principal U(1)-bundle is the
one considered in lemma 4.12.

We show in the following section that only finitely many choices of L deter-
mine a nontrivial invariant.

4.3 Finiteness

Again this is going to be a consequence of the Weitzenbock formula, proved
in theorem 2.6. Consider the Seiberg—Witten functional (11), rewritten in the
form (12).

Lemma 4.14 Solutions to the Seiberg—Witten equations have a uniform bound
on [y | FT|? dv.

Proof:Complete the term % | 4 |* +% | ¢ [* to a square: this gives the estimate
K 1 1

0< K 2 1 4 12
< [ Groragloft+gaa

At a solution we have S(4,1) = 0, hence
K 1

[Eipao == [AVapP+5 10 P +g v .
x x 4 8
Thus we get that

J AR P[RS P+ Vab P =
X X

K 1 1
~[Gropglomwssg [ v

b'¢
QED
lemma 4.14 gives the following result.

Lemma 4.15 Solutions to Seiberg—Witten equations have both

I+:/ |F2‘|2dv and I*=/ | Fy |2 dv
X X

uniformly bounded, i.e. bounded by geometric quantities that do not depend on
the line bundle L.
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Proof: The result follows from lemma 4.14 and the fact that

1
2 _ _ + 2 _ |2
e (VI)? = /Xcl(L) nelD) = G /X(| FH P | F [P)do.
QED
Notice that there may be only finitely many choices of L, hence of s € S,
such that both It and I~ are bounded [6], [8], [24]. Thus we have one important
result of Seiberg-Witten gauge theory:

Theorem 4.16 Only finitely many choices of the Spin. structure give rise to
non—trivial invariants.

This is enough for us to introduce the Seiberg-Witten basic classes and the
notion of simple type. We shall return on this in discussing the relation between
Seiberg-Witten and Donaldson theory.

Definition 4.17 We call “Seiberg—Witten basic classes” those classes c¢i(L) €
H?%(X,Z) that give rise to a non-trivial Seiberg—Witten invariant.

Definition 4.18 A closed connected 4-manifold X is of “Seiberg—Witten sim-
ple type” if all the basic classes correspond to zero-dimensional moduli spaces.
That is Ny # 0 iff dim M, = ¢;(VL)? — 2432 = 0.

4.4 A Cobordism Argument

The reason we are considering the Seiberg-Witten invariants is to introduce
diffeomorphism invariants of a 4-manifold. Hence we need to show that the
construction above leads to a value of N, that is independent of the metric on
X. This turns out to be the case, at least under the assumption that b3 (X) > 1.
In the case b) (X) = 1 the space of metrics breaks into chambers: inside each
chamber the choice of the metric doesn’t affect the invariant; while when a path
of metrics crosses a wall between two chambers, the invariant jumps by a certain
amount. An accurate study of the structure of chambers in the Kahler case can
be found in [7].

Here we shall present briefly an argument that shows the invariance with
respect to the metric for manifolds with b > 1. The proof of the following
results carries over to the present case from [6] chapters 4 and 9.

Theorem 4.19 The invariants N, of a manifold X with b} (X) > 1 are diffeo-
morphism invariants, independent of the metric.

Proof:

Let us consider two Riemannian metrics go and g; on the manifold X. Let
1o and 11 be two corresponding small perturbations. We can choose a generic
smooth path of metrics g; that connects go and ¢g; and a corresponding path of
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forms n;. If we assume that b3 (X) > 1, then we can choose g; and 7; in such a
way as to avoid singular solutions with ¢ = 0 at any fixed ¢.

Thus, for a fixed Spin. structure on X, we consider a trivial infinite dimen-
sional bundle over A/G x {g;,1:}, with fibre A2+ @ T'(X, W), and the section

1 . .
O-(A7¢) = (Fz_ + “7t - Z < €i€j¢,¢ >e'A 6]7DA¢)'
We define the universal moduli space to be the zero set of o:
M =a7(0).

We have chosen {g;,7:} so that M, avoids the reducible locus. Moreover,
we can ensure that Mg is a smooth manifold, of the dimension prescribed by
the index theorem, cut out transversely by o. The argument depends on an
infinite dimensional generalisation of the transversality theorem [6], pg.145. In
fact, if f : X — )Y is a Fredholm map between infinite dimensional Banach
manifolds and h : W — ) is a smooth map from a finite dimensional manifold
W, then h can be arbitrarily approximated in the C* topology by a map which
is transverse to f.

If we apply this argument to the Fredholm projection 7 : My — {g¢, m:} and
to the map (g,n) of the interval I in the space of metrics and perturbations,
then we get the transversality result: we can find a path {g:,7:} such that the
moduli space 7' (gs, M) = Mg, 5 is @ smooth manifold of codimension one in
M.
Suppose for simplicity that the moduli spaces M for (go,n0) and (g1,71) are
zero dimensional. Then the set M, is a smooth 1-dimensional manifold with
boundary. From theorem 4.9, we deduce that M; is compact. But the total
oriented boundary of a compact 1-dimensional manifold is zero.

The case when M; has positive dimension is analogous. In fact the universal
moduli space is of dimension dim My = dim M, + 1 with oriented boundary
Ms(g1,m) — Ms(go,m0). Therefore the invariant

/ e (L)Y = / e (L)Y,
Ms(g1,m) M5 (g0,m0)

In the case b = 1, we expect to have a wall crossing formula that describes
how the invariant jumps in correspondence to a metric and perturbation (g, 7)
where reducible solutions 1) = 0 occur.

We assume that we have two pairs of metrics and perturbations (go, 19) and
(g91,m) where there are no reducibles in the moduli space, and a path (g¢,7¢)
that crosses the wall

{(g,m)|H*~(X,R) N (n+ H*(X,Z)/T) # 0}

only once at (g,7n) and transversely.
The following case of wall crossing was proven in [13].
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Proposition 4.20 Let X be a compact four-manifold with by =1 and b; = 0.
Then we have

Ny(X, (g90,m0)) — Ns(X, (g1,m)) = £1.

This formula was generalised in [15] as follows.

Proposition 4.21 Let X be a compact four-manifold with b =1 and by even.
Then there is a torus T* of reducible solutions in correspondence to the “bad
element” (g,m). The corresponding wall crossing formula is

Ny(X, (g0,m0)) = No(X, (g1, m1)) = — (%

(b1/2)! (5(01 (€)2c1 (L)[ X)) /2[T™)),

where & is the tautological line bundle over T"' x X.
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Part 11
Seiberg—Witten on
three-manifolds

I do not think
that I know it well;
but I know not
that I do not know.
Who of us knows that,
he does know that;
but he does not know
that he does not know.

Kena Upanisad, 2.2
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5 Three-manifolds

We briefly review some basic notions of 3-manifold topology. We refer the reader
to [31] for a brief but informative overview.

Consider a Riemann surface ¥, of genus g, embedded in IR®. The region
of IR? bounded by Y, is a handlebody N, of genus g. The complement of N,
in the one point compactification S is also homeomorphic to Ny, hence this
determines a decomposition of $* = N, Uy, N,.

In general, a Heegaard splitting of a compact oriented three-manifold Y is a
decomposition

Y = Ny Ups, -y, Ny,

where the two handlebodies are glued along the homeomorphism ¢ : ¥, = ¥,
of the Riemann surface. Two isotopic homeomorphisms produce topologically
equivalent manifolds (hence smoothly equivalent, since in dimension three we
do not distinguish between the smooth and the topological category).

The first useful result is an existence result.

Proposition 5.1 Every compact oriented three-manifold Y admits a Heegaard
splitting,
Y =N, Up:s,—3, Ny.

This result is far from providing a classificatory scheme. In fact, as the
trivial example of S® shows, Heegaard splittings are not unique, and a more
serious problem consists of the fact that surface homeomorphisms are difficult
to classify. However, a surface diffeomorphism can be reduced, up to isotopy, to a
sequence of simpler operations, known as Dehn twists along some homologically
non-trivial curve on the Riemann surface. The Dehn twist consists of cutting
along the curve and gluing back after a full twist.

Thus, the information encoded in the Heegaard splitting can be rephrased
in terms of the Dehn twists as follows.

Corollary 5.2 Every compact oriented three-manifold Y is obtained from S°
by Dehn twists on homologically non-trivial curves on a Riemann surface X,.

If we isolate the set of such curves, we obtain a link in S®. Every component
of the link is a knot K C S®. Thus, we can define in general the Dehn surgery
on a knot. An r = p/q surgery on a knot is the operation of removing from 3
a tubular neighbourhood v(K) of the knot, and gluing it back via a homeomor-
phism ¢ : T? — T2 of the boundary T?. The number r = p/q is determined by
the class of the image of the meridian 7; of the knot under the map ¢,

Blm] = plm] + gl

in H(T?,Z). The parameter r is the framing of the surgery. A similar operation
can be performed starting with a link in a three-manifold Y. A surgery on
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a link is obtained by performing the surgery on every component with the
corresponding assigned framing. In the following we will be especially interested
in the case of 0-surgery, which exchanges parallel and meridian, and 1-surgery
on a knot in a homology sphere, which produces a different homology sphere. In
general, it is hard to determine when two different surgeries produce equivalent
manifolds. There are moves of the framed link , known as Kirby moves, that do
not affect the resulting topology, see [31].
Thus, the previous statement can be formulated as follows.

Proposition 5.3 Every compact oriented three-manifold Y is obtained from S
by Dehn surgery on the components of a link L C S3.

Again, this is not a classification, because of the difficulty of determining
the topology given the surgery presentation and identifying equivalent presenta-
tions. In particular, the problem of the possible existence of homotopy 3-spheres
is still, at this time, open. Recently, Kronheimer and Mrowka have outlined a
program that combines the information of instanton and Seiberg-Witten Floer
homology and may lead to substantial results in this direction [27].

An invariant associated to the fundamental group of a three-manifold is the
Casson invariant [1]. This was originally defined for homology spheres, later
extended to rational homology spheres [41], and more recently to more gen-
eral three-manifolds [17]. The Casson invariant of homology spheres counts the
conjugacy classes of representations of the fundamental group in SU(2). The
counting is achieved by considering a Heegaard splitting of Y. On each han-
dlebody N,, the variety of conjugacy classes of irreducible representations of
w1 (Ny) in SU(2) is a smooth 3g — 3 dimensional manifold. The pullback by the
inclusion map of the boundary ¥, C N, give embeddings of these varieties in
the 69 — 6 dimensional variety of conjugacy classes of irreducible representations
of m () in SU(2). If Y is a homology sphere, the two subvarieties determined
by the two handlebodies can be made to intersect transversely in the represen-
tations of 71 (3,). The intersection avoids the reducible locus, and consists of
a finite set of points with an orientation. This counts precisely the conjugacy
classes of irreducible representations of 7 (Y).

Thus, the representations are counted with signs determined by the relative
orientations of the intersecting character varieties of the two handlebodies of
a Heegaard splitting of Y. It can be shown that the resulting invariant is
independent of the choice of the Heegaard splitting.

6 A three-manifold invariant
So far we have always considered Seiberg-Witten gauge theory as a tool for
studying the differentiable structure of four-manifolds. In the present section we

describe the dimensional reduction that gives rise to a three-dimensional gauge
theory. In particular, this gives rise to an analogue of the four-dimensional
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invariant. This is an invariant of compact connected oriented three-manifolds
without boundary, which is closely related to other classical invariants, such as
the Casson invariant, Milnor torsion, and the Alexander polynomial of knots.

6.1 Dimensional reduction

Let Y be a compact connected oriented three-manifold without boundary. Con-
sider a manifold X =Y X IR endowed with a cylindrical metric.

Although so far we have been considering the Seiberg-Witten equations
on compact four-manifolds, we may as well define the same equations on X.
Oriented three-manifolds are parallelisable, hence, upon fixing a trivialisation
of the tangent bundle, the set of Spin. structures S(Y') can be identified (non-
canonically) with the set of line bundles H2(Y,Z). Namely, a fixed lifting of
the frame bundle to a Spin-bundle defines a Spin-structure with spinor bundle
S, where we have Spin(3) = SU(2). All the Spin.-structures are then obtained
by twisting S with a line bundle H, this gives the U (2)-bundle W =58H.
Again we introduce the notation L = det(W). As in the four-dimensional case,
the fibre of the map S(Y) — H?(Y,Z) given by W — det(W) is a principal
homogeneous space for the 2-torsion in H2(Y,Z), hence finite. = We define a
Spinc-structure on X by fixing isomorphisms of the positive and negative spinor
bundles W* with the pullback of W via the projection 7 : ¥ x R — Y, so that
the composite isomorphism W+ — W~ is given by Clifford multiplication by
dt, where t is the coordinate in the IR-direction.

Definition 6.1 The choice of isomorphisms W* = n*W gives a reference con-
nection in the t-direction. Therefore it makes sense to say that a pair (A,¢) on
X isin a temporal gauge if the dt component of the connection A is identically
zero.

A pair (4,%) on X that is in a temporal gauge induces a path of connections
and sections of the spinor bundle over Y by defining A(¢) and ¢ (¢) to be the
restrictions of A and ¢ to Y x {t}. Notice that each gauge equivalence class of
pairs (A4,4) on X contains a representative which is in a temporal gauge. Once
the temporal gauge is fixed, the remaining gauge degrees of freedom are time
independent transformations in the gauge group G = M(Y,U(1)) of the line
bundle L on Y.

Thus, on the manifold Y we can introduce the configuration space A =
C x T(Y,W) on which the group G acts. The action is free away from the
reducible points, namely the points with ¥» = 0. We can form the quotient
B = A/G, and use the notation B* for the irreducible part.

We perform a dimensional reduction as follows.

Theorem 6.2 For a pair (A,v) in a temporal gauge, the Seiberg—Witten equa-
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tions (8), (9) on X can be rewritten as the following equations on Y :

d

7V = —0a% (18)

and p
GA= =+ Fatr,0), (19)

where T(1, 1) is the 1-form written in local coordinates as
T, ¥) =D <enh, ) > €.

The equations represent the flow of the vector field
(=04, — x Fa+1(¥,9)) (20)

on the configuration space A.

Proof: The Dirac operator on X twisted with the connection A has the form

_( 0 D}
pa=(p; 7).
Dj =0+ 6A(t);

where 04 is the self-adjoint Dirac operator on Y twisted with the time dependent
connection A(t).

For the curvature equation (19), observe that 1-forms on Y give endomor-
phisms of the spinor bundle W. Via pullback and the isomorphism of W+ and
W-, a 1-form a on Y acts on W as the 2-form « A dt acts on W+. Write
Ff = 1(Fa + +F4), and F4 = dA in coordinates. Since F acts trivially on
W, it is not hard to see that the action of Fj on W corresponds exactly to
the action of % +xF4 on W (here x is the Hodge operator on Y). An analogous
argument explains the presence of the term < e;i),1) > e'.

QED

In this way, every solution of the four-dimensional Seiberg-Witten equations
gives rise to a flow line of the vector field (20) that extends backward and forward
for all time. It may be useful to point out that, though we are describing the
solutions of (18) and (19) as the gradient flow of a functional, these are not
evolution equations. In fact, as we are going to discuss in the following, the
linearisation of the equations is a first order elliptic operator. This implies that
such flow exists only at solutions of the 4-dimensional Seiberg—Witten equations.
At a generic point (A4,1) of the configuration space on Y the gradient vector
field will not in general give rise to a flow: not even local existence is guaranteed.
This is one aspect that makes Floer theory different from infinite dimensional
Morse theory, even though it is modeled on the Morse-Smale complex.
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The stationary points of the flow, satisfying %(A(t),@b(t)) = 0 correspond
to the solutions of the stationary equations

Oat) =0 (21)
x Fa = 1(h,1)). (22)

These are elliptic equations on Y, and the goal is to use a suitable counting
of the solutions modulo gauge to construct an invariant of three-manifolds. We
proceed to analyse equations (21) and (22) more closely.

Notice that the vector field (20) is gauge invariant, hence it descends to a
vector field on B*.

6.2 The moduli space and the invariant

We can topologise the configuration space A =C x T'(Y, W) with an L2 Sobolev
norm, with £ > 2, and consider the gauge group of L% 41 gauge transformations
on Y. With this choice the irreducible part B* of the quotient is a Hilbert
manifold. We define the moduli space M.(Y,s) of solutions of (21) and (22) in
B, where L determines the choice of the Spin -structure.

The linearisation of (21) and (22) at a solution (A4, 1)) gives the deformation
complex

AV e AL Y) o T(Y, W) S AYY) @ AL(Y) & T(Y, W). (23)
Here O is the Fredholm operator

G?A,zp) (Oé, ¢)
Tiap)(a, @) +Gap(f),

where the operator T is the linearisation of the equations

O,y (fa,0) = { (24)

Tl = (70 E s b 020

the operator G is the infinitesimal action of the gauge group, and G* is the
adjoint of G with respect to the L?-inner product,

G?A,q;) (a,9) = —d"a+ilm <, ¢ > .

It is not hard to see that the operator ® has index zero. Thus, the virtual
dimension of the moduli space M.(Y,s) is zero. However, if the operator is
not surjective, the transversality theorem does not hold: even if M.(Y,s) does
not meet the reducible locus of B and is a smooth manifold in B*, it may not
be cut out transversely; hence the dimension may be larger than the expected
one. Transversality, like in the four-dimensional case, can be achieved by a
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suitable choice of a perturbation, but whether M.(Y,s) can be made to avoid
the reducible locus in B depends on the homology of the underlying manifold
Y, as we are going to see.

The natural choice of perturbations for the three-dimensional equations is
obtained by dimensional reduction of the perturbed four-dimensional case, under
the identification A2+ (Y xR) = 7*(Al(Y)), given by 7*(p(t)) = *p(t) +p(t) Adt,
with respect to the projection 7 : ¥ x R = Y. We obtain the perturbed
equations

o4 =0 (25)
* Fa = 7(1h,9) + 2ip, (26)

with p € AY(Y). Tt is easy to verify that, for the equations (25) and (26) to
have solutions, we need to choose p co-closed. In fact, the equation (25) implies
that the 1-form 7(¢, ) is co-closed.

We have the following result about the moduli space M. (Y, s).

Theorem 6.3 IfY has b2(Y) > 0 and p is a co-closed 1-form on'Y satisfying
[xp] # mey (L) in H2(Y,R), then the moduli space M.(Y,s) is contained in the
irreducible part B*.

If Y is a rational homology sphere, then, for every choice of the line bundle
L and of the co-closed 1-form p = xdv, there is exactly one reducible point
0 in M.(Y,s). If Y is an integral homology sphere, the class 6 is the gauge
equivalence class of (v,0), with v as above.

In both cases, for a generic choice of the perturbation p, the linearisation
©4,y at an irreducible solution ¢ # 0 is surjective, hence the irreducible part
of the moduli space M*(Y,s) = M.(Y,s) N B* is cut out transversely by the
equations.

Proof: With an argument analogous to the four-dimensional case it is possible
to show that, under a generic choice of the perturbation p, the transversal-
ity theorem holds. Thus the linearisation at the solutions of the perturbed
equations is surjective [20]. Let Y be a rational homology sphere. The unper-
turbed Seiberg—Witten equations (21) and (22) on Y have a reducible gauge
class of solutions [Ag, 0], with Ag the abelian flat connection determined by the
U(1)-representation of 71 (Y'). In the case of an integral homology sphere such
connection Ag lies in the gauge orbit of the trivial connection.

Thus, when b; (Y') = 0, there is a unique reducible solution § = [A4y, 0] up to
gauge transformations. With the perturbation p = xdv the reducible solutions
are flat connections shifted by v, that is, they are in the gauge orbit of the
element (4g + v,0).

QED

Theorem 6.4 On any three-manifold Y, and for every choice of the Spin.-
structure s € S(Y'), the moduli space M (Y, s) is compact. Moreover, M (Y, s)
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is empty for all but finitely many choices of the class ¢i(L) € H*(Y,Z). The
determinant line bundle of the linearisation © 4, determines an orientation of
the moduli space M (Y, s).

The compactness follows from the Weitzenbock formula, with an argument
similar to the four-dimensional case. However, notice that the compactness of
the moduli space in three dimensions does not follow immediately from the
compactness of the one in four dimensions. In fact, in some situations, the
dimensional reduction may cause a loss of compactness.

The finiteness result again follows from the Weitzenbock formula, since one
can obtain a rough but sufficient bound on the Chern class [16] in terms of the
scalar curvature, namely we have |¢;(L)| < %.

QED

Theorem 6.5 IfY is a rational homology sphere, and p = *dv is a choice of
perturbation, let g be a metric on Y such that the twisted Dirac operator 0,
satisfies Ker(0,) = 0. Then the reducible point § = [Ag + v,0] in M. (Y,s) is
isolated.

Thus, on any three-manifold Y, with any choice of the Spin.-structure s €
S(Y), under a generic choice of the perturbation p as in theorem 6.3, the moduli
space M. (Y,s) consists of a finite set of points with an attached + sign deter-
mined by the orientation.

Proof: Suppose Y is a rational homology sphere. We want to show that the point
[v,0] is isolated in M.(Y,s). This is shown in [8] [42] using the local Kuranishi
model, namely by expanding a solution near (A4¢ + v,0) as

A=v4en +ag+---

Y =€pr + €y + -

The condition that the pair (A,)) satisfies the equations implies that a; = 0
and ¢; = 0, provided that for the chosen metric g on Y the Dirac operator has
trivial kernel, Ker(09) = 0.
QED

We can introduce the Seiberg—Witten invariant of three-manifolds as follows.

Definition 6.6 Let Y be any compact oriented three-manifold without bound-
ary. For a fized Spin.-structure s € S and for a generic choice of a co-closed
1-form p on Y, we define the Seiberg—Witten invariant x(Y,s)

X(Ya S) = #M: (Y7 5) (27)

as the number of irreducible points, counted with the orientation, in the zero-
dimensional moduli space M.(Y,s).
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This counting of the critical points of the vector field (20) on B is reminis-
cent of one of the many possible definitions of the Euler characteristic on finite
dimensional manifolds, although we still have not discussed the meaning of the
orientation attached to the points of M (Y, s) in terms of the vector field. In
fact, x(Y, s) can be thought of as a regularised Euler characteristic of B, in the
sense that will be discussed in the last part of the book.

The invariant x(Y, s) is defined by counting only irreducible points and by
a choice of a generic perturbation. Thus, the following two considerations are
in order.

Remark 6.7 (1) If Y is a rational homology sphere, some of the irreducible
points counted in (27) may collide with the reducible 0 if the metric and pertur-
bation undergo a smooth deformation. One or more irreducibles can disappear
into or arise from the reducible, thus changing the value of x(Y, s).

(2) If Y has bi(Y) = 1, the condition [xp] = wei1(L) has codimension one,
hence it disconnects H?(Y,R) in two separate chambers. Thus, suppose that po
and py are perturbations satisfying the condition [xp] # w1 (L), necessary for
M_(Y, s) to avoid the reducible locus. A generic path of perturbations connecting
po to p1 may cross the wall [xp] = wey (L), and the resulting value of x(Y, s) can

Jump, Xpo (Y,s) # Xp1 (Y, s).

As we are going to see, both bad cases discussed in remark 6.7 actually arise,
and corresponding wall crossing formulae can be computed.

6.3 Cobordism and wall crossing formulae

We first prove the metric independence of x(Y,s) in the case of manifolds ¥
with b1(Y) > 1. The cobordism argument is modeled on the analogous proof
on four-manifolds.

Theorem 6.8 Let Y be a three-manifold with by(Y) > 1, and (go,po) and
(g1, p1) two generic choices of metrics and co-closed perturbations. We have

Xg0,p0 (Ya 3) = Xg1,m (Ya 8) .

Proof: Suppose given a path (g, p;) connecting (go, po) and (g1, p1). Consider
the infinite dimensional manifold B* x [0,1]. We want to construct a “universal
moduli space” for the equations. Consider the product bundle over B* x [0, 1]
with fibre A'(Y) @ T(Y, W). We have a section given by

S(Aa ¢3 t) = (afﬁﬂba *tFA - 27/Pt - T(¢5 ¢)) (28)

Note that in (28) both the Dirac operator and the Hodge *-operator depend on
the metric, hence on the parameter ¢t. Here {p;} is any family of 1-forms that
are co-closed with respect to *; and away from the wall, i.e. [¥p:] # mer(L).
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The universal moduli space is the zero set of the section s, My = s~1(0). It is
not hard to see that the section s has a Fredholm linearisation Ds of the form

0 -
DS(A,¢,p,t) (Cl, ¢7 7, 6) = eas(Aa '(pa 12 t) +T |(A,1/J,p,t) (Oé, ¢a 77);

where (a, ¢) are coordinates in the tangent space of B, n is a 1-form, and ¢ € IR.
If the path is generic, Ds is onto.

Now we can apply again the implicit function theorem on Banach manifolds,
and we get that s is transverse to the zero section. Therefore the universal
moduli space My is a smooth manifold. Notice that the condition [x;p;] #
w1 (L) ensures that the moduli space corresponding to each value of ¢ does not
contain reducibles. The dimension of the universal moduli space is Ind(T)+1 =
1. The proofs of the compactness and orientability of the universal moduli space
are analogous to the case of M,.

The independence of the metric now follows from the fact that the moduli
spaces corresponding to the metrics gg and g; form the boundary of a compact
oriented 1-manifold, and the total oriented boundary of such a manifold is zero.
QED

Now consider the case with b;(Y) = 1. Here more care has to be taken,
since in this case it is no longer possible to choose arbitrarily the metric and the
perturbation. In fact we cannot ensure that a generic path of perturbations will
avoid the wall [xp] = meq (L). Nevertheless, for small enough perturbations, the
previous argument ensures independence of the metric and of the perturbation.

In the following it is useful to restrict the perturbation p to a fixed coho-
mology class. In particular we shall often work with a cohomologically trivial
perturbation [*p] = 0. Then an argument similar to the previous one proves
transversality in this case. Notice, however, that the result does not immediately
follow from the proof of transversality for unrestricted p, since in principle the
subspace [*p] = 0 may miss the generic set given by the Sard—Smale theorem. It
is necessary to check with a direct computation the vanishing of the Cokernel of
the linearisation Ds(4,y, .1 (o, ¢,1,€), with xp and *n cohomologically trivial.

If the path (g, p:) crosses the wall [xp] = mei (L), there is a wall crossing
formula [19], as follows.

Theorem 6.9 Suppose Y has b1(Y) = 1 and (g¢, p¢) is a path of metrics and
perturbations that crosses the wall [%p] = mwei(L) once transversely. With the
pair (g, p) where the path crosses the wall, the moduli space M.(Y,s,g,p) has a
circle S* of reducible points. A local analysis of the universal moduli space near
the pair (g, p) shows that there are some irreducibles that collide with the circle
of reducibles. The invariant x(Y, s) changes correspondingly by an amount equal
to the spectral flow of the linearisation around the circle of reducibles.

The proof can be found in [19]. It is based on the local model of the universal
moduli space near the bad metric and perturbation.
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Consider the case of homology spheres. Let 89 be the Dirac operator for
the choice of the metric g, twisted with the 1-form v. We analyse how the
condition Ker(d9) = 0 creates a metric dependence for the invariant x(Y, s).
The following preliminary lemma, which does not simply follow from the fact
that 07 is of index zero, is needed in order to define the chamber structure in
the space of metrics and perturbations. Let Met be the set of metrics on Y.

Lemma 6.10 Given Y a homology sphere, consider the set of pairs (g,v) in
Met x ZY(Y). The condition Ker(09) = 0 is satisfied by a generic set in
Met x Z1(Y). The wall

W = {(g,v)|Ker(9) # 0}
is a stratified set, with the top stratum of codimension one in Met x Z1(Y).

For the proof we refer to [21]. For a more detailed analysis of the chambers,
see also [30].

Theorem 6.11 Given Y a homology sphere, we consider the Seiberg—Witten
equations (25) and (26), with a perturbation p = xdv. In the space of met-
rics and perturbations Met x Z*(Y) consider a path (g¢,v;). The wall crossing
formula is

Xg0,vo (Y) — Xg1,v1 (Y) = SF(@E:),
where SF(03¢) is the spectral flow of the twisted Dirac operator along the path
(g¢,vt) connecting (go, o) to (g1,v1)-

Recall that the spectral flow is the total number of eigenvalues A(t) of the
operator 99! that cross zero from negative to positive minus the number of those
that cross from positive to negative along the path 0 < ¢ < 1. There are various
possible proofs of this wall crossing formula. One way is the local analysis of
the universal moduli space near the bad points where a generic path (g¢, 1)
crosses the wall, just like the proof of the b1(Y) = 1 case [19], [21]. Another
approach is via Floer homology [21], as we shall discuss later. Moreover, in the
case of an integral homology sphere, the wall crossing formula will also follow
from the results discussed in the following section, where x(Y") (there is a unique
choice of Spin.-structure on a homology sphere) is decomposed into the sum of
a topological invariant and a metric dependent term.

6.4 Casson invariant and Alexander polynomial

Unlike the Casson invariant of homology spheres that has a nice geometric defi-
nition in terms of representations of the fundamental group 7 (Y'), the Casson-
type invariant x(Y,s) obtained via Seiberg—Witten theory on three-manifolds
does not have a simple geometric description, due to the presence of the spinor
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equation that is not easily interpreted in terms of topological quantities. How-
ever, the invariant x (Y, s) satisfies a surgery formula under Heegaard splittings
[20] that is reminiscent of the Casson invariant [1], [35]. As we are going to see
in this section, the two invariants are closely related: an explicit formula that
describes x(Y,s) in terms of the Casson invariant and other correction terms
can be derived from suitable gluing theorems.

The Casson invariant is defined only in the case when Y is a homology three-
sphere [1] (with a generalisation to rational homology spheres [41]), whereas we
have defined the invariant x (Y, s) for all three-manifolds. Moreover, we should
really think of x(Y,s) as a family of invariants parametrised by the choice of
the Spin.-structure s € S. This has been done to the expense of introducing
a chamber structure. As we are going to see, in the case of integral homology
spheres there is a direct relation between x(Y) (there is no non-trivial choice of
s € S in this case) and the Casson invariant, with a correction term that takes
into account the metric dependence discussed in the previous section.

For some manifolds with b1 (Y") > 0 the relation to the Casson invariant is via
the Alexander polynomial of a knot and a surgery formula. This relation to the
Alexander polynomial generalises to other manifolds with b;(Y') > 0. In fact, as
proven by Meng and Taubes [22], a suitable combination of the Seiberg—Witten
invariants x(Y,s) for various choices of s € S reproduces the Milnor torsion
invariant. The Alexander polynomial of a link can be regarded as a particular
case.

In this chapter we shall only state the result of Meng and Taubes in the
more restrictive case where it gives rise to the Alexander polynomial, as stated
in theorem 6.12 below. We refer the reader to [22] for the result in complete
generality. The general statement, that we shall omit here, holds for all compact
three-manifolds with b;(Y) > 0 (and more generally for some cases of three-
manifolds with boundary), and is formulated in terms of Milnor torsion.

Here we only consider manifolds Yy obtained by zero-surgey on a knot K
in $%. Such manifolds have the homology type of S' x S2, hence they have
b1(Y) = 1. We shall not review the definition of Milnor torsion, and its relation
to the Alexander polynomial for our class of manifolds. The reader can find all
this in [40].

Theorem 6.12 Let Yy be obtained as zero-surgery on a knot K in an integral
homology sphere. Let

AK(t) = Qo +a/1(t_1 +t) + .. +ar(t—’l‘ +tr)

be the symmetrised Alexander polynomial of the knot K. The manifold Yy has
the homology of S* x S2. Consider Spin.-structures s, on Yy, defined by the
condition ¢ (L) = 2k. The Seiberg—Witten invariants, obtained under a generic
choice of the perturbation, are of the form

x(Yo, sk) = Zjaj+|k|-
>0
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The theorem follows from the results of [22]. In the case of the Spin, struc-
ture sg, with ¢1(Lg) = 0, the invariant can be computed with respect to a
cohomologically non-trivial perturbation, namely a 1-form p satisfying

0 # e = [*p] € H*(Y,R).
We have the following useful corollary.

Corollary 6.13 Let Yy and Ak (t) be as above. The invariants x (Yo, sk) can
be assembled in a unique invariant

X(Y6) = 30 (Vo 38) = A% (Dl
k

Proof: This is just the simple computation

x(40) = 3 jagn = S Vo
E §>0 j>0

QED

The expression X' (K) = $A%(t)|s=1 is exactly the term that appears in
the surgery formula that defines axiomatically the Casson invariant of integral
homology spheres [1]. Namely, given an integral homology sphere Y and a knot
K C Y, consider the manifold Y; obtained by 1-surgery on the knot. This
is again an integral homology sphere. The Casson invariant A(Y') satisfies the
relation

AY) = A1) = N(K). (29)

This simple observation, together with the result of Meng and Taubes, nat-
urally suggests to investigate the analogous of the surgery formula (29) for
Seiberg—Witten invariants, namely to express x(Y) — x(Y1) in terms of some
polynomial invariant of the knot K, and to identify explicitly the correction
term that x(Y) — A(Y) that relates the Seiberg—Witten and the Casson invari-
ants of integral homology spheres. We are going to see how these questions can
be answered.

If Y is a homology sphere with an embedded knot K, and ¥; and Y are
the manifolds obtained by 1-surgery and 0-surgery on K, as above, then Y,
Y1 and Yy split as V Up2 v(K), where V is the knot complement and v(K)
is a tubular neighbourhood of the knot. The manifolds with boundary V and
v(K) are glued along T? by the diffeomorphism of 72 specified by the Dehn
surgery. It is convenient to consider the manifolds V and v(K) completed with
an infinite cylinder 72 x [0,00) and a flat cylindrical metric on the end. For
simplicity, we shall use the notation V and v(K) to indicate both the manifolds
with boundary or these complete manifolds.

The following theorem [7] [10] [11] is an answer to the first question.
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Theorem 6.14 There exists a perturbation p on v(K) such that the following
holds. There are chambers of metrics and perturbations for Y and Y1 such that
the following surgery formula for the Seiberg—Witten invariant holds:

x(Y) — x(Y1) = x(Yo)-

Sketch of the Proof: Notice that the two terms x,..,(Y") and x4, ., (Y1) on the left
hand side depend on the choice of metric and perturbation (g,v) according to
the wall crossing described above. The perturbation v is obtained by combining
the perturbation p on v(K) that “simulates the effect of surgery” [6] with a
perturbation on V' that guarantees transversality. On Y7 and on Yy with a non-
trivial Spin. structure we consider perturbations obtained from a perturbation
on V. In the case of Yy with the trivial Spin. structure sy we consider a
perturbation p obtained by combining a perturbation on V' with a perturbation
po on v(K) so that p satisfies

0 # e = [#p] € H*(Y,R).

In order to fix a choice of the metric and perturbation on the homology spheres
Y and Y7, we assume that the manifold Y has a long cylinder [—r, r] x T2 around
the boundary of the tubular neighbourhood of the knot where the surgery is
performed. We choose the flat metric on T2, the corresponding flat cylindrical
metric on [—r,r] X T? and we extend this inside the tubular neighbourhood of
the knot v(K) = D? x S! to a metric of positive scalar curvature, flat near the
boundary. The manifolds Y; and Y, have the corresponding induced metrics g1
and go-

The essential ingredient of the proof is a gluing theorem. The manifolds Y,
Y1, and Yy decompose as V Ugz [—r,r] x T? Uz2 v(K), where V is the knot
complement. The moduli spaces of solutions decompose accordingly as a fibre
product

ME(Y, 9,0) = M2(V, ) Xyor2,) Mo(v(K), 1),

M:(}/lagla Vl) = MC*(V, 17) Xx0(T2,Y1) MC(V(K))a

and
M:(Y07 Sk, P) = Mc*(V7 17) Xx0(T2,Yo,s%) MC(V(K))a

for sy non-trivial, with [xp] = 0, and
Mc*(Yoa Sk p) = M:(Va i}) XXO(TQ,YO,sk) MC(V(K)alJ/O)a

with [#p] # 0. We need to explain the terms that appear in these fibre prod-
ucts. The moduli space M¥(V,#) counts irreducible solutions modulo gauge
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of the perturbed equations on the knot complement V' endowed with an infi-
nite cylindrical end 72 x [0,00). The fibre product is defined with respect to
boundary value maps. These are continuous maps

0 : M;(V,7) = xo(T?,Y5)

and
d: M;(v(K)) = xo(T?,Y3).

The space xo(T2,Y;) is the covering xo(T2,Y;) — x(T?) of
x(T?) = HY(T?,R)/H'(T*, Z)
with fibre H'(T?,Z)/H(Y;). The subgroup H(Y;) is the image of the map J} :

HY(V,Z) — H'(T?,Z) defined by the inclusion T2 < V inside the manifold
Y;, which is either Y or Y3 or Y. The boundary value map from M*(V, D) is
generically finite to one and the one from M*(v(K)) is an embedding.

There are two main steps in the proof. The first one is to describe the
geometric limits of solutions, namely to show that, upon stretching the long neck
T? x [—r,r], solutions of the Seiberg—Witten equations on Y; converge smoothly
on compact sets and up to gauge transformations to a pair of a solution on V'
and a solution on v(K). The second half of the proof involves establishing the
existence of the asymptotic value maps and proving the fibre product structure.
This implies showing that a pair of solutions on V and v(K) with matching
asymptotic values can be glued to form a solution on Y; with a long neck.
The way the gluing over T2 is obtained depends on the construction of the
perturbation g on v(K), which therefore encodes the information about the
Dehn surgery. We can summarise briefly the steps of the proof as follows.
Geometric limits: Suppose given a sequence of solutions (A1) of the
Seiberg-Witten equations on the manifold V Urz[—r, r|xT?Ur2v(K). By taking
the limit smoothly on compact sets we obtain a finite energy solution (4’,%') on
V Upz2 [0,00) x T?, and a finite energy solution (A”,%") on V Up2 (—00,0] x T2.
Asymptotic values: An irreducible finite energy solution (A’,%') on V Urz
[0,00) x T? decays exponentially along the cylindrical end T? x [0,00) to an
asymptotic value. Since the induced Spin.-structure on the torus 72 is trivial,
the asymptotic value is given by a flat connection as, on T2 and vanishing
spinor. The rate of decay is determined by the first non-trivial eigenvalue of the
operator 9,_, + 0;_ on T?.

Under the assumption of non-negative scalar curvature on the tubular neigh-
bourhood of the knot, and since we have the trivial Spin.-structure on the torus
T2, the finite energy solution (A”,4)"") has vanishing spinor 9" = 0, hence it is
just a flat connection on v(K).

Given these results, it is possible to consider the space A 5(V') of extended
Li,é solutions on V, namely solutions (A4,) that are locally in L? and that
satisfy

(A4, 4) = (aco, 0)ll 22 (72 x[0,00)) < 00,
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with ay, as defined above. On this configuration space we can consider the
action of L +1,6 gauge transformations on V. This gives rise to a well defined
boundary value map

d: MV, 0) = xo(T? Y;).

A perturbation v = # + p of the equations on Y is then chosen in such
a way that the asymptotic values in xo(72,Y), lifted to the common covering
HY(T?,R) of xo(T?%,Y), xo(T?,Y1), and xo(T?, Yo, s) become close to the union
of the asymptotic values of solutions of the equations on Y7 and on Yy with the
various si. A similar technique is known in Donaldson theory as the “geometric
triangle” [6].

A careful analysis of the splitting of the spectral flow under surgery is the
needed in order to guarantee that the counting of orientations remains un-
changed.

This completes the sketch of the argument: we are not going to discuss any
of the details here.

QED

The surgery formula is the same as the one satisfied by the Casson invariant.
This indicates that the difference of the two invariants should consist precisely
of a term that captures the metric dependence of x(Y). The following cor-
rection term was conjectured by Kronheimer and Mrowka, and then proved
independently by Chen and Lim [10], [11], [18].

Theorem 6.15 Let Y be an integral homology sphere. There exists a Spin
four-manifold X with boundary, such that X =Y. The difference between the
Seiberg—Witten and the Casson invariant of Y is given by

AY) = X(¥) = Ind(Dx) + go(X), (30)

where Dx is the Dirac operator on X with Atiyah-Patodi-Singer boundary con-
ditions, and o(X) is the signature.

The proof can be found in the references quoted above. Notice that the
correction term can be rewritten as a sum of g-invariants [2] as

Ind(Dx) + 50(X) = 153 (0) + ga-as(0).

Recall that the n-invariant 74 (0) of a self-adjoint elliptic operator A on a com-
pact manifold Y is defined by the value at zero of the analytic continuation of
na(s) = Y sign(A\)|A|~*. Here the sum is over all the non-zero eigenvalues of
A. Upon deforming the operator A, in our case via a deformation of the metric
and perturbation (g, v), the n-invariant jumps as the spectral flow, [2]. So in
particular one can obtain (see [7]) a proof of theorem 6.15 as a consequence of
the surgery formula of theorem 6.14 and the wall crossing formula of theorem
6.11.
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Instead of giving the details of this argument, we prefer to digress briefly
and give some motivation for the initial conjecture that identified (30) as the
right correction term. In fact, this may lead to other interesting conjectures.

Several classes of three-manifolds can be realised as the link of an isolated
singularity in a complex surface. This is the case, for instance, for very simple
manifolds like lens spaces, or for the more interesting class of Brieskorn spheres.
The latter, usually denoted by X(p,q,r), can be regarded as the link of the
isolated singularity at zero of the complex hypersurface P + y? + 2" = 0 in
C3. A generalisation of Brieskorn spheres is the class of Seifert fibred homology
spheres (a1, .., a,). These are manifolds that can be constructed out of two-
dimensional orbifolds [33], but they also have a description as the link of the
singularity at zero of maps f : €* — €™ 2. Other interesting three-manifolds
that are obtained as link of singularities are some torus bundles over S' that
arise as link of some cusp singularities in Hirzebruch’s Hilbert modular surfaces.

In these cases, one can consider the Milnor fibre F = f~1(§) of the singular-
ity. We have to introduce some hypotheses on the surface in order to guarantee
the existence of smoothings, that is, of deformations of the surface such that
the general fibre is smooth. We can assume that the surface is a complete in-
tersection, namely a surface obtained from n — 2 non-singular hypersurfaces in
CP" intersecting transversely. Thus, the Milnor fibre F' can be thought of as a
smooth four-manifold with boundary 0F = Y, where the homology sphere Y
is the link of the singularity. It is a conjecture that, under this hypothesis, the
Casson invariant of Y should satisfy the relation

AY) = %U(F). (31)
The conjecture has been verified for Seifert fibred homology spheres [27]. Notice
that the conjecture only concerns singularities in complete intersections such
that the link of the singularity is a homology sphere. Links of singularities that
are homology spheres are classified in [26], but it is not known which of them
arise from complete intersections.

Computations of the Seiberg—Witten invariants x(Y,s) were explicitly ob-
tained [25] in the case of Brieskorn spheres and more generally Seifert fibred
spaces. When Y is a Seifert-fibred rational homology sphere, the calculation of
[25] shows that the invariant x(Y") can be related to the n-invariant 79 (0). For
a direct calculation of these n-invariants see [29]. This, together with the rela-
tion (31) for Seifert fibred spaces, leads then naturally to identify the correction
term as (30). For a computation in the case of Brieskorn spheres following this
principle, see [28].

The result of theorem 6.15 implies that the conjectural relation (31) can be
rephrased equivalently as follows.

Conjecture 6.16 Let Y be a homology sphere that arises as the link of an
isolated singularity in a complex surface X. Assume that X is a complete inter-
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section, so that we have a smoothing of X, and a Milnor fibre F with OF =Y.
Then the Seiberg—Witten invariant satisfies the relation

x(Y) = —Ind(DF),
where Dg is the Dirac operator on the smooth Spin four-manifold F.

It is known from the results of [35] that, in Donaldson theory, the Casson in-
variant can be regarded as the Euler characteristic of the instanton Floer homol-
ogy [13]. The latter is obtained when the dimensional reduction of Donaldson’s
self dual equations is thought of as the gradient flow of the Chern-Simons func-
tional. This behaves in some sense like a Morse function on the configuration
space and the instanton homology is the associated Morse homology.

It is natural then to attempt the same construction in the case of Seiberg—
Witten theory and reinterpret the invariants x(Y,s) as Euler characteristics
of suitable Floer homologies. The remainder of this chapter will be dedicated
to defining and introducing the main properties of the Seiberg—Witten Floer
homology. We shall see that the questions of wall crossing, surgery formulae,
and the relation to known classical invariants that we discussed in this section
have precise analogues in terms of Floer homologies.

The conjectural relation (31) for homology spheres Y that arise as links of
singularities in complete intersections also admits generalisations. In fact [27],
it is possible to ask what information about the Milnor fibre F is captured by
the instanton Floer homology of Y. Similarly, in the case of the equivalent
conjecture 6.16, we can ask what information on the Milnor fibre F' is captured
by the Seiberg—Witten Floer homology.

7 Seiberg—Witten Floer homology

The main idea in the construction of the Floer homology [13] is to interpret
the flow equations (18) and (19) as the gradient flow of a functional that can
be regarded as a Morse function on the configuration space B*. Mimicking the
construction of the ordinary homology of a finite dimensional manifold out of a
Morse function and its gradient flow [32], one can consider a complex generated
by the critical points, with a boundary operator defined by a suitable counting
of flow lines.

We are going to describe the various steps of the construction in the fol-
lowing sections. As a general remark, some care is necessary in adapting the
intuition from the case of finite dimensional Morse theory. In fact, there are
a few crucial differences that make Floer homology more subtle than just an
infinite dimensional Morse theory. First of all, the equations (18) and (19) are
not really flow equations, since the linearisation is an elliptic operator. Thus,
the natural intuition that comes from parabolic problems (local existence of the
solution forward in time, extension for all times) cannot be applied to this case.
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The vector field (20) in general may not be integrable even for small times.
However, we are really considering solutions of the four-dimensional Seiberg—
Witten equations on Y x R. These correspond to particular choices of initial
conditions for which the solution of (18) and (19) extends for all times. This is
an essential difference with respect to the finite dimensional Morse theory, where
every point of the underlying manifold corresponds to a unique flow line (up to
reparametrisations) that extends for all times. Another important difference to
keep in mind is that the configuration space B* is topologised with L2-Sobolev
norms, but the gradient, as we are going to discuss in the next section, is taken
with respect to the L2-inner product hence it is not, strictly speaking, a Morse
flow on B*. Nonetheless, we shall see that we can define an associated Floer
homology which gives a refined invariant of the underlying three-manifold Y.

7.1 The Chern-Simons-Dirac functional

Let us introduce a functional defined on the space of connections on L and
sections of W over Y.

Definition 7.1 The Chern-Simons-Dirac functional on the space A = C X
D(Y,W) is defined as

1

C(A,9) = 5/}/(A—Aw A (Fa+ Fa,) +§/Y < 0up > dv,  (32)

where Ag is a fized smooth background connection.

The first summand in (32) is just the abelian Chern—Simons functional ,
whereas the second term contains the information on the spinor and the inter-
action between the connection and the spinor. The gradient of the functional
C is given by the vector field (20)

VC(Aa '(,b) = (6141;[}: *xFp — T(’d}a ¢))

Thus, the critical points of the Chern-Simons-Dirac functional are exactly the
solutions of the equations (21) and (22).

We want the functional (32) modulo the action of the gauge group. The
functional is invariant under gauge transformations connected to the identity;
however, in the case of maps that belong to other connected components in
m0(G) = H'(Y,Z), an easy computation shows that the functional changes
according to

C(A—X"td\ M) = C(A, ) +47% < er (L) U [N, [Y] > . (33)

Here [)] is the cohomology class of the 1-form —%/\_ld/\, representing the con-
nected component of A in the gauge group.
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It is clear that the functional (32) is real valued on B, whenever YV is a
rational homology sphere. It is multiple valued, with values in the circle R/cZ
with ¢ = 472¢ and

{=g.cd{<c(L)Uh,[Y]>|he H(Y,Z)},

when Y has b;(Y) > 0. In the case of a manifold Y with b, (Y) > 0, we want
to obtain a real valued functional (32), hence we have to pass to a covering of
B. There are two possible choices of the covering that make the functional real

valued.
Let By be a covering of B with fibre H(Y, Z),

By = A/Go,

where Gy is the connected component that contains the identity in the gauge
group
G =M(Y,U(1)).
The Chern-Simons-Dirac functional is certainly real valued on the space By.
However, there is a smaller covering which makes the functional real valued.
Consider the space By, given by

B, =A/GrL,
where Gy, is the subgroup of G of all gauge transformations of the form
Gr ={r e Gl{a (L) U[AL [Y]) = 0}
Let Hy, denote the subgroup of H'(Y,Z) given by
Hp = {he€ H'Y,Z)|(c:(L) Uh,[Y]) = 0}.

The space By, is a covering of B with fibre H'(Y,Z)/H}, = Z.

Thus, in the case of a rational homology sphere Y, the moduli space of
critical points M.(Y, s) is just the space M,(Y,s) discussed previously. In the
case of a manifold Y with b;(Y) > 0, the moduli space M.(Y,s) C By, is a
Z-covering of M.(Y,s). Analogously, we can consider the set of critical points
in By that covers M.(Y,s) with fibre H1(Y,Z).

When b;(Y) > 0, in order to avoid reducible solutions and to achieve
transversality of the moduli space M, (Y, s), we introduce a co-closed perturba-
tion p as in the previous section. The perturbed Chern-Simons-Dirac functional
is of the form

Co(A, 1) = O(A, ) — 2 /Y (A — Ag) A #p, (34)
with gradient flow
9= om0 (35)
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%A = — % Fa+ (%) + 2ip. (36)

If Y has b;(Y) > 0, we choose p so that *p # mci(L), as in the previous
section. If Y is a rational homology sphere we write p = xdv.

When gauge transformations act on the perturbed Chern-Simons-Dirac func-
tional, there is a further correction term which depends on the cohomology class
of p,

Cp(MA, ) = Cp(A,9) +4n” < el (L) UL [Y] > +7 < [p)] UL [Y] > . (37)

Thus, whenever we have a manifold Y with b (Y) > 0 and ¢;(L) # 0, we
shall restrict to the class of perturbations with [p] = 0, so that the Chern-
Simons-Dirac functional still descends to a real valued functional on By or Br.

Notice that the case where b1(Y) > 0 and ¢4 (L) = 0 is more subtle. In fact,
if we choose a cohomologically trivial perturbation p = xdv, we have a torus T
of reducibles in the moduli space M.(Y, s), given by solutions of d(A —v) =0
modulo gauge. If we want to eliminate reducibles, we have to fix a non-trivial
cohomology class for the perturbation p. We shall return to this special case in
the following and discuss the implications at the level of the spaces of flow lines
for the functional C,.

7.2 Hessian and relative index

In order to proceed with the analogue of the finite dimensional Morse homology,
an important step is the definition of the Morse index of a critical point. This
is related to the Hessian of the functional (32).

Proposition 7.2 Up to a zero-order operator, the Hessian H(4 y) of the func-
tional (34) at a critical point (A,) is the same as the operator © in the defor-
mation compler.

Proof: Consider a parametrised family

(A83¢8) = (A7 ¢) + 8(04,(;5)

of connections and sections. The linear part of the increment, that is, the
coefficient of s in

Cp(Asa "/}s) - CP(A: ¢),

is a 1-form on the infinite dimensional space of connections and spinors which
is identified via the metric with the gradient of (32). The coefficient of s?/2 is a
2-form which, together with the gauge fixing condition G% ,(a, ¢) = 0, induces
an operator H(4 ) on the tangent space of B at (4,%). The explicit form of
the increment C,(A4;,9s) — C,(A,v) is

f(—/ oA Fa+ (A= Ao) Adat
2 Y
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/(<¢,a¢>+<¢>,6A¢>+<¢,6A¢>>)dv
Y
4 *
+ /Ya/\ p)+
32
5(_/1/aAda+/1/(< ¢, o) > + < P, ad >)dv

+/ < ¢,040 > dv).
Y
We can write the first order increment as

Flawp) (@,0) = = [yiaA(Fa —2xp—x1(,9))+

1 (38)
+1 [, (< 8,049 > + < Ouh, ¥ >)dv.

This is the L2-inner product of the tangent vector (c, ¢) with the gradient flow
(20). The Hessian is a quadratic form in the increment (a,¢), that can be
written as

2

s—(—/aAda+2Re/ <¢,a¢>dv+/ < 9,040 > dv) =
2 Y Y Y

2

S0 [andat [ antrow)+sr.0)+ Re [ < 6,00 +040 > do.
Y y Y
Thus we have the Hessian of the form

< H(A,z[),p) ((1, ¢)7 ((1, ¢) >= <a, *do — T(¢; ¢) - T(¢7 ,(p) >

(39)
+Re < ¢,040+ ap > .
The first term is the L2-inner product of forms and the second is the L2-inner
product of sections of W.

The quadratic form (39) induces an operator on the tangent bundle of By,
which is the same as the linearisation © of the equations on Y. At a critical
point this is the Hessian of the Chern-Simons-Dirac functional.

QED

Thus, under a generic choice of the perturbation p, the Hessian at a critical

point has trivial kernel. This means that we can state the following result.

Proposition 7.3 Assume that Y has by(Y) > 0 and ¢ (L) # 0, and that the
perturbation p is cohomologically trivial. The functional (34) on the configura-
tion space Br has the Morse property, that is, the critical points are isolated
and non-degenerate. If Y is a rational homology sphere, the functional (34),
restricted to the irreducible component B* has the Morse property.
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In the finite dimensional context, the index of a critical point of a Morse
function is defined by counting the dimension of the eigenspaces of the Hessian
with negative eigenvectors. Notice, however, that in this infinite dimensional
case the Hessian has spectrum unbounded from below, hence the Morse index
is not well defined. Nevertheless, it makes sense to define a relative Morse index

ula) = p(b) a,be€ M(Y,s)

as the spectral flow of the operator H along a path that connects the two critical
points a and b. In principle, it is not clear that this notion is well defined. In
fact, we need to check that the spectral flow does not depend on the path in B,
chosen to connect the points a and b.

Proposition 7.4 In the case of a manifold Y with by(Y) > 0, the relative
Morse index in By, or By is well defined, in fact the spectral flow of H around
a loop is zero. Similarly, for a homology sphere, the spectral flow in B is well
defined. However, for a manifold Y with by(Y') > 0, the spectral flow in the quo-
tient B by the action of the full gauge group is only defined modulo a periodicity
given by

{=g.cd{<ci(L)Uh,[Y]>|he H(Y,Z)}.

Proof: Consider a loop [A(t),%(t)] in Br, with ¢ € [0,1]. If we lift it to a
path (A(t),v(t)), the endpoints differ by a gauge transformation A € Gy,. This
A:Y — U(1) determines a U(1)-bundle over ¥ x S! obtained by identifying
the ends of the cylinder; the connection A(t) gives rise to a connection on this
line bundle L over Y x S'. The spectral flow along [A(t),(t)] can be computed
[2] as the index of the operator % + Ha(),4(+))- This is given by

0 1 - 2x + 30
Ind(a + L(A(t),1p(t))) = _ﬁ /y><51 Cl(L)2 — T

The term 2 + 30 = 0 on a manifold of the form Y x S'. As for the first term,
notice that we can write [44]

dA(t
FA(t) A FA(t) = FA(t) A % A dt,

and therefore we get

-1 dA(t) i dA
871'2 /};Xsl A A dt Nt 2w /;/ CI( ) St dt

_ i 1
= 5n J, 1@ AN

since the difference of A(t) at the two endpoints is A~1d\.
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Thus we have obtained the following spectral sum formula [44]:

0 i B
I”d(a +Liaww) = 5 /Ycl(L) A XL

This implies immediately that the relative index is well defined in By, or By,
and in B for homology spheres. It also implies that, if by (Y) > 0, the spectral
flow in B is only defined up to the periodicity

{=g.cd{<ci(L)Uh[Y]> |he H(Y,Z)}.

Notice that such £ is an even number.
QED

By the additivity of the spectral flow, for any three elements a, b, and ¢ in
M,(Y,s), we have

pla) — p(c) = p(a) — p(d) + p(d) — p(c).

This justifies the notation p(a) — p(b) for the spectral flow that defines the
relative index.

Notice that if the spectral flow is computed in B, for a manifold with
b1(Y) > 0, we find that the relative index is only defined in Z,. This peri-
odicity is reminiscent of the Zg periodicity in the instanton Floer homology [13]
of homology spheres. However, there is a conceptual difference between these
two periodicity phenomena. In our case, the periodicity is simply related to the
existence of the covering B, whereas in Donaldson theory the periodicity has a
more subtle interpretation connected to a bubbling phenomenon [13] that does
not have a direct analogue in Seiberg—Witten theory.

7.3 Flow lines: asymptotics

Now we want to consider the gradient flow equations (18) and (19) on the
cylinder Y x R. To build up the right intuition, it is perhaps better to think
of a finite dimensional analogue given by gradient flow lines of a proper Morse
function on a complete non-compact Riemannian manifold. Over a compact
manifold gradient flow lines of a Morse function will approach asymptotic values
as t — +oo that are critical points, whereas, on a non-compact manifold there
may be flow lines that have no asymptotic value and simply go off to infinity.
This in general will be the case for solutions of our flow equations as well. Thus,
we have to select a suitable class of solutions of (18) and (19) for which we
can guarantee the existence of asymptotic values. The guiding principle goes
under the name of Simon’s principle “finite energy implies finite length”. For
the moment we shall not work modulo gauge: we shall return to discuss the
effect of the gauge group action in the next section.

Notice that, as we pointed out already, the analogy with finite dimensional
Morse theory holds with the caveat that the equations (18) and (19) are not
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evolution equations, hence they should not be thought of as defining a local
flow on B*.

Definition 7.5 Let (A(t),1(t)) be a solution of the equations (35) and (36) on
the cylinder Y x R. We say that the path (A(t),4(t)) is of finite energy if the
following condition is satisfied:

€= /_oo IVC, (A®), w022 (y x o) dE < 00 (40)

Suppose we have a solution (A(t),(t)) with asymptotic values

lim (A(2),9(t)) = (Aa,va),

t——o0

lim (A(2),9(1) = (As,¢s),

t—+4o0

where limits are taken in the L%—topology on the configuration space. Here
a = [Aa,%.] and b = [Ap, 1)p] are critical points in M.(Y,s). Then the solution
(A(t),9(t)) is of finite energy. In fact, the total variation of the Chern-Simons-
Dirac functional is

> d

Co(A(t), ¥(t))dt

Cp(Aa;¢a)_Cp(Aba¢b):_ B dt "

oo o0

—— [ <VC,A0,60), FAO60) > dt = [ 196,640, 60) -,
—0o0 —0o0

by equations (18) and (19).

The interesting point is the fact that the finite energy condition (40) is also
sufficient to provide the existence of asymptotic values. This implication is more
subtle and it relies upon the proof of some estimates for solutions on cylinders
[23] [24].

Suppose given a finite energy solution (A(¢),1(t)) of (18) and (19) on ¥ x IR.
The solution (A(t),%(t)) is irreducible if it is an irreducible solution of the
four-dimensional Seiberg-Witten equations, that is, if the spinor ¢(¢) is not
identically vanishing.

Proposition 7.6 Let (A(t),4(t)) be an irreducible finite energy solution of (18)
and (19) on'Y x R. Then there exist critical points a = [Aa,1.] and b = [Ap, 1)

in M.(Y,s), such that we have

lim (A(t),9(t)) = (Aa,a),

t——o0

lim (A(2), 9 (1) = (As, ),

t—+4o0
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in the L? topology. Moreover, if [Aq,4] is an irreducible critical point, 1, # 0,
then we have exponential decay

1A, $0) = (Aa ) Ea gy < O,

for all t < —Ty. The rate of decay & is controlled by the eigenvalues of the
Hessian at the critical point: § < min{|\,|}, where {A,} is the set of non-zero
eigenvalues of the Hessian H(4, y.)- We have a similar decay as t — +oo if
[Ap, s is an irreducible critical point.

A proof of the existence of asymptotic values and an estimate of the rate
of decay can be derived from the Lojasiewicz inequalities [34]. These estimate
the distance from a critical point in terms of the L?-norm of the gradient (“fi-
nite energy implies finite length”). The argument depends on the fact that the
Chern-Simons-Dirac functional C, is a real analytic function on the configura-
tion space of connections and sections.

Since the rate § of the exponential decay is controlled by the smallest non-
trivial absolute value of the eigenvalues of the Hessian H 4, y,, we can choose a
unique ¢ for all critical points.

Thus, given two irreducible critical points a = [Ag,%,] and b = [Ap, 1] in
M,(Y, s), we consider all solutions (A(t), 4 (t)) of the flow equations with limits

Jim (A(), (1) = (Ao, 9a) and - lim (A(£),%(2)) = (Ap, ),
and such that
I(A®), 9 (t)) = (A, a)llz2 < Ce

for t € (—o0, —Tp] and
I(A®), $(8)) — (As, 95)l1 2 < Ce™

for t € [T, 00).

In the next section we describe how to fit these solutions into a configuration
space with a free action of a gauge group, so that we can finally introduce the
moduli spaces of flow lines.

7.4 Flow lines: moduli spaces

There are other technical issues that need to be addressed in order to define
moduli spaces of flow lines. The reader may refer to [21], and to [23] for the
analogous problems treated within the context of Donaldson theory.

So far we have considered the flow equations (18) and (19) for (A(t),(t)) in
a temporal gauge. With this notation, we can consider the action of the group
of time independent gauge transformations on the set of solutions. Notice,
however, that, in order to define virtual tangent spaces to the moduli spaces of
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flow lines and set up the corresponding Fredholm analysis, we need to consider
slices of the gauge action. This corresponds to the analysis worked out in [23]
for the case of Donaldson Floer theory.

The slice at an element (A, ) is defined by the condition Glay) (o, 9) = 0.
Tt is easy to verify that the flow (A(t),4(t)) is tangent to the slice at (A(t), 1 (t))
itself. However, if we need to consider positive dimensional moduli spaces (this
will be the case especially in the context of the equivariant Floer theory discussed
later in the chapter), we need to consider solutions in the slice at a fixed element
(Ao,%0). A solution (A(¢),1(t)) of (18) and (19) is then no longer in the slice
at (Ao, %), unless time dependent gauge transformations are allowed, but these
will break the temporal gauge condition.

This problem can be overcome by replacing the temporal gauge condition
with the condition of standard form introduced in [23]. This allows time-
dependent gauge transformations. One can then add a correction term (A, )
in the flow equations in order to make the flow tangent to a fixed slice of the
gauge action at the point (Ag,1)g). The linearisation of the equations contains
the extra term O, that linearises (A4, 1),

9
Da@.u) (@ 9) = 57+ Oape) + O5-

Anisotropic Sobolev norms L?k,m) can be introduced on the spaces of connec-
tions and sections and gauge transformations, as analysed in [23].The linearisa-
tion ©, is a compact operator with respect to these norms.

However, it is perhaps more convenient to follow [13] and return to the
original description of the solutions of (18) and (19) as solutions of the four-
dimensional Seiberg—Witten equations on Y x IR. This is the approach followed
in [21]. In this case we define the moduli space of flow lines M(a,b). Consider
the set of pairs (4,1) on Y x IR that solve the four-dimensional Seiberg—Witten
equations (8) and (9), and such that there are elements (A4,,%,) and (A4p,%) in
the classes [Aq,¥,] = a and [Ap, 1] = b in M.(Y, s) such that (A,¢) — (4As,%,)
isin L} ; on Y x [Tp,00) and (A, ¢) — (Ap,4p) is in L 50n'Y x (=00, =Tp]. The
gauge group G(a,b) of gauge transformations on Y x R that decay exponentially
to elements in the stabilisers G, and Gy as t — Zoo acts on the space of
solutions. The quotient is the moduli space of flow lines M(a,b). We have the
following index counting [8], [14], [44].

Proposition 7.7 The linearisation

Da),p@)

of the four-dimensional Seiberg—Witten equations on'Y X R, at a solution with
asymptotic values in the classes [Aq, %] = a and [Ap,¥s] = b, is a Fredholm
operator whose index is the spectral flow of the family of operators © (1) y(1))-
Thus, the virtual dimension of the moduli space M(a,b) is given by

dim M(a, b) = p(a) — p(b) — dim G,.
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Another subtle problem is the transversality result, which ensures that the
moduli space M (a, b) is of the proper dimension and cut out transversely by the
equations. The problem is finding a suitable perturbation theory for the flow
equations. In order to define the boundary operator of the Floer homology, we
want to consider spaces of unparametrised flow lines, that is, solutions of the
flow equations modulo an action of IR by reparametrisations. Thus, we want to
introduce a perturbation that preserves the translation invariance of the flow
equations. Moreover, the perturbation has to achieve transversality. It is not
hard to check, for instance, that a time independent perturbation would satisfy
the first requirement but not the second. A class P of perturbations satisfying
both conditions was introduced by Froyshov [14], see also [21]. Another class of
holonomy perturbations is described in [16], [7]. We obtain the following result
[21].

Proposition 7.8 Let P4y be a generic choice of perturbation in the class P
of [14]. Consider the space M(a,b) of solutions of the perturbed equations

Dayp =0 (41)

1 . .
Ff= 1< eiej i, >e' ANel +iPyy, (42)

with asymptotic values in the classes [Aq,%.] = a and [Ap,1s] = b, modulo the
action of G(a,b). The space M(a,b) is of the proper dimension and is cut out
transversely by the equations.

Thus, by the translation invariance of the equations (41) and (42), we can
form the quotient by the action of IR by translations

~

M(a,b) = M(a,b)/R.
This gives the moduli spaces of unparametrised flow lines, of dimension
dim M(a,b) = p(a) — p(b) — dim G, — 1.

Proposition 7.9 The manifold M(a,b) is oriented by a trivialization of the
determinant line bundle of the operator D. This is obtained from an orientation
of

H)Y xR)® H;Y (Y x R) ® H} (Y x R),

the cohomology groups of 6-decaying forms.

Sketch of the Proof: The strategy for the proof is to deform the operator D to
the operator d* + d} + D 4, where D 4 is the Dirac operator on the 4-manifold
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Y x R. An orientation of the determinant line of this operator is determined by
an orientation of

H)Y xR)® HY (Y x R) ® H} (Y x R),

since the Dirac operator is complex linear and it preserves the orientation in-
duced by the complex structure on the spinor bundle. The subtle point is to
guarantee that we can deform D through a family of Fredholm operators. This
depends on the behaviour of the asymptotic operators at ¢ — +o0. In partic-
ular, the condition is satisfied if the weight § of the exponential decay is such
that, along all the perturbation, /2 is never in the spectrum of the asymptotic
operators (see proposition 2.23). In our case, however, this condition might fail,
hence a more subtle approach is needed. This was originally suggested by L.
Nicolaescu and is based on the excision formulae for the index. This separates
the deformation into a part where the asymptotic operator remains constant
and a part where the change in the index is computed by the excision formula
and explicitly accounts for the change of orientation produced along the origi-
nal deformation. Notice that this contribution can be non-trivial, as computed
explicitly in some examples in [29]. The details of this proof can be found in
[21].
QED

Now we can address the question of compactness for the spaces of flow lines.
The following proposition shows that there is a stratification of the moduli
spaces M(a,b) as manifolds with corners, via boundary strata given by lower
dimensional moduli spaces.

Proposition 7.10 There is a natural compactification of the manifold M(a, b)
obtained by adding boundary strata of codimension k of the form

M(aacl) Xey M(Cl,C2) Xeg =0 Xy, M(ck7b)7 (43)

that is, the union of gradient flow lines that break through other critical points
with Morse indices p(a) > p(c1) > --- > p(b).

This compactification is the result of a gluing theorem. We shall not give
here a complete argument, and we refer the reader to [21] for details. We just
point out that the result 7.10 consists of two main steps. One is a convergence
result, which proves the inclusion

6(k)M(a5b) - M(aacl) Xeq M(clac2) Xeg * 0t Xy, M(ckab)

Here the notation %) means the stratum of codimension k in the boundary of
M(a,b). This is achieved by showing that a sequence of solutions in M(a,b)
has a subsequence that converges smoothly on compact sets to a finite energy
solution on ¥ x R which is in some M(c,d) with p(a) > p(c) > p(d) > u(b).
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It is important to notice that the convergence that gives rise to the compact-
ification 7.10 is not in the norm topology Li’ s but only in the weak topology
of C" convergence on compact sets, then improved by elliptic regularity to C*
convergence on compact sets.

The second step is the proof of the reverse inclusion, namely the fact that
indeed all the components A/\;l(c, d) with p(a) > p(c) > p(d) > u(b) appear as
boundary components of M(a,b),

M(a7cl) Xey M(ClacQ) Xeg 77 Xy, M(Ckab) c 8M(aab)

This follows from a gluing argument. We first construct approximate solu-
tions by patching together solutions in the components M(c]-, ¢j+1) with smooth
cut-off functions. There is a gluing parameter 7' > Tp, that fixes the choice of
a parametrised representative of an element in M(c;, cj4+1), and substantially
measures how close to the critical points the cutting and pasting of solutions
happens. The purpose then is to show that for large enough T > T}, the approx-
imate solution can be perturbed to an actual solution. The latter is achieved by
considering the linearisation at the approximate solution and showing that it is
a contraction in a small ball. A fixed point argument then proves the existence
of the solution, [13], [21].

7.5 Homology

The previous results make it possible to define the chain complex and the bound-
ary operator.

As we have already seen in dealing with the invariant x (Y, s), the case of a
rational homology sphere requires a strategy in order to deal with the presence of
the reducible point. In the case of the invariant we have seen that, under generic
assumptions on the choice of the metric and perturbation, we can guarantee that
the bad point 6 is isolated, and this is enough to justify the definition of x (Y, s)
as the algebraic sum of the irreducible points in M*(Y,s). A similar strategy
can be adopted in defining the Seiberg—Witten Floer homology for rational
homology spheres [8], [14], [42].

Under a choice of the metric and perturbation (g, v) such that Ker(89) = 0,
we know that the bad point 6 is isolated. Thus, we can consider only irreducibles
among the generators. In other words, the complex FC,(Y,g) is generated in
degree g by all the irreducible critical points of relative index ¢ with respect to
the reducible solution. In the case of manifolds with b;(Y") > 0 all the generators
are counted, and the index is with respect to an arbitrary solution, thus it is
defined up to an integer shift.

Definition 7.11 We can fix arbitrarily the Morse index of one of the points of

M.(Y,s). IfY is a rational homology sphere, we assign index zero to the unique
reducible, 1(0) = 0. In order to construct the chain complex F'C, that computes
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the Seiberg—Witten Floer homology, we take as generators of FC, all the critical
points of relative index q with respect to the chosen one,

FC,y = {a € M (Y, 5)|u(a) — p(ao) = ¢}
The boundary operator 0, : FCqy — FCy_1 has matriz elements
< 04a,b >=ngy, (44)

witha € FC,, b € FC,_1. The coefficient ngy is the number of points in M(a,b)
counted with the orientation. The Seiberg—Witten Floer homology is defined as

FH,(Y) = H.(FC,,5,).

The operator 0 as defined in 7.11 is indeed a boundary operator, namely
000 = 0. The proof of this fact relies upon the gluing formula for moduli
spaces of flow lines described in the previous section. This is the analogue in
the infinite dimensional context of the transitivity of Morse-Smale flow, namely
the fact that the closure of the space of flow lines that connect two critical
points with relative Morse index 2 is the union of trajectories that break through
critical points with intermediate Morse index.

The operator d o & has matrix elements < 8%a,c >= Y, nqpns.. We know
from the gluing formula 7.10 that the moduli space M(a,c) is an oriented 1-
dimensional manifold with boundary

dM(a,c) = UpM(a,b) x M(b,c).

The total oriented boundary of a one dimensional manifold is zero, and this
proves that 92 = 0.

In the case of a rational homology sphere we have removed the bad point
0 from the set of generators. Thus, we have to check more carefully that the
relation 82 = 0 still holds. In other words, consider again the moduli space
M(a,c), with a and ¢ in M*(Y, s) with p(a) — pu(c) = 2. We need to ensure that
the boundary of M (a, c) does not contain flow lines in M(a, ) x M(8,¢). This
may occur when p(a) =1 and p(c) = —1. By dimensional count,

dim M(6,¢) = u(8) — p(c) —dimGy — 1 = —1,

hence M(8, ¢) is generically empty.

This shows that the Floer complex is well defined in all cases.

In the case b1 (Y) > 0, with the definition given above, the Floer homology
is finitely generated in each degree, but it extends over infinitely many degrees.
However, we can define a Z,-periodic complex [8] that is finitely generated, by
reassembling the various CFy (Y, s). Consider two elements a and b in M(Y,s),
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with relative index u(a) — u(b) defined mod £. Consider all the elements aj and
by, in M.(Y, s), with k € Z, that map to a and b under the projection. Consider
all the moduli spaces of flow lines M (ag,brr). There are two representatives
Amin and bp,n such that the flow lines in M(amm, bmin) have the least energy
among all the M(ag,br). The boundary operator in the Floer complex that
defines the Z, graded Floer homology is given by

(Boa, b) = ngy, (45)

for a and b in M. (Y, s) with p(a) — u(b) = 1 mod £. Here the coefficient n?, is
obtained by counting with the orientation only the flow lines that belong to the
component M(amin, dmin). We use the notation HF, (Y, s, Z;) for the resulting
Z, graded Floer homology.

We still have to explain how to handle the bad case b1 (Y) > 0 and ¢; (L) = 0.
First of all notice that, in the good case ¢1 (L) # 0, we can refine the boundary
operator (45) defined above as follows [7]

(Ora,b) = Zn’;btk, (46)

k>0

for a and b in M.(Y,s) with u(a) — u(b) = 1 mod ¢. Here we have nk, =
#M (amin, b)) and the resulting version of the Floer homology HF, (Y, s, Z[[t]])
has coefficients in the ring Z[[t]]. It can be thought of as a Novikov complex.
We have the relation 9y = Ok|t=0. This construction can be extended to the
bad case as follows.

In the case b1(Y) > 0 and ¢;1(L) = 0, we can get rid of the reducibles
by choosing a fixed non-trivial cohomology class for the perturbation p. This
implies that the Chern—Simons-Dirac functional is IR-valued on a Z-covering
B, of B obtained when considering the action of gauge transformations in

9o = {M({A U [p],[Y]) = 0}.

Given two elements a and b in M. (Y, s) with ¢; (L) = 0, we do not have an ana-
logue of the boundary operator , since the flow lines in the various components
M(ag, by) have the same energy, but the union Uy, M (ag, bgs) is non-compact.
However, it is still possible to define the boundary operators Jy by fixing one

representative ag and defining as before

<6ka7 b) = Z nlgbtka

k>0

with nk, = # M (ao, by). This gives a Novikov-type Floer homology for the case
by (Y) >0 and ¢ (L) =0,
HE.(Y, 5, Z[[t]).
We can state the analogue of Taubes’ result [35] on the Casson invariant and
instanton Floer homology [20].
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Proposition 7.12 The invariant x(Y,s) computes the Euler characteristic of
the Zg-graded Seiberg—Witten Floer homology,

X(Ya S) = X(HF* (Y7 8 Zf))

if bi(Y) > 0 and
Xg,V(Y; 3) = X(HF*(Y:S:Q:V))

when by (Y) = 0.

Proof: We have to check that the counting of orientations used to define the
invariant x(Y, s) agrees with the grading of the Floer complex.

We know that, under a generic choice of metric and perturbation, we have
Ker(Ta,p) = 0 at all solutions (A,4) of (25) and (26). Suppose given a path
v(t), t € [0,1] in a slice of the gauge action that locally describes By, connecting
two critical points a and b in M.(Y,s). Consider the set Q = v x €. Since
Ker(T(a,,y.)) = Ker(T(4,,4,)) = 0 the spectral flow of

Ty = Teaw),v @)

along 7 can be thought of (see [2]) as the algebraic sum of the intersections in
Q of the set
S = Ui, Spec(Ty)

with the line {(¢,0) | ¢t € v}. This counts the points where the discrete spectrum
of the operator T' crosses zero, with the appropriate sign. Up to perturbations
we can make these crossings transverse.

We can express the same procedure in a different, yet equivalent, way. Con-
sider T; as a section over Bj, of the bundle of index zero Fredholm operators,
Fry. There is a first Stiefel-Whitney class w; in H'(Fry; Z,) that classifies the
determinant line bundle of F'ry (see [35]).

The submanifold of codimension one in F'rg that represents the class w; is
given by Fredholm operators of nonempty kernel, F'r§ C Fry. This submanifold
can be thought of as the zero set of a generic section of the determinant line
bundle.

Given a path v : I — Bg, joining two points a and b, the image of v composed
with a generic section o of Frg will meet Fr} transversely.

We call this intersection number §, (a,b). This counts the points in

Det(o o) ~"(0)

with the orientation. If we take the section o oy to be T; what we get is exactly
the spectral flow between the critical points a and b.

Since, in the case b1 (Y) > 0, we are identifying generators up to the Z, pe-
riodicity, this number is defined modulo £, but the mod 2 spectral flow does not
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depend on the choice of the path. Now we want to show that this same inter-
section number measures the change of orientation between the corresponding
two points a and b of M.(Y,s).

The orientation of the tangent space at a critical point is given by a trivial-
isation of Det(T(4,y)) or equivalently of Det(T(4,y)) at that point.

Up to a perturbation, we can assume that Coker(T}) is trivial along the
path . Therefore we can think of Det(T;) as AP Ker(T;), which specifies the
orientation of the space Ker(T;). Thus we obtain that the change of orientation
between two critical points is measured by the mod 2 spectral flow.

This means that the sign attached to the point in the grading of the Floer
complex is the same as the sign that comes from the orientation of M.(Y,s).
QED

7.6 The cobordism argument

The Seiberg—Witten Floer homology is independent of the choice of the metric
and perturbation in the case of manifolds with b, (Y") > 0.

Theorem 7.13 Suppose we have b1 (Y) > 0, ¢1(L) # 0, and the perturbations
are cohomologically trivial. Let (go, po) and (g1, p1) be two choices of the metric
and perturbation, and (g¢, p;) a generic path connecting them. The cobordism
used in proving the metric independence of the invariant x(Y, s) induces a mor-
phism between the Floer complexes

L : FC*(Y,S,g(),p()) - FC*(Yasaglapl)'
The morphism I, induces an isomorphism in homology.

Proof: Consider the complexes FC,(Y, s, go,po) and FC.(Y, s, g1, p1) that cor-
respond to the choices (go, po) and (g1,p1) of metric and perturbation. The
grading is determined by fixing arbitrarily the grading of one particular solu-
tion. Thus, in order to compare the Floer groups

FH*(Y7S7g07p0) and FH*(Y7S7g17p1)

we need a way to choose the grading consistently. B
_ Suppose given two points ao and a; of By, that lie in M.(Y, s, go, po) and in
M.(Y, s, g1, p1) respectively. If the grading of FC. (Y, s, go, po) is determined by
the choice p(ag) = 0 we set the grading of FC.(Y,s,g1,p1) according to the
rule
p(ar) = SF(Oa@)p())

the spectral flow along a path in By, from ag to a;. This determines an absolute
grading of the generators of FC,(Y,s, g1, p1) that is consistent with the relative
grading, by the additivity of the spectral flow.
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Once the choice of the grading is determined, we can construct a chain
homomorphism as follows. Suppose given a path (g, p;) between (go,po) and
(91, p1)- Consider the manifold Y x IR endowed with the metric g; +dt? extended
to the product metric outside the interval [0,1]. Consider on this manifold
the perturbed gradient flow equations(that is the perturbed Seiberg—Witten
equations in four dimensions). The techniques developed in the analysis of the
moduli spaces of flow lines can be adapted with minor modifications to prove
the following.

Proposition 7.14 Let M(a,a') be the moduli space of solutions of the per-
turbed flow equations on the manifold Y x IR with metric g, + dt? and perturba-
tion in the class py + P, with asymptotic values a in M (Y, s, go,po) and o’ in

M.(Y,s,91,p1). For a generic choice of the perturbation, the space M(a,a') is
a smooth manifold of dimension p(a) — u(a') which is cut out transversely by
the equations. Moreover, when u(a) = p(a’) the manifold M(a,a') is compact
(hence a finite set of points), and in the case with p(a) — p(a') = 1, M(a,ad’)
has a compactification with boundary strata

IM(a,a') =J, M(a,b) x M(b,a")U
Uy —M(a,b') x MV, a'),

where ,u(a) - /J’(b) = ]-: b € Mc(YaSaQOaPO)) and /J’(bl) - /J’(al) = ]-) b €

MC(YaSaglapl)'
Thus, we can define a degree zero morphism
Iq : FCq(YasagO’pO) - FCq(Y;S;gl,pl)

by setting
<a',Ia>= Ny,

where N,o is the number of points counted with the orientation in the moduli
space M(a,a’).

Lemma 7.15 The map I is a chain homomorphism, that is, we have
01y — 1,10, =0.

Proof: This follows directly from proposition 7.14, since the expression
Nap Npar — Nap Ny ar

is the sum of points with orientation in the boundary 0M(a,a’).
QED
We can define an analogous chain homomorphism

JlI : FC!I(Y7$7gl7p1) — FC(](Y7S7907p0)7
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by choosing a path (g, p¢), for t € [0,1], such that (go,P0) = (g1,p1) and

(g1, P1) = (9o, po), and counting solutions modulo gauge of the flow equations

on Y x R with the metric §; + dt?> and a perturbation chosen in the space g; +P.
Suppose given a metric 3 on Y X R that is of the form

go + dt? t< =2
G2 +dt?  t€[-2,—1]
" =14 g1+dt te[-1,1]
Go—t + dit? tel1,2]
go + dt? t> 2.

Consider the manifold ¥ x IR with a family of metrics v,, with o € [0, 1] that
connects 7o = go + dt? to 1, such that for all o the metric 7, is the product
metric go + dt* outside a fixed large interval [T, T].

Let MF(a,b) be the parametrised moduli space of (A(t),1(t),o), solutions
modulo gauge of the perturbed gradient flow equations with respect to the
metric 7.

Again, the techniques developed in the analysis of the moduli spaces of flow
lines can be adapted to prove the following result.

Proposition 7.16 For generic choice of the perturbation, the space MF (a,b)
is a smooth manifold of dimension u(a) — u(b) + 1 that is cut out transversely
by the equations. Moreover, when u(b) = p(a) + 1, the manifold M¥ (a,b) is
compact, hence a finite set of points. When u(b) = p(a), the manifold M (a,b)
has a compactification with boundary strata of the form
OIMPF(a,b) =U, M(a,c) x MF(¢,b)U
U, —MPF(a,d) x M(d,b)U
U, M(a,a’) x M(a',b),
if a # b, where p(a) — p(c) = 1, p(d) — p(d) =1 and p(a) = p(a'). Fora=>
the boundary is given by
OIMP(a,a) =, M(a,c) x MF(c,a)
ulU, -MPF(a,d) x M(d,a)
uU—{a}ul, M(a,a’) x M(a',a).
Thus, we have the following result.
Proposition 7.17 There is a chain homotopy
Hq : ch(Y;SaQO;PO) - FCq+1(Y,8,g1,p1)-
The relation
idg — Jglqg = Og41Hy + Hy—10,
is satisfied, where id, is the identity map on FCy(Y, s, go, po)-
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Proof: In fact, we have the identities
< b, (qu - Jqu)a >= 6ab — Naa’Ma’by

where N,o and M, are the number of points counted with orientation in the
moduli spaces M(a,a') and M(a',b) on' Y x R with metrics g; +dt? and §; + dt*
respectively, and

< b, (6q+1Hq + Hq_laq)a >= TLaCNCIZ - Nﬁindb.

Here NP and N are the number of points counted with the orientation in
MPF(a,d) and MF(c,b) respectively. The difference of the two expressions van-
ishes, since the number

P P
naCNcb - Nadndb + Naa’ Ma’b - 5ab

counts the sum with orientation of the points in the boundary OM?¥ (a, b).
QED

This proves the invariance of the Floer groups as stated in theorem 7.13.
QED

Now consider the case of a rational homology sphere. As in the case of the
invariant x (Y, s), we can expect a problem with the metric dependence generated
by the condition Ker(d9) = 0 in the case with b (Y) = 0.

There is a way to avoid the metric dependence problem, and construct a
version of Seiberg—Witten Floer homology that is well defined and metric in-
dependent on all three-manifolds. This can be done via a U(1)-equivariant
construction that takes into account all the generators [21]. The equivariant
Seiberg-Witten Floer homology will be briefly introduced in the next section.
It is isomorphic to the Floer homology defined in this section when the manifold
has b (Y) > 0, and it is related to FH.(Y,s,g,v) by an exact sequence oth-
erwise. The exact sequence contains in principle all the information about the
wall crossing of FH (Y, s, g,v). In fact, for instance the wall crossing of theorem
6.11 for the invariant x,,, (Y") of a homology sphere can be derived directly from
these exact sequence [21].

7.7 Equivariant Floer homology and wall crossing

We introduce here a formulation of the Seiberg—Witten Floer homology which
can be given for any closed three manifold Y and is independent of the choice
of the metric and perturbation. In order to deal with the presence of reducible
solutions of (21) and (22), the quotient is taken with respect to the action of a
smaller gauge group.

Consider the subgroup G of based gauge transformations, that is the ele-
ments A € Gy with the condition that they act as the identity on the fibre over
a fixed base point b € Y, A(b) = 1.
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The subgroup G, acts freely on the space A. In fact, if (A,)) is fixed by
some )\, then we have ¥ = 0 and A a constant gauge transformation; but the
base point condition implies that there are no non-trivial constants in G.

Thus the quotient B, = A/, is a manifold. We consider the framed moduli
space M?(Y,s) C By of solutions of the perturbed critical point equations (25)
and (26) modulo based gauge transformations.

The framed moduli space has a residual U(1) action, since the based gauge
group is obtained as a quotient Gy, /U (1), and the moduli space M,(Y, s) is the
quotient M,(Y,s) = M?(Y,s)/U(1). The orbits of the U(1) action on M?(Y,s)
are copies of S' that correspond to all the irreducible critical points in M.(Y, s).
If b(Y) > 0 these are all the elements in M?(Y,s), which is therefore just
M,(Y,s) x U(1). If by(Y) = 0 there is also a fixed point in M?(Y,s) that
corresponds to the reducible 6 in M,(Y,s).

The compactness result applies to this case as well and shows that M?(Y, s)
is compact if b1 (Y') = 0, or is a Z-covering of a compact space in case b1(Y") > 0.
However, we also have to verify that the orbits and the fixed point are isolated
in Bb.

Proposition 7.18 If b1(Y) = 0, under a generic choice of the metric and of
the perturbation (g,v), the moduli space MY(Y,s) is a disjoint union of finitely
many circles O, and one point 0 fized by the U(1) action. If b1(Y) > 0, under
a generic choice of metric and perturbation, M2(Y,s) consists of a Z-covering
of finitely many circles.

Proof: In the case with b;(Y) > 0 we can choose the perturbation in such a
way that there are no reducibles in M,(Y,s). Thus, the framed moduli space
M?(Y,s) is just the Z-covering of a finite disjoint union of circles with a free
U(1) action. If by (Y) = 0, the virtual tangent space of M?(Y,s) at a reducible
point is H1(Y,R) & Ker(84), that is, just Ker(04). For a generic metric on Y’
the kernel of the Dirac operator twisted with a fixed flat connection is trivial,
as we have already discussed. Assume that the metric is chosed away from the
codimension one walls in the space of metrics for which the above condition
fails. Then we can look at the local Kuranishi model of the moduli space M?
to show that no other non-trivial solutions can accumulate near the fixed point.
This is the same argument we have seen before.

QED

Proposition 7.19 Under a generic choice of the metric and perturbation, the
perturbed functional (34) on By has the Morse-Bott property. Namely, the Hes-
sian is non-degenerate in the directions orthogonal to the orbits.

Proof: Consider the case b1 (Y) = 0. The other case follows similarly. The condi-
tion that the trivial solution is isolated implies that it is also non-degenerate. In
fact the same argument proves that the Hessian H(, ¢ is non-degenerate when-
ever the choice of (g, v) satisfies Ker(99) = 0. Moreover, for a generic choice of
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the perturbation, we obtain Ker(H4,)) = 0 in the direction orthogonal to the
U(1) orbit at all the irreducible solutions (A4, ).
QED

Thus, we can construct an equivariant Floer homology of Y following the
model of equivariant cohomology of a finite dimensional manifold using a Morse-
Bott function [4]. A similar construction was obtained in the case of instanton
homology [3].

First we consider gradient flow lines in Bp. The important point is that
at least one of the asymptotic values of the flow lines is always an irreducible
point, and this implies that there are generically no reducible flow lines [21].
Thus, the moduli spaces of flow lines all have a free U(1)-action. This basically
reduces the analysis of the spaces of flow lines to the non-equivariant case, and
Froyshov’s type of perturbation is sufficient to give the expected result.

Proposition 7.20 Let O, and Oy be two critical orbits of the functional (34),
one of them possibly equal to the fized point 6 in case by(Y) = 0. Under a
generic choice of a perturbation of the gradient flow equations, in the class P of
Froyshov’s perturbations, the space M(QO,,Oy) of trajectories with asymptotic
values

hmt—)—oo(A(t)aw(t)) € 0, limt—>+oo(A(t)a¢(t)) € Oy
is a smooth manifold of dimension
dim M(Oq, 0p) = p(a) — p((d) + 2 — dim G,

which is cut out transversely. Here p(a) — u(b) is the relative index of the
corresponding critical points in M.(Y,s) and G, is the stabiliser of the orbit

O,.
We have endpoint maps
ej : M(Oa,ob) - Oa

and
€ - M(Oa,Ob) — O

that are fibrations with boundaries. In fact, there is a natural compactification
of the space M(O,, Op) = M(O,,Op)/R with boundary strata

M(Oaaoﬁ) XO¢y M(Ocl,OCZ) X0

€2

%0, M(0e,,00),

and the endpoint maps restrict well to the boundary.
Thus we can define the complex that computes the equivariant Floer homol-

ogy.
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Definition 7.21 Fix arbitrarily the Morse index of one of the critical orbits.
Consider the complex

FCouq)(Y) = @ Aj vy (Oa),

pla)=t,i+j=q

where (A u1)(Oa),0u(1)) is the equivariant complex (6) (actually the dual com-
plex with currents instead of forms). The differential is defined as

6U(1)77 Oa = Oy
Da = T - *
i { (=1)" ™ (e7)u(ed) n  p(a) > p(b).

Here r(n) is the mazimal degree of n as a de Rham form in A, y(1)(O,). The
equivariant Floer homology is

FH, yy(Y) = HJ(FC,yw)(Y), D).

Again it is necessary to prove that the boundary operator satisfies

DZ.n=>_ D.pDy.n=0.
b

This is a consequence of Stokes’ theorem for a fibration with boundary,

m(dn) = d(men) + (=1)! (m0)1,

where 7 is the projection, 7y is the restriction to the boundary, and | depends
on the fibre dimension. This, applied to the endpoint fibrations of M(O,,0.),
gives that D . =0.

We have the following theorem [21].

Theorem 7.22 The equivariant Floer homology is metric independent. More-
over in the case of a manifold with by(Y") > 0 it is isomorphic to the ordinary
Floer homology, whereas in the case of an integral homology sphere there is an
exact sequence

o= Hyyay(w) = FHyya)(Y) 4 FHE(Y) = --- (47)
where w s the unique reducible solution and this has equivariant homology
H,uq)(w) = H.ua)(BU(1)) = Ru], (48)

with u a generator of degree two.
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Sketch of the Proof: The proof of metric independence is a delicate argument
involving gluing theorems. The main idea is to mimic the proof of theorem
7.13. The technical difficulties arise when stating the analogue of proposition
7.14. In fact, consider the case where O, is the reducible point 8y for the metric
and perturbation (go, 7o) and O, is the reducible point 6; for the metric and
perturbation (g1,v1). If we have a spectral flow SF(09¢) = —2, then the virtual
dimension of the moduli space M(O,,0,) is negative, but the space is not
generically empty, since there is one reducible solution of the four-dimensional
Seiberg—Witten equations with asymptotic values §y and 6;. If this singular
boundary component actually arises in the gluing theorem, the proof of 7.13
would not go through to this case. A more careful analysis [21] shows that we
still have the inclusions

OIM(0,,6:) C M(Oq, 80) x M(6o,61)U

~

U0, M(Oa, Op) x M(Op, 1)U
Uy —M(O4,0p) x M(Oy,04),

and

OM(00,0a) € Uy g, —M(B0,01) x M(Oy,0ur)U
—M(60,61) x M(81,04)U

Ub M(ao, Ob) X M(Ob, Oal).
However, when checking the reverse inclusion, one finds that there is a non-
trivial obstruction that prevents from gluing the components

~

M(Oaaeo) X M(00301)

and

—M(00,61) X M(01,0al)

to form solutions in M(O,,6:1) and M (g, O,') respectively. This means that
the reverse inclusion only holds for the irreducible components.

The obstruction technique required to obtain this result is based on Taubes’
obstruction bundle [36], [37]. The details of the argument can be found in [21].

QED

The reason why there is an isomorphism in the case with b, (Y) > 0 is that
we can perturb away all the reducible solutions, hence all the critical orbits in
M?(Y,s) are copies of S! with a free U(1)-action. The equivariant complex
associated to each orbit gives rise to the homology of the quotient, hence what
is left is just the ordinary Floer homology of M, (Y, s). In the case of a homology
sphere, using (48) the exact sequence can be rewritten in the form

0 = FHopp1,00)(Y) = FHopy1(Y) = Ru* —
FH2k,U(1) (Y) — FHZk(Y) — 0.
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This and the metric independence of the equivariant cohomology give a wall
crossing formula [21] for the Euler characteristic x(FH,(Y)) of a homology
sphere Y, when the metric crosses a wall in such a way that the relative Morse
index with respect to the reducible solution jumps by 2,

X(FH.(Y,91)) = x(FH.(Y, 90)) + 1.

QED

Another approach to the construction of the equivariant Seiberg—Witten
Floer homology is possible, modeled on singular homology [43]. The construc-
tion is very similar to the one derived in [21] and briefly described in this section.
In this approach, the moduli spaces M(O,, Op) define boundary maps that send
singular chains from one critical orbit to another, instead of pulling back and
pushing forward equivariant differential forms. The approach of [43] to proving
the diffeomorphism invariance of this singular model is also different from [21] in
as it introduces a perturbation of the Dirac equation that destroys the reducible
component M(61,6p), with negative spectral flow, instead of using Taubes’ ob-
struction bundle technique. The authors then rederive theorem 7.22 by showing
that the equivariant Floer homology we presented above is isomorphic to their
singular model. The singular model has the advantage that it is defined with
any coefficients, hence it can detect torsion information that is lost in the de
Rham model.

7.8 Exact triangles

We have seen in the previous section the analogue, at the level of Floer homology,
of the cobordism and wall crossing phenomenon we previously discussed for the
Seiberg—Witten invariant. In this section we discuss the question of surgery
formulae that generalises theorem 6.14 at the level of Floer homology. A similar
question for instanton Floer homology was addressed in [6].

The reader should be warned that, at the time when this book is being
written, not all the technical analysis necessary to establish the results about
exact triangles in Seiberg-Witten Floer theory [7] has yet been worked out.
Thus, the content of this section should be consider largely conjectural.

The setup is as follows. Consider a knot K in a homology sphere Y. If
we perform a +1-surgery on K, we obtain another homology sphere Y;. If we
perform O-surgery on K, we obtain a three-manifold Y, that has the homology
of S' x §2. We choose metrics on Y and Y; as in theorem 6.14, with long
cylinders [—r,r] x T? and positive scalar curvature on a tubular neighbourhood
of the knot.

As we discussed previously, we have a family s, k € Z of Spin, structures
on Yy. These satisfy the condition {¢;(Lg),o) = 2k, where o is the generator
of Hy(Yy,Z). Only finitely many of these s correspond to non-empty moduli
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spaces M.(Yy, sr). We have corresponding Floer groups F' H,(Yy, sk, Z¢) with
= 2k.

Remember also that, according to theorem 6.14, there exists a perturbation
u of the Seiberg-Witten equations on Y such that we obtain an identification
of the moduli spaces

M(Y, 1) = Mo(Y1) U Mc(Yo, si)- (49)
k

Lemma 7.23 Under the correspondence (49), the grading py(a) = py(a) —
uy (8) of elements in M.(Y) induces a choice of Z-grading in the elements
of the spaces M.(Yo,sr). This corresponds to a lifting of the Z,-grading of
FH, (Yo, sk, Z¢) to a Z-grading. Moreover, the grading py (a) = py (a) — py (6)
of elements in M.(Y) induces a grading on M.(Y1). We denote by FC.(Y1) the
Floer complex of Y1, with the grading of the elements a € M.(Y1) determined
accordingly.

This result is based on the analysis of the splitting of the spectral flow under
the decomposition Y = V Ugz [—r,7] x T? Ur2 v(K) as in the proof of theorem
6.14.

We denote the resulting Z-graded lift of F H. (Yo, s, Z2) as FH,)(Yo, s).
Notice that these are not the same Floer groups as the previous F H,(Yp, sg):
the latter sits in infinitely many degrees, whereas F'H(,)(Yo,s%) has at most
£ = 2k possibly non-trivial groups. The relation between

FH,(Yo,sr) and FH.(Yo,sk, Zak)
is expressed by
FHy(mod 2k) (Yo, 8k, Z2k) = ©;F H(qy25k) (Yo, 8k)-

The analogue of the statement 6.14 at the level of Floer homology is the
following.

Conjecture 7.24 Let FC.(Y1,91,v1) and FC.(Y,g,u) be defined as above,
with the grading as in lemma 7.23. Then there are chain maps

L :FC.(Y1,91,11) = FC.(Y, g, )

and
Je : FC.(Y, g, 1) = ®rFC(u (Yo, si),

such that the sequence

0= FC.(Y1,91,01) 7 FC.(Y,g,1) 55 @) FCsy (Yo, 1) = 0
k
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induces a long exact sequence of the Floer homologies
A I J
= FH,(Y1,91,11) = FH.(Y, g, ) =

~ @D FHuy (Yo, 58) %= FH._1(Yi,g1,1) = -+
k

The term FH(,)(Yo, sx) corresponding to so with ¢1(Lo) = 0 is the evaluation
Of FH(*) (Y, 80, Z[[t]]) att=0.

As we pointed out, there are several subtle technical points in establishing
this result. For instance, the analogue of the gluing theorem of 6.14 for the
moduli spaces of flow lines requires a careful analysis of the four-dimensional
Seiberg-Witten equations on manifolds of the form (V U2 T2 x [0, 0)) X IR. The
analysis is complicated by the presence of two directions of non-compactness.
Other complications arise, for instance the choice of a suitable perturbation for
the flow lines equations that satisfies the properties of the class P and behaves
well under surgery. The definition of the chain maps and the proof of exactness
are also very subtle, since in the context of Seiberg-Witten theory we do not have
the filtration induced by the Yang—Mills functional on the complex computing
instanton homology [6]. It is clear that the decomposition (49) of the moduli
spaces defines maps

0= FCy(Y1, g1,v1) =3 FCy(Y,9,18) = @ FCg) (Yo, 51) = 0.
k

These form an exact sequence at the level of groups, but they are not chain
homomorphism. On the other hands there four manifolds W; and Wy that give
cobordisms with 9W; = Y; UY and 0Wy =Y UYj. Upon suitably counting the
contribution of different Spin. structures, it is possible to define chain maps

Wi
FC*(H;QI;”I) _1) FC*(Y,Q,M)

and
Wo.
k

These count elements in the zero-dimensional components of the moduli spaces
of solutions of the Seiberg—Witten equations on W and Wy, with asymptotic
values that define elements in M (Y, u), M (Y1), and M.(Ys, si), respectively.
These maps, however, do not necessarily form an exact sequence of chain com-
plexes. Thus, an interesting part of the argument is to show the interplay
between these maps.

98



7.9 The relation to instanton Floer homology

The other natural question to ask is whether there is a relation between the
Seiberg—Witten and instanton Floer homology that generalises the relations
between the invariant x(Y,s) and the classical Casson invariant and Milnor
torsion.

We should recall that the instanton Floer homology was originally defined
only for integral homology spheres [13], but was later extended to the case of
circle bundles over a Riemann surface [38]. Since the Seiberg—Witten Floer
homology is defined for all three-manifolds, one expects to find a relation in all
cases where the instanton Floer homology is defined.

At the time when this book is being written, there is still no clear picture
of this relation. Kronheimer and Mrowka have outlined a program [16] that
relates exact triangles, the results on contact structures and Seiberg—Witten
invariants, and the study of the relation between the two Floer homologies in
the case of manifolds Yy of the homology type of S' x S?, in order to prove
property P for knots. In this case, their program indicates that, if the Seiberg—
Witten Floer homology is non-vanishing, then the instanton Floer homology is
also non-vanishing, that is, the Seiberg—Witten Floer homology captures the
information contained in a subcomplex of the instanton Floer homology.

In another direction, a relation can be seen in an indirect way when analysing
the case where Y is the mapping cylinder on a Riemann surface. The Seiberg—
Witten Floer homology in this case [9] is expected to be isomorphic to the
quantum cohomology of a symmetric product s"(X) of the Riemann surface,
where the power r is related to the choice of the Spin.-structure on Y. In
the part III of this book the reader can find a brief summary of the definition
and a few properties of quantum cohomology. An explicit computation of the
quantum cohomology of s"(X) has been worked out in [5].

Previous work of Dostoglou and Salamon [12] has described the instanton
Floer homology of Y in terms of the quantum cohomology of the moduli space of
flat connections on Y. It is also known that the moduli space of flat connections
on ¥ and the symmetric products s”(X) are related by a “cobordism” construc-
tion [39]: this construction in fact provided the model for the expected relation
between the Seiberg—Witten and Donaldson invariants of four-manifolds that
will be discussed in the last part of this book.

This seems to lead to an indirect way of comparing the Seiberg-Witten and
instanton Floer homologies of Y, in this particular case.

In the case of homology spheres Y, one can try to identify a metric depen-
dent correction term, using the exact sequence and maps that connect HF,(Y)
to the equivariant HF, 17(1)(Y’). However, at the moment there is no precise
understanding of the relation between this and the instanton Floer homology.
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7.10 Summary

We can summarise the properties of the Seiberg—Witten invariants of three-
manifolds in the following table.

3-manifold x(Y, s) HF,.(Y,s) and HF, y1)(Y, s)
h(¥)>1 indep. of (g, p), [*p] =0
c1(L) #0 | indep. of (g,p) HF,(Y,s) = HF, y1)(Y,s)
Z s-graded or Z-graded
b1(Y)=1 | wall crossing at indep. of (g,p), [*p] =0,
1 (L) #0 [*P] =T7c (L) HF, (Ya 3) = HF*,U(l) (Ya S)
Z s-graded or Z-graded
b1(Y) >0 | indep. of (g,p) (?) Novikov type
c1(L) =0 | fixed [#p] #0 HFE.(Y,s, Z][[t]])
b1(Y) =0 | wall crossing at HF.(Y,s) dep. on (g,v)
Ker(0) #0, | HF, y)(Y,s) indep. of (g,v)
p = *xdv; exact sequence relates
HF.(Y,s) and HF, y(1)(Y,s)

7.11 Exercises

Advice to the reader: some of the exercises in this section should be looked at
after reading part III of the book on the topological and geometric applications
of Seiberg—Witten theory. They have been reported here, since they refer closely
to the three-dimensional theory.

e Denote by P(X) the space of paths on a manifold X. Let Ay be the con-
figuration space of U (1)-connections and spinors on the three-manifold Y,
and Gy = Maps(Y,U(1)) What does the discussion about gauge actions
on the spaces of flow lines say about the difference between the spaces

P(Ay)/P(gy) and ’P(Ay/gy)?

e Complete the proof of point (3) of the Thom conjecture (see the following
chapters): consider solutions (Ag,%¥r) on the cylinder Y x [—R, R]; show
that the change in the functional

C(Ar(R),Yr(R)) — C(ArR(=R),¥r(—R))

is negative and uniformly bounded, independently of R. For the latter
property consider gauge transformations such that Ap — )\Eld)\R and
the first derivatives are uniformly bounded. Show that the functional
C changes monotonically along the cylinder, and deduce that for all N
there is a solution on Y x [0,1] for which the change of C' is bounded
by 1/N. Complete the argument by showing that there is a translation
invariant solution.
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e How does the “stretching the neck” argument for the connected sum the-
orem work? Consider solutions on cylinders S? x [~ R, R].

e Let Y; be the Poincaré homology sphere. This is obtained from S° by
+1 surgery on the trefoil knot K, a genus 1 knot. It is also a quotient of
S3 by a free action of a finite group of isometries, so it carries a metric
of positive scalar curvature. Thus, it has trivial Seiberg—Witten Floer
homology. By the exact triangle, the Seiberg-Witten Floer homology for
Yo, obtained by zero surgery on K, should also be vanishing. However,
Gabai’s foliation is smooth for all genus one knots with fewer than 11
crossings [15], hence, by the results of Kronheimer and Mrowka about
taut foliations, contact structures, and Seiberg—Witten invariants [16], the
Seiberg-Witten Floer homology of Yy should be non-vanishing (see the
following chapters). Explain how this example fits into the picture of
conjecture 7.24.
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Part III
Topology and Geometry

Now, here in this fort of brahman there is a small lotus, a dwelling-place, and
within it, a small space. In that space there is something —and that’s what you
should try to discover, that’s what you should seek to perceive.

Chandogya Upanisad, 4.8.1
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8 Computing Seiberg—Witten invariants

We provide here some concrete examples in which it is possible to compute the
Seiberg—Witten invariants for some classes of four—-manifolds.

8.1 Connected Sum theorem

As in the case of Donaldson invariants, it is possible to prove that Seiberg—
Witten invariants vanish on connected sums. Thus the invariants provide a test
of “irreducibility” of the manifold.

Theorem 8.1 If a manifold X splits as a connected sum X = X;# X2, where
both pieces are manifolds with boundary with b3 (X;) > 1, then the Seiberg—
Witten invariants vanish for all choices of the Spin.-structure.

Sketch of the Proof: Following Donaldson [4], consider metrics that have a neck
near the S® where the connected sum is performed. If the metrics shrink the
radius of the neck to zero, then a family of solutions (A,) of the Seiberg-
Witten equations for a given Spin, structure s € S(X) converges smoothly on
compact sets, away from the neck, to a pair of solutions (A1, ;) and (Az,v2)
on X; and X», respectively. It is possible to show [4] that the index of the
linearisation of the equations splits as

Ind(TAﬂP) = Ind(TAl,llJl) + Ind(TA2,¢'2) +1,

where the last summand is due to the presence of a U(1) action (gluing pa-
rameter). If the linearisation of the equations at the solution (A1) has index
zero, then one of the two linearisations on X; and X5 has negative index, which
implies that there is no irreducible solution.

8.2 The blowup formula

Another useful tool in computing Seiberg-Witten invariants of four-manifolds
is the blowup formula [14].

Theorem 8.2 Let X be a compact oriented smooth 4-manifold with b > 1. If
a Spin. structure s € S satisfies

dim My (X) =r(r +1),
for a non-negative integer r, then we have
Ny(X) = Ns(X# CP?),

where § and s are related by

a(l) =a(l)£(2r+1)E,

and E is the class of the exceptional divisor.
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Sketch of the Proof: Following [14], we begin by observing that CP2 has a met-
ric of positive scalar curvature, hence it only admits reducible solutions to
the Seiberg—Witten equations. Thus, one can try to form solutions on the
blowup X# CcP? by gluing solutions on X with reducible solutions on CP2. If
dim M,(X) = 0 it is possible to show [14] that in fact we obtain

M3(X# CP?) = (M](X) x M"(@P?))/U (1),
where ¢;(L) = ¢;(L) + E.
In the case where dim M (X) > 0, the situation is complicated by the fact
that not all the approximate solutions of the form

(Aa ¢)#(A0; 0)7

with (A4,1)) a solutions on X and (A, 0) a solution on € P2, give rise to a solution
on the blowup. In other words, we are in the presence of an obstruction. Taubes’
obstruction bundle technique can be employed to show that there is a canonical
bundle over the set of approximate solutions, with a section o, such that

o~ 10) = Ms(X# CP2).

This means that the section ¢ precisely measures the obstruction to gluing
approximate solutions to actual solutions.

It is shown in [14] that in this case the obstruction bundle is the restriction
to the set of approximate solutions of the T(TQ—H)—th power of the line bundle £
over the configuration space B = A/G.

Thus, we obtain

(er (£)3m X # CP2) [y (x4 TP7)]) =

dim Ms (X)
pl

{er (L)@ MO [671(0)]) = (1 (£)  [Ms(X)])-

QED

8.3 Kahler Surfaces

Kéhler surfaces provide a class of manifolds with non-trivial Seiberg-Witten
invariants. Computations of Seiberg—Witten invariants in the K&hler case were
initially carried out in [54]. A detailed exposition of the results for Ké&hler
manifolds is now available in [37]. See also [2] and [17], where the argument is
further developed with algebro—geometric techniques.

The first fact to mention is that a metric which is K&hler is non-generic,
hence the computations that we have seen in the generic case do not hold here;
in particular, the dimension of the moduli space can be larger than the virtual
dimension prescribed by the index theorem 4.8, see proposition 8.5.
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We describe here the computation of the invariants under the assumption
that the Spin. structure is chosen in such a way that c;(L)? = 2x + 30, i.e.
that the virtual dimension is zero. However, we shall see that the moduli space
of solutions of the unperturbed equations is not just a finite set of points.

Basic to the analysis of the Seiberg—Witten equations on a K&hler manifold
is the following fact. As we recalled in our preliminary discussion of complex
manifolds, there is a canonical Spin.-structure so on a Kahler manifold X,
namely the spinor bundle S given by

S = A0 (X).
The Clifford multiplication on S is defined by
(a(071) + a(170)) ® /8 — \/5((1(0’1) N 16 —_ a(LO)J,B,

with o190 ]3 = 3, a(l’o)kﬁk, where the covariant index k of the 1-form 3 is
lowered by the metric tensor.
In this case the spinor bundle S = A(®*)(X) splits as

S+ — A(O’O) 69 A(Oiz) — 1 69 K_l,
S~ =AY,

Note that L = det St = K~!. Any other Spin. structure is obtained by
tensoring with a line bundle H, so that

St = (A(010) o A(0a2)) QH
and
S~ =A%V g H.

This Spin.-structure has determinant L = K ! ® H2.

As we observed previously, this fact holds true for almost—complex structures
as well: it is useful in the case of symplectic manifolds discussed in the next
section.

In particular, the self dual part of the curvature decomposes as FX =ifw+
n — 7, with f a real valued function and 5 € A(®?). Thus, we can rewrite the
equations according to this splitting:

daa—i0%3 =0,
T
FOOT =ig(la® =8P, (50)
F02) = _jag,
where ¢ = (o, —i3), with a € ['(X, H) and 8 € ['(X, H ® K). We used the fact

that, according to remark 2.14, FO2% — p0.2) The Dirac operator has the
form Dv) = v/2(0a — i0*3); full details can be found in [2] or [37].
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The Seiberg—Witten functional (11) can also be rewritten as

S(A,0,8) = [y (| Ff >+ < Vaa,Vaa >+ < VaB,Vaf >

1 2 2)2 2 2 (51)
(@ P+ 18P+ 5(al + |6 P))d.

Note that the functional (51) is invariant under the transformation given by

A=A ara, B+ -0

hence this transformation has to map solutions into other solutions. However,
this change of variables into the first and third equations of (50) gives

F©2 =0, af=0. (52)

Since (a, —if3) is in the kernel of the Dirac operator, it has some regularity
properties (analytic continuation): in particular if @ or 8 vanishes on an open
set, then it vanishes identically. Hence half of the condition above reads a =0
or #=0.

An equivalent way to obtain (52) is by applying 04 to the first equation of
(50). Using the second and third equation in (50) we can write

04 —i0A0%56 =0
— FO2 _ 5,543
= —ila’8 — 04045,
hence the condition

[rapioras [ 185 d=o 53
X X

where we use x3 = . This implies the condition (52). This point of view will
be useful to compare the result of Kidhler manifolds with the one for symplectic
manifolds.

Lemma 8.3 In the Seiberg—Witten equations (50), we have a = 0 or 8 = 0,

according to whether
/ wA e (D)
X
(L)

0> wAc

0

IN

or

>
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Proof: Because of the decomposition of remark 2.14, w is orthogonal to the (0, 2)

and to the (2,0) components of Fj4. Moreover, ¢;(L) = -~ F4. Hence

T Arm

_ 1 2 _ 2
/Xw/\cl(L)_ 871_/Xu)/\o.;(|oz| | B 7).
QED

Lemma 8.4 The condition F(®2) = 0 implies that the connection A induces a
holomorphic structure on H.

Proof: According to remark 2.14, in holomorphic local coordinates on X we have
a basis of self dual forms given by the K&hler form

W= %(dzl Adzy + dzo A dZs),

and the forms
dz1 A dZQ, dfl N dZQ.

Hence F0F = F(20) and FODT = F0.2) Thus d4 gives H a holomorphic
structure.
QED

Suppose that 8 = 0. Because of lemma 8.4, the equation (50) becomes

daa = 0,

i.e. a is a holomorphic section of H.

The original computation [54] of the moduli space of solutions from these
data is based on adapting to the infinite dimensional quotient .4/G some tech-
niques of symplectic geometry. First there is an argument which shows that we
need to consider only irreducible solutions ¢ # 0, see e.g. [17]. Then we can
proceed as follows. .

A symplectic structure is defined on the space A by:

Qva, wa) =/ wAva ANwa
b's

and
Qvg, we) = / WA W(TWq — WaVy)-
X

Here v4 and w4 are 1-forms in the tangent space to the connection A, and v,
and w, are in the tangent space to the section a.

The gauge group G acts symplectically on A. The moduli space M is the
quotient of the fibre over zero of the moment map by this action,

M = p~0)/G.
The standard arguments connecting symplectic and geometric invariant theory

quotients yield the following.
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Proposition 8.5 The moduli space of solutions of the Seiberg—Witten equations
on a Kdahler manifold is given by the set of possible choices of a holomorphic
structure on K'/? ® L and the corresponding projectivisation of the space of

holomorphic sections,
PHY(X,K'? ® L).

As a consequence one gets a result on the Seiberg-Witten invariants.

Theorem 8.6 If X is Kdhler and K - w > 0, where K is the class of the
canonical line bundle, which determines the canonical Spin.-structure so. Then
the corresponding Seiberg—Witten invariant is

N,, = +1.

Sketch of the Proof: The first part of the statement can be proved by showing
that the relevant projective space consists uniquely of the class of the constant
section on a trivial line bundle. It is also necessary to show that this single point
is a “smooth point”, i.e. that the moduli space is cut out transversely. This is
proved [37] by showing that the linearisation

AL(X;iR) AY(X;iR)
@ 5>

Ds: A(X;0) — AT (X;0)
D D

A2 (X:() AOD (X:C)

is surjective. This is obtained by considering this as a short bigraded complex
and showing that the induced map

H'(X;4R) HO(X;iR)
® ®
HO(X;C) — H**(X;0)
® ®
H©2(X;C) HOD(X;C)

is an isomorphism.

Notice how the theorem 8.6 only gives us a way of computing the invariant for
the canonical class K. We shall discuss later how the Seiberg-Witten invariant
can be defined for other classes for which the moduli space is of virtual dimension
zero but of actual positive dimension, using the localised Euler class [2]. We
shall discuss the localised (or regularised) Euler class at length in the chapter
on the quantum field theory formalism.
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8.4 Symplectic Manifolds

The same technique used above in attacking the problem of Kahler manifolds
can be partially extended to symplectic manifolds. In fact, Taubes proved an
analogue [46] of theorem 8.6. The result is in some sense surprising. In fact,
the argument we described in the previous case of Kdhler manifolds, seems to
break down because of the presence of terms coming from the Nijenhuis tensor,
for instance, as we are going to discuss in a moment, the relation (53) will be
replace by the weaker (54) below. An excellent reference for Seiberg—Witten
theory on symplectic manifolds is the survey paper of D. Kotschick [24].

On a symplectic manifold, a canonical class is defined as in the case of Kahler
manifolds. The class is independent of the choice of an almost complex structure,
since the family of compatible almost complex structures is a contractible set.

Theorem 8.7 If X has a symplectic structure w compatible with the orienta-
tion, and it has by > 1, then the Seiberg—Witten invariant corresponding to the
canonical Spin.—structure sqg is

N (X) = £1.
Moreover, if Ng(X) # 0, then necessarily 0 < ¢;(L)[w] < Kw is satisfied.

The proof of this theorem appeared in [46]. It has subsequently been sim-
plified [48]. A brief sketch of the argument follows.
Sketch of the Proof: Consider first the case of the canonical Spin. structure sg
with L = K= = A%2,

The main idea is to show that the Seiberg—Witten invariant can be computed
by means of a one parameter family of perturbed equations.

These are of the form

Dayp=0

and

Ff=F; + i < eiejih, ) > e Nel — %w.

One particular solution (Ag,ug), which corresponds to the value r = 0 of
the parameter, is constructed by taking Ay to be a connection on K~! and the
section ug to be a covariantly constant norm 1 section of the trivial summand
in St =1@® K~!. In the condition V A,uo = 0 we are considering the induced
covariant derivative V 4, on S* = 1&K !, obtained from the exterior derivative
d, and we set V4, = 2(1 4 iw)V 4,.

In the perturbed equation above the section v is written as

¥ =r'"%(auo + f),

with a a function and 3 a section of K 1.
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By successively projecting the second equation on the trivial summand and
on K1 a uniform bound (independent of r) is obtained on the expression

4 r
[ GIR P+ Voo P =5 a P,

where F,, = %(FA — F4,), and V, = d +ia acting on complex valued functions.
Thus, when considering a sequence of solutions (A4,,, %) corresponding to a
sequence of parameters r,, — 0o, the above says that | amy, |= 1 and | Voo, |—
0. Finally it is shown that the 3, vanish identically for large enough m; and
consequently a,, is covariantly constant of norm 1.

The upshot is that (A.,;,¥n), for large enough m, is gauge equivalent to
(Ao, up); and therefore there is just one point in the moduli space, and the
Seiberg-Witten invariant is £1.

In order to get the second part of the statement, it is useful to reformulate
the previous argument as follows. There exists a solution (Ao, ug) such that we
have the Dirac operator of the form D = 8, + 9}, with a as above, satisfying
F, = %(FA — F4,)- If one wants to derive an analogue of the expression (53),
by the same procedure used in the Kahler case, there is an extra term which
depends precisely on the non-integrability of J,

/Ial2|ﬂ|2d0+/ |5AB|2dU:1/ < Nj(0a), 8> dv.  (54)
X X X

4

For the equations perturbed with a large parameter r, this leads to an esti-
mate

1 1 .
[ ldaal? + J1a?18 + 300 =1)? + (P =) = [ 248, Ns(00)
X X
and subsequently to
1 1 1 1
~2mrei D+ [ (Gldaal+ 1P 1P+ aP-r?+71P) < © [ 162 59)
2 4 4 4 <

Thus, if ¢1(L) -w < 0 or ¢1(L) - w > ¢1(K) - w, one gets Ny = 0, for s with
det St = L. Moreover, only if ¢;(L) -w < ¢;(K) - w one can have N, # 0. If
c1(L) -w = 0 all terms vanish: L must be trivial with a the trivial connection,
B =0 and |a|? = r. There is only one such pair (a,a) up to gauge. One can
then show that the unique solution is a regular point in the moduli space as in
the case of Kéhler manifolds.

QED

As a consequence of Taubes’ result that symplectic manifolds admit some
non-trivial Seiberg-Witten invariants, it is natural to ask whether a converse
might hold as well, i.e. whether any four-manifold with non-trivial invariants
might be symplectic. This problem has been considered in [26], and solved
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negatively. There are 4-manifolds with non—trivial Seiberg—Witten invariants
but without symplectic structure.
The strategy used to construct such examples is to prove two lemmata:

Lemma 8.8 If X is symplectic and it decomposes as a smooth connected sum
X = X 1#X,, then one of the summands, say X1, has negative definite inter-
section form (because of the connected sum theorem) and fundamental group
m1(X1) which does not admit any non-trivial finite quotient.

Lemma 8.9 If Xy has some non-trivial Seiberg—Witten invariant and X5 has
bi(Xa2) = bf (X2) = 0, then the connected sum X = X,1#X, also has some
non-trivial Seiberg—Witten invariant.

The first lemma depends on the connected sum theorem 8.1, and on the
behaviour of b; on finite covers; the second depends on an explicit construction
of a Spin. structure on X, given the structure on X; with non-trivial invariants
and a unique Spin. structure on X5. A “stretching the neck” argument is
required to glue solutions corresponding to the two separate structures, when
performing the connected sum, [53]. lemma 8.8 is further refined in [25], where
it is also proven that, under the same hypotheses, X; is an integral homology
sphere. Manifolds with non-trivial invariants and with no symplectic structures
are therefore given by the following class of examples.

Example 8.10 Let X; be a symplectic manifold with b3 (X1) > 1. By theo-
rem 8.7, X1 has a non-trivial invariant. Let X5 be a manifold with by (Xs) =
bf (X2) = 0, and with fundamental group that admits non-trivial finite quo-
tients. Then X = X 1#X5 has a non-trivial invariant, but it does not admit a
symplectic structure.

In [25] another interesting problem is considered. After the results of [46],
[47], it was conjectured that the following decomposition result might hold:

Conjecture 8.11 FEvery smooth, compact, oriented 4—manifold without bound-
ary is a connected sum of symplectic manifolds, with either the symplectic or
the opposite orientation, and of manifolds with definite intersection form.

In [25] it is proven that this conjecture is false. The construction is similar
to the arguments used in the two lemmata 8.8 and 8.9. The conjecture was then
reformulated for simply connected manifolds.

Conjecture 8.12 Fvery smooth, compact, oriented, simply connected four—

manifold without boundary is a connected sum of symplectic manifolds, with
both orientations allowed.
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Notice how this conjecture for simply connected manifolds resembles an older
conjecture that proposed complex surfaces as the basic building blocks of dif-
ferentiable four-manifolds, namely the conjecture that every smooth compact
oriented simply connected 4-manifold without boundary would be obtained as
a connected sum of complex surfaces. This older conjecture was disproved by
Gompf and Mrowka [21] and the symplectic analogue 8.12 was disproved re-
cently by Szabé [44], using Seiberg-Witten invariants.

This class of manifolds that violate conjecture 8.12 were reinterpreted in
the framework of a more general construction by Fintushel and Stern [12]. The
procedure is very interesting, and it also produces a new large class of exotic K3
surfaces. We summarise it here briefly. Suppose given a knot K in S% and let
Vi be the knot complement. Start with a given simply connected four-manifold
X. The construction produces a four-manifold Xx homotopy equivalent to X,
obtained by removing a neighbourhood of a torus in X and replacing it with
VK x S 1.

The Seiberg—Witten invariants of X are assembled in a Laurent series

k

(X)+o(X)
N(X)=no+ Y nj(t;+ (=1)" + ;1),
j=1
in the variables t;, with j = 1,..., k. Here ng = N4 (X), with ¢1(Lo) = 0, and
{s1,...,5k} are the remaining Spin.-structures that give rise to basic classes.

The variables t; correspond to ¢; = exp(ci1(L;)), and the coefficients n; are the
Seiberg-Witten invariants n; = N, (X). The motivation for this definition is
the symmetry N3(X) = (—1)7X(x)i”(x)
structure.

With this notation the following result is proven.

N, (X), where § is the conjugate Spin.-

Proposition 8.13 Let T be the class in H?(X,Z) Poincaré dual to the torus
in X on which surgery is performed to produce the manifold Xg. Under the
assumption that the torus has two vanishing cycles (see [12]), the Seiberg— Witten
invariants of the two manifolds X and Xk are related by

N(Xk) = N(X)Ak(t),

where Ak (t) is the Alexander polynomial of the knot, and the variable t repre-
sents t = exp(2T).

A combination of this result with Taubes’ results on the Seiberg—Witten
invariants of symplectic manifolds leads to the conclusion [12] of the following
corollary.

Corollary 8.14 If X is symplectic, the torus is symplectically embedded, and
the Alexander polynomial of the knot K is monic, then Xk is also symplectic.
However, if the Alexander polynomial of the knot K is not monic, then X does
not admit a symplectic structure.

115



The result of this corollary is used in [12] as a way to provide examples
of simply connected irreducible four-manifolds that do not admit a symplectic
structure.

8.5 Pseudo—holomorphic curves

In the world of symplectic manifolds, there are invariants, known as Gromov
invariants [36], [43], defined in any dimension in terms of the pseudo-holomorphic
curves. A pseudo-holomorphic curve is a 2-submanifold embedded in a 2n-
dimensional symplectic manifold X via a map which is holomorphic with respect
to a Riemann surface structure on the domain and an almost-complex structure
J on X tamed by the symplectic form.

Recent results by Taubes [48], [49], [50] have uncovered a deep relation be-
tween these and the Seiberg—Witten invariants in the case of four-dimensional
symplectic manifolds.

We shall not attempt here to present any of the details of Taubes’ work, since
the technical difficulties involved are well beyond the purpose of this book. We
recommend the interested reader to approach this topic by first reading the
detailed research announcement [48] and the survey paper [24], and then the
substantial part of the work [49], [50]. What we do in this section is just a
brief exposition of the result, and some digressions on the theme of pseudo—
holomorphic curves.

In our context, we consider the case of a 4-dimensional compact connected
symplectic manifold without boundary. Given a homology class A € Hy(X; Z),
let H(A) be the space of J-holomorphic curves that realise the class A.

Lemma 8.15 For a generic choice of a tamed almost-complex structure J, the
space H(A) is a smooth even dimensional manifold of dimension

dy =< —c1(K) U PD(A) + PD(A)?,[X] >,

where K is the canonical line bundle defined by the symplectic structure and
PD(A) is the Poincaré dual of the class A.

Notice that the canonical class ¢; (K) (often simply denoted K) is well de-
fined independently of the choice of the almost complex structure J, since the
set J of w-tamed almost complex structures is contractible.

This result is proven with the same technique we have used in computing the
dimension of the Seiberg—Witten moduli space: in fact the equation describing
the J-holomorphic condition linearises to a Fredholm operator.

When dy; > 0, given a set 2 of %’1 distinct points in X, we take Hq to be
the subspace of H(A) whose points are the curves that contain all of the points
in Q.

Theorem 8.16 For a generic choice of J and of the points in X, Hq is a
compact zero—dimensional manifold endowed with a canonical orientation.
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Some details can be found in the first chapter of [36]. This allows us to
define invariants as follows.

Definition 8.17 We define the Gromov invariant to be a map
®:Hy)X;Z) -~ Z

which is the sum with orientation of the points in Hq(A), if dyy > 0; the sum of
points of H(A) with orientation, if dyy = 0; and zero by definition when dy < 0.

The value of @ is independent of the choice of a generic set of points and of
the quasi-complex structure J. The result announced in Taubes’ paper [48] is
the following.

Theorem 8.18 Given a Spin. structure s on a compact symplectic 4-manifold
X, with L = det(ST), we have

N, = (PD(c: (L))).

The strategy of the proof is to extend to other Spin -structures the asymp-
totic technique introduced in [45] to compute the Seiberg—Witten invariant of a
symplectic manifold with respect to the canonical Spin.-structure.

In this process, the asymptotic method shows how to associate a pseudo—
holomorphic curve to a solution of the Seiberg—Witten equations, in the limit
when the perturbation parameter satisfies r — oo. A different argument, which
is briefly sketched in [48], provides a converse construction of a solution to the
equations, given a J-holomorphic curve. A combined use of these constructions
would complete the proof of the theorem.

A more precise way of stating the theorem is given in [49].

Theorem 8.19 Let (X,w) be a compact symplectic four-manifold with by > 1.
If the Seiberg—Witten invariant is non-zero Ns # 0 for a certain Spin.-structure,
then there exists a J-holomorphic curve C' (which need not be connected and can
have multiplicities C = U;m;C;) such that
(i) the class [C] € Ha(X;Z) is the Poincaré dual of the class of the line
bundle L,
[C] = PD(ex (L));

(ii) the intersection numbers satisfy
K.-C; <C;-C,

where K is the class of the canonical line bundle;
(i1i) the multiplicities m; satisfy m; = 1 unless the component C; is a torus
of self intersection zero.
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This version of the theorem leads to a clear geometric interpretation of the
result. It is known in fact that in the case of Kéhler surfaces there are two
equivalent ways of thinking of holomorphic curves: either as parametrised curves
from a Riemann surface that satisfy the Cauchy-Riemann equations or as the
zero set of a holomorphic section of a holomorphic line bundle. The first method
extends to symplectic geometry via the notion of J-holomorphic curves, while
there is no available notion of “holomorphic bundle” and “holomorphic section”.
A way of thinking of Taubes’ result (as I first learnt from lectures of S. Bauer and
D. Salamon) is precisely the construction of a similar notion in the symplectic
category. In fact one can think of the equivalent of holomorphic line bundles as
being those line bundles that correspond to Seiberg—Witten basic classes and the
theorem says how to use the zero sets of sections that satisfy the Seiberg—Witten
equations in order to obtain a J-holomorphic curve.

The steps that lead from solutions of the Seiberg—Witten equations to a
pseudo-holomorphic curve are summarised in [24]. The aim is to show that, if
X is a closed symplectic four-manifold with b3 (X) > 1, and if s € S is a Spin.-
structure with L # 0 satisfying N(X) # 0, there exists a pseudo-holomorphic
curve with C satisfying [C] = PD(c1(L)).

Considering the estimate (55) in the case of a non-trivial line bundle L,
that is when ¢; (L)[w] > 0, we obtain a uniform bound for [, (|a|> —r?), which
implies that % — 0 almost everywhere (not everywhere, since, L being a non-
trivial bundle, sections must have a non-empty vanishing set). The bound on
Jx (r = C)|B|? still gives 8 — 0, and by applying the Weitzenbdck formula and
the Dirac equation we also obtain the estimate |0,a| — 0, that is, the section
tends to become holomorphic.

The most delicate part of the argument is then centred around pointwise
estimates that give the convergence, in the sense of currents, of the zero set
a~1(0) to a pseudo-holomorphic curve C, when the parameter r is pushed to
infinity.

Several applications of Taubes’ result are summarised in [24].

8.6 Beyond the symplectic world

Many interesting questions arise in connection with Taubes’ result. One of
them is how much the results can be extended beyond the realm of symplectic
manifolds. Taubes’ pointed out that much of the analysis that goes into the
proof of theorem 8.19 carries over to manifolds that are endowed with a non-
trivial closed self-dual two form w which is not necessarily non-degenerate. On
a four manifold, such a two form will be degenerate along embedded circles.
In this case, current work of Taubes’ indicates that one can expect solutions of
the Seiberg—Witten equations to produce pseudo-holomorphic curves away from
the degenerate locus, with some regularity conditions on how they approach the
circles where w is degenerate.
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Therefore, via this correspondence with Seiberg—Witten invariants, it may
be possible to think of extensions of invariants defined by pseudo-holomorphic
curves, to manifolds that are not symplectic.

We digress briefly, in order to describe one of these symplectic invariants
defined via pseudo-holomorphic curves: Quantum Cohomology.

The quantum cup product is a deformed product in the cohomology ring of
a symplectic manifold. Geometrically it can be thought of as a coarser notion of
intersection of homology classes realised by embedded submanifolds. Instead of
counting, with the orientation, the number of intersection points of two cycles in
generic position, the counting is made over the J-holomorphic curves that touch
the given cycles in generic points. Note that, in order to define this product,
several technical hypotheses are introduced, which are explained in [36]. In our
case, since we deal with the 4-dimensional case only, the situation is simpler.

More precisely, the quantum cohomology ring of X is

QH*(X) = H*(X)®Z[g,q"'],

where ¢ is a formal variable of degree 2N, with N the minimal Chern number of
X (see [36]). A class a € QH*(X) splits as a = ), a;q¢*, with a; € H* 2N (X).
There is a non-degenerate pairing

QH*(X)® QH*(X) - Z,

<a,b>= Z aib;,
2(i+j)N=k+i—2n
with k¥ = deg(a), I = deg(b) in QH*(X), and n = dim(X). The quantum cup
product
QH*(X) ® QH*(X) = QH*(X)

is defined by specifying the values of < a e b,c >:

<aebc>:= Z ZQA(ai,ﬂjﬂk),

i,5,k A

with a = Y ai¢®, b = Y bi¢?, ¢ = Y erg®, i = PD(a;), B; = PD(b;), v =
PD(ci). A is a homology class realised by a J-holomorphic curve of genus
zero, with ¢;(A) + (i + j + k)N = 0, ¢;(A) being the evaluation over A of the
Chern class of the restriction of the tangent bundle to A (the latter condition
is imposed for dimensional reasons). The coefficient ®4(c;, 3j,7%) is a more
general version of the Gromov invariants introduced in definition 8.17. Here,
instead of imposing dy; /2 points in Hgq, we want a positive dimensional manifold.
Hence Q = {p1,...,pr}, 7 < dy/2. Now we would like to map this manifold
to X7, so that it gives rise to a pseudo-cycle (see [36]). Thus, we consider an

evaluation map
€& Ho > X"
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whose image is the space

{(u(p1), -, ulpr)) u: % = X, [u(¥)] = A},

where u is a J-holomorphic parametrisation of the curve. It is clear, however,
that we need to use parametrised curves. Hence the space Hq has to be intended
rather as the moduli space of parametrised curves that touch the points in Q,
modulo reparametrisations, i.e. modulo automorphisms of the Riemann surface
3.

The topology of this moduli space is more complicated than the previous
case: in fact there are non-trivial problems related to the compactification. The
theory works sufficiently well in the case of genus zero curves (see [36], chapter 5),
but more serious technical complications arise when considering curves of genus
g > 0. Once a pseudo-cycle of a certain dimension (which is computed in [36],
chapter 7) is defined in X7, the Gromov invariant is obtained by intersecting this
cycle in X" (with the usual intersection product) with a number of homology
classes of X, so to reach the complementary dimension.

Although the definition of this invariant is different from the one used in
[48], one could ask if there is any gauge theoretic description within the context
of Seiberg—Witten theory. Such a formulation, together with the extension of
Taubes’ results to 4-manifolds with degenerate symplectic forms, may provide
a formulation of quantum cohomology in the non-symplectic world. Moreover,
one of the highly non-trivial results in quantum cohomology is the fact that the
quantum cup product is associative. One can speculate on the existence of a
different proof based on the gauge theoretic counterpart.

8.7 Algebraic Surfaces

In a different direction, Seiberg—Witten theory has been applied to obtain in-
formation on the diffeomorphism type of algebraic surfaces. Many results were
previously obtained via Donaldson theory [16]. We should recall here some no-
tions about algebraic surfaces: we follow strictly the overview given in the first
chapter of [16].

A complex surface is minimal if it does not contain any holomorphic curve
C = (P! with self intersection C-C = —1, that is, by the Castelnuovo criterion,
if it cannot be blown down to another smooth complex surface. In this section
we discuss some diffeomorphism properties of algebraic surfaces: we shall deal
with minimal surfaces only.

Two surfaces X; and X» are deformation equivalent if there exists a family
(not necessarily smooth) X of complex surfaces over the disk D, with 7 : X —
D, such that there are two points p; and ps in D with 7=1(p;) = X; and
a1 (p2) = Xo.

Let Kx be the canonical line bundle as defined previously. Two deforma-
tion equivalent surfaces X; and X» are diffeomorphic through an orientation
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preserving diffeomorphism f : X; — X, that satisfies f*Kx, = Kx, (we are

using the same notation for the canonical line bundle and its Chern class).
The plurigenera of a complex surface X are the dimensions of the spaces of

holomorphic sections of powers of the canonical line bundle, namely

P,(X) = dimg HO(X, KE™).

It can be shown that the ratio 3 P,(X) is bounded as n — co. This gives
rise to the following definition of the Kodaira dimension k(X):

—00 if P,(X)=0foralln>1
0 if sup,, P,,(X) is bounded but some P,(X) # 0
1 if sup,, P,(X) = oo but sup,, £ P,(X) is bounded
2 if sup,, L P,(X) = o0

K(X) =

Geometrically, if k(X) # —oo, the value of k(X) is the dimension of the
image of X in some CPY under the rational map defined by the linear system
K2,

The following is a result in the theory of algebraic surfaces.

Proposition 8.20 If X; and X, are deformation equivalent, then they have
the same Kodaira dimension and the same plurigenera,

K(X1) = k(X2) and P,(Xy) = Po(X2) foralln>1.

For an overview of the Enriques—Kodaira classification of algebraic surfaces,
we address the reader to the first chapter of [16]. We should just recall here
that the “classification” is really a classification only for Kodaira dimension
k(X) < 1. In the case of surfaces of general type with k(X) = 2 no classification
of deformation types exists.

A natural question about algebraic surfaces is how much discrepancy there
is between deformation equivalence and diffeomorphism. The Van de Ven con-
jectures were formulated within the context of this general question:

Conjecture 8.21 Two diffeomorphic algebraic surfaces X1 and X have the
same Kodaira dimension and the same plurigenera,

K(X1) = k(X2) and Po(X1) = Po(X2) foralln > 1.

Using Donaldson theory, the following results were obtained [16]
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Theorem 8.22 (1) There is a finite—to—one discrepancy between diffeomor-
phism and deformation equivalence.

(2) If X1 and X5 are two diffeomorphic algebraic surfaces, which do not
form a pair of a rational surface and a surface of general type, then they have
the same Kodaira dimension, k(X1) = k(X2).

The first computation of Seiberg-Witten invariants for algebraic surfaces
confirms the fact that, even at the level of diffeomorphism type nothing more
can be said for surfaces of general type. In fact, the following lemma shows that
for such surfaces Seiberg—Witten theory only recovers the information given by
the canonical class K.

Theorem 8.23 If X is a minimal surface of general type, the Seiberg—Witten
invariant satisfies Ny = £1 if s = sg and N; = 0 otherwise.

However, in the case of surfaces of smaller Kodaira dimension one can obtain
the complete differentiable classification. The first step we are going to present
is the resolution of the exceptional case in (2) of 8.22.

Theorem 8.24 A surface X, diffeomorphic to a rational surface Xo is also
rational.

This result was also obtained by means of Donaldson theory in [18] and [42].
It was independently obtained by means of Seiberg—Witten theory by [2], [17],
and [41]. We describe briefly the strategy of the proof given in [41].

Sketch of the Proof: The first step consists of proving that a rational surface
admits a Hitchin metric go, namely a K&hler metric with positive total scalar
curvature. Then, assuming that X; has x(X1) positive, and considering the case
when X; can be non-minimal, it is possible to find a metric g on X; determined
by a choice of an ample divisor on the minimal model (see [16]), and a Spin,
structure s determined by the canonical class and by the exceptional divisors of
the blowups, such that N; # 0. The Seiberg—Witten moduli space M consists
of a single smooth point. The final step is to show that if there is an orientation
preserving diffeomorphism f : X; — Xs, then the Hitchin metric f*(go) and
the metric g are in the same chamber: this leads to a contradiction since the
curvature constraint makes the Seiberg—Witten invariant for f*(go) vanish.

lemma 8.24 completes the proof of the Van de Ven conjecture for what
concerns the Kodaira dimension. Seiberg—Witten gauge theory has proved to
be useful in establishing the analogous result about plurigenera [2], [17].

The Van de Ven conjecture is proven in [2] as a consequence of the following
stronger result.

Theorem 8.25 The class Kx (or Kpin of a minimal model of X in case X
is non-minimal of positive Kodaira dimension) is determined by the diffeomor-
phism type of X.
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Sketch of the Proof: The first step is to rephrase the invariance of Kx, for X
with £(X) > 0, in terms of the existence of a set K of classes K; € H*(X,Z) of
type (1,1), satisfying 2g(H) — 2 > H? + |K; - H| for any ample divisor H, and
such that K; = wy(X) mod 2. The set K is also required to satisfy Kx € K
and, under blowups ¢ : X = X, 0. (K(X)) = K(X).

Then Seiberg—Witten theory shows that the set of Seiberg—Witten basic
classes on X gives the desired K, and that such a set is non-empty. We have
seen in proposition 8.5 that the moduli space of solutions of the Seiberg—Witten
equations for the non-generic Kihler metrics can be positive dimensional even
though the virtual dimension is zero. Thus, we need a different way to define
the Seiberg-Witten invariant N,;(X) in this case, in order to identify the set of
basic classes. To this purpose [2] develops the technique of the localised Euler
class, that we shall discuss at length later on. This provides a way of extend-
ing Fulton’s intersection theory to the infinite dimensional Fredholm context
and generates a homology class that sits in the degree prescribed by the vir-
tual dimension and deals naturally with the excess intersection problem. We
shall return to this later and clarify its relation with the partition function of
the quantum field theoretic formalism. It is enough to mention here that the
Seiberg—Witten invariant is then defined via the zero-dimensional moduli space
defined by the localised Euler class, and this identifies the required set of basic
classes.

9 Topology of embedded surfaces

An interesting question in low dimensional topology is to find sharp estimates for
the genus of embedded surfaces. One can observe, for instance, that the failure
of the Whitney lemma in dimension four is one of the reasons that make topol-
ogy so different than in higher dimensions [15], [23]. This failure is measured
precisely by the non-zero minimal genus of embedded surfaces representing a
certain cohomology class. Gauge theory provided a useful tool in studying the
topology of embedded surfaces [27], [30]. More recently, Seiberg-Witten the-
ory has helped in determining adjunction inequalities that provide such lower
bounds. As we are going to see, the Thom conjecture provides a sharp lower
bound for the genus in the symplectic case. Bounds provided by Seiberg—Witten
theory are far less sharp in non-symplectic cases, as discussed at length in [29],
but interesting estimates can still be obtained via Seiberg—Witten theory as in
[28].

The analogous question can be formulated in three-manifolds. The minimal
genus of surfaces in a given homology class is measured by the Thurston norm.
Several contributions [1] [29] [33] have linked Seiberg—Witten equations on three-
manifolds with the Thurston norm. We shall recall briefly some of the results
later in this section.

For a general overview of the subject, we recommend the beautiful survey
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article [29].

9.1 The Thom Conjecture

Various statements go under the name of Thom conjecture. In the more general
form the statement can be phrased as follows.

Conjecture 9.1 Let (X,w) be a four-dimensional compact symplectic mani-
fold. Let C be a symplectic 2-submanifold (namely an embedded submanifold
such that w|c is an area form). If ¥ is an embedded 2-submanifold such that

[¥] =[C] € H2(X; Z),
then the genera are related by

g(%) > g(0).

Several weaker statements have been proved [27], [30], [40]. All of these re-
quire the extra assumption that the symplectic submanifold C has non-negative
self intersection, C' - C > 0.

One of the first applications of the Seiberg—Witten gauge theory was a proof
[31] of the Thom conjecture for CP?, see theorem 9.2 below. A more general
version of this result was presented more recently by Morgan, Szabd, and Taubes
[40]. Other results on the Thom conjecture have been obtained by R. Wang
[52] using a version of Seiberg—Witten Floer homology. See also the related
references [13], [14], [28], [29]. We reproduce here the proof that is given in [31].

Theorem 9.2 An oriented two-manifold X that is embedded in CP? and repre-
sents the same homology class as an algebraic curve of degree d > 3 has genus
g such that

Sketch of the Proof: The proof is obtained in several steps.
(1) We start by introducing the notion of good metrics.

Definition 9.3 a metric on a 4-manifold X is “good” with respect to a certain
choice of the line bundle L if the moduli space of solutions of the Seiberg—Witten
equations is smooth. lemma 3.4 implies that this happens if ¢1(L) is not in
H?*>~(X;R).

We shall consider the manifold

X =CP%#n CP?,
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the blowup (in the language of algebraic geometry) of the projective space at
n points. Since H?*(X;IR) is one-dimensional, there is, up to scalar, a unique
self-dual harmonic form w,, which depends on the metric. We identify the good
metrics on X in terms of a condition on the product of the first Chern class of
the line bundle with wgy, namely

/ er(L) U [wy] # 0.
X

(2) If the product [y c1(L) U [w,] is negative, the Seiberg-Witten moduli
space is non empty. This is shown by first proving that the Seiberg—Witten
invariant (mod 2) changes parity if [ ¢1(L)U[wy] changes sign; and then proving
that there is a particular choice of the metric g, the Hitchin metric, such that
Jx €1(L) U [wg] > 0 and the moduli space is empty.

(3) Suppose a four-manifold X splits along a three-manifold Y, so that the
metric is a product on a neighbourhood [—¢, €] x Y. Consider the metric gg
given by inserting a flat cylinder [—-R, R] x Y. If the moduli space M(gg) is
non-empty for all large R, then there exists a solution of the Seiberg—Witten
equations which is “translation invariant in a temporal gauge” on the manifold
IR x Y. This means that the dt component of the connection A vanishes (see
Definition 6.1).

(4) If there is a solution on IR x Y that is translation invariant in a temporal
gauge and Y = S x ¥, where ¥ is a surface of constant scalar curvature and
genus g > 1, then there is an estimate

ILfMLH<2g—2

(5) Let H be the generator of H?(CP?;Z); by assumption, we have an em-
bedded surface ¥ of genus g that determines the homology class dual to dH.
Consider the blowup of CP? at d? points that avoid ¥, and consider the embed-
ding

Y — CP2#d* CP2.

The second cohomology of X = CP?#d?> CP? has generators H and FE;, i =
1,...,d?, with intersection form Qx = (1,d?). Take ¥ = N#d?S2, where
5% C CP? is dual to —FE;. Thus the homology class [X] is dual to dH — E,
E =}, E;. Take a tubular neighbourhood T of 3 and a metric go on X such
that Y = 8T = £ x S! with a product metric and constant scalar curvature
—271(49—4) on ¥ (assume 3 has unit area and use the Gauss—Bonnet theorem).
Let L be the canonical line bundle K. This has Chern class ¢;(K) = 3H — E.
Insert a cylinder [-R, R] x Y. Then

Aawwwm=@mm—w—wAHUMA
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By normalising 1 = [, H U [wy,], and showing that [¥][wyr] = 0 as R — oo,
the result of the theorem follows from the estimate of step (4).

Now we see in more details the various steps of the proof. Part of it is left
as a series of exercises at the end of this section.

Step (1): The intersection form Qx on the manifold X = CP?#n CP? has
signature (1,n); thus it determines a cone C in H?(X;IR) where the form is
positive.

If H is the generator of the cohomology ring of CP?, then H € C. Call C*t
the nappe of the cone that contains H.

The manifold X has b = 1; hence for a chosen metric there exists a unique
harmonic self-dual form w, such that the corresponding cohomology class [w,y] €
ct.

So we have that the metric g is good in the sense of definition 9.3 iff

/Xcl(L) Nwy # 0.

Step (2): [y e1(L) Awy = 0 detects the presence of some singular point in the

moduli space. By perturbing the equation with a small € A2t we can assume
that on a given path of metrics {g; | t € [0,1]} the expression

f(t):/Xcl(L)/\wgt+27r/Xn/\wgt

changes sign transversely at ¢t = 0.

Hence the parametrised moduli spaces M, look like a family of arcs; we
want to prove that at a singular point an odd number of arcs meet. Thus the
invariant computed mod 2 changes parity.

This requires the analysis of a local model of the moduli space around a
singular point. A model of Donaldson’s can be adapted to this case [7].

Step (3): This is the part of the proof where the gauge theoretic techniques
have a prominent role. Since the argument involves the dimensional reduction
of Seiberg—Witten theory to three dimensions, we postpone the proof of this
step until after the section that deals with three-manifold applications of the
theory.

Step (4): Assuming ¥ to be of unit area and with constant scalar curvature,
the Gauss—Bonnet theorem implies that the scalar curvature Kk = —4n(2g — 2).
From the estimate on the spinor v given in lemma 3.10, we have

| ¢ < 4n(29 - 2).
But, from the equation (9), since
|< €i€j¢a¢ >|2: 2 | ¢ |47

we get an estimate | Ff |< v/2m(2g — 2).
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Since the solution is translation invariant in a temporal gauge, F4 is the
pullback on R x Y of a form on Y. Hence F4 A F4 = 0, and this means that
| Ff |=| Fy |, since FAANFs= (| Ff |2 — | Fy |*)dv.

Thus the resulting estimate on FJy is

| Fa |< 27(2g - 2). (56)

Therefore )
2
— Ful= < — 2.

9.2 Contact structures

Notice that the stretching argument used in the proof of the Thom conjecture
[31] proves that if ¢; (L) is a basic class on a four-manifold X (i.e. the invariant
Ng(X) # 0 for all metrics), then its restriction to an embedded three-manifold
corresponds to a non-trivial moduli space M, (s|y) # @. This condition is weaker
than having non-vanishing three-dimensional Seiberg—Witten invariant: it can
be regarded as a condition on the presence of generators of the Floer homology,
as opposed to the stronger non-vanishing of the Euler characteristic of the Floer
complex. Classes ¢ (L) € H2(Y,Z) that correspond to Spin.-structures s €
S(Y) satisfying the condition M.(s) # @ for a generic metric are called [29]
monopole classes, as opposed to the more restrictive condition of basic classes
that satisfy x(HFSW (Y, s)) # 0.

This observation [29] is the starting point for understanding the work of
Kronheimer and Mrowka on Seiberg—Witten equations and contact structures
[32]. We do not recall here the notion of contact structure and the many aspects
of contact geometry on three-manifolds. We refer the reader to [9], [10], [11],
[20], [51]. In [32] the following result is proven.

Theorem 9.4 Let Y be a compact oriented three-manifold with an oriented
contact structure &, let X be a four-manifold such that 0X =Y with compat-
ible orientation. The contact structure & determines a Spin. structure on a
collar neighbourhood of Y. Moreover, the manifold X can be completed with
a symplectic cone Y x [0,00), so that the symplectic form w and the induced
Spin. structure s, on the cone are compatible with £&. On this completed man-
ifold X there is a compact smooth Seiberg- Witten moduli space that is cut out
transversely by the equations. Moreover, if X has a symplectic form compatible
with the contact structure & on the boundary, the corresponding invariant on X

satisfies N, ¢(X) = £1.
A brief summary of the argument can be given as follows. First of all, on

X it is convenient to choose perturbed Seiberg-Witten equations, where the
perturbation is given by the canonical solution on the symplectic cone with
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unit length spinor (extended arbitrarily on the non-symplectic part X) and a
self-dual 2-form 7 that decays exponentially along the cone,

DA¢ = 07

FX - J(¢a¢) = FXO - J(¢07¢0) ‘*‘”7:

where (Ag, %) is the canonical solution on the symplectic cone, as discussed
previously in the review of Seiberg—Witten theory on symplectic manifolds.

The configuration space on X is defined as the set of pairs (4,) that are
asymptotic in the L? norm to the canonical pair (Ag,%p) along the conical
end. The gauge group of L} 41 gauge transformations that decay to the identity
acts on this configuration space, and the quotient contains the moduli space of
solutions of the perturbed equations. Since this is a problem on a non-compact
manifold, the Fredholm property of the linearisation is not a consequence of
ellipticity: a delicate analysis shows how the fact that the canonical section g
is nowhere vanishing on the cone plays an essential role in proving the desired
Fredholm property.

This shows that the moduli space is finite dimensional and, under a generic
choice of the perturbation, cut out transversely by the equations. The proof
of compactness is more subtle and technically demanding than in the case of a
compact manifold. The key step is to prove a uniform exponential decay to the
asymptotic value (Ag, o) along the conical end. The analysis is similar to the
one used in [49)].

A consequence of theorem 9.4 is the following.

Proposition 9.5 Suppose given a compact oriented three-manifold Y with a
contact structure £. If there is a symplectic four-manifold X with boundary,
such that Y is one of the boundary components with the boundary orientation
compatible with £, then there is a non-trivial element in the Seiberg—Witten Floer
homology, that is, HFZW (Y) # 0.

Sketch of the Proof: A stretching argument like the one used in the proof of the
Thom conjecture provides the existence of at least one generator a = (Ag, 1)
of the Floer complex, i.e. M.(Y,s¢) # 0. We need to show that in fact we
also have a cycle which is not a boundary. In order to show that we have a
cycle, consider the manifold Y x IR, with a cylindrical metric on ¥ x (—o0, —1]
and the conical metric and compatible symplectic form on Y x [1, 00), patched
smoothly on Y x [-1,1]. On this manifold consider the configuration space
of elements (A,) that are asymptotic to the canonical solution (Ag,1p) on
the conical end and to a solution a of the three-dimensional Seiberg—Witten
equations on the cylindrical end. To simplify the argument, if the class of s,
is trivial, then it is better to assume here that the elements a = (4,,v,) are
non-degenerate, ¥, # 0: under this assumption, gauge transformations that are
asymptotic to the identity act freely on the configuration space and we can form
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the quotient and define the moduli space M (&, a) of solutions of the perturbed
Seiberg—Witten equations as in [32]. Combining [3] with [32], we can show that
M (&, a) is a smooth manifold cut out transversely by the equations. The zero-
dimensional component M°%(£, a) is compact by the argument of [32], hence we
can take the algebraic sum n(£,a) = #M°(€,a). Now we can form the linear
combination C¢ = 3 cpr.(v,s,) (€, @)a. This is the candidate for the Floer
cycle. To see that it is killed by the Floer boundary, it is enough to prove that
we have a gluing map

# : UaeMc(Y,Sf),[,b(ll)*[,l/(b):lMo(é.’ a) X M(aa b) - Ml(ga b)a

where M1(¢,b) is the 1-dimensional component of M (¢,b), and M(a,b) is the
moduli space of unparametrised flow lines connecting the critical points a and
b. We shall not present the proof of this gluing theorem here. However, the
technique employed is very similar to the one used in the construction of the
Floer homology and can be obtained by combining [3] and [32].

We still need to prove that the class [C¢] in HFSW (Y, s¢) is non-trivial, i.e.
that C¢ is not a boundary. One way to attack this problem is to show that there
is a non-trivial pairing of [C¢] with some other class under the natural pairing of
Floer homology and cohomology. For this we need the suitable gluing theorem
that reconstructs Seiberg—Witten invariants of four-manifolds that split along a
three-manifold by pairing relative invariants in the Floer homology of the three-
manifold. Formulations of such gluing theorems can be found in [3], [38], In
our case, consider the manifold X UY x [0, 00) with a cylindrical metric on the
end Y x [0,00) and define the moduli space M (X,a) with asymptotic condition
a = (Aq,%,) in M.(Y,s¢), as in [3]. The argument has to be modified since the
manifold X can have other boundary components that can be completed with a
cylindrical end, so that the Fredholm analysis carries over from [32]. We are not
going to enter into the details here. We want to obtain the invariant Ny (X) of
theorem 9.4 from a pairing of relative invariants, that is, we want a description
of the moduli space M (X, s,) of [32] as a fibred product of the M(X,a) and
of the M(&,a) described above. We shall not attempt here to prove such a
decomposition. It is enough to point out that this will lead to a proof of the
non-triviality of [C¢].

QED

In [29] some results of Gabai, Eliashberg, and Thurston are presented, which
give conditions under which the three-manifold Y satisfies the hypothesis of 9.4
and 9.5. The key ingredient is the fact that, if the three-manifold Y is not
S! x 8? and it admits a smooth taut foliation by oriented leaves, then the
foliation can be deformed by a small deformation to a contact structure, and
the four-manifold [—1,1] x Y admits a symplectic form compatible with the
contact structures {4 on the oriented boundary. The results of [32] and 9.5
then apply to this case.

Notice, however, that not all contact structures arise as a small deformation
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of a taut foliation, as follows from results of Lisca and Matié, [34] and [35]. It
should be mentioned, although we shall not discuss any of this in detail, that the
connection between Seiberg—Witten invariants and contact structures on three-
manifolds has very interesting geometric consequences. Contact structures are
distinguished as tight and overtwisted, see [9]. A classification is available for
overtwisted contact structures which is based on their homotopy type, whereas
not much is known about the tight case. The results of [34] and [35], based on
Seiberg—Witten theory, provide a construction of a class of homology 3-spheres
that have an arbitrarily large number of homotopic non-isomorphic tight contact
structures.

9.3 Three-manifolds: Thurston norm

Since Seiberg—Witten theory helped in finding estimates on the minimal genus of
embedded surfaces in four-manifold, it is natural to attempt similar construc-
tions that estimate the minimal genus in three-manifolds, i.e. the Thurston
norm.

Let us recall briefly how the Thurston norm is defined. Again, we follow
closely [29], where the reader can find a much more detailed exposition of these
results.

Definition 9.6 Suppose given a fized homology class
o € HyY,Z).
The Thurston norm is the minimum of the quantity
29(X) —2

(or of the sum of such quantities over connected components of genus at least
one, if ¥ is not connected) over all embedded surfaces ¥ in the three-manifold
Y of positive genus, realising the class o.

The dual Thurston norm, defined on classes o in H2(Y,R), is the supremum
over all connected oriented embedded surfaces X of the (possibly infinite) quantity

(o, [%])
29(%) - 2°

The first result that used non-vanishing of the Seiberg—Witten invariant to
provide an estimate on the Thurston norm is [1]. By techniques similar to the
proof of the Thom conjecture, it is shown that the following holds.

Proposition 9.7 Ifc (L) is a basic class onY, i.e. x(HFESW(Y,L)) # 0, then
the Thurston norm of a class o is bounded below by

loll = (e (L), 0)-
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This in particular implies that the dual Thurston norm of a basic class is finite.

A simple combination of the this result with the Weitzenbdck formula pro-
vides a bound on the dual Thurston norm in terms of the scalar curvature as in
[33].

The result can be improved, by replacing the strong condition of basic classes
with the weaker condition of monopole classes. In fact, as explained in [29],
results of Gabai and Thurston give a characterisation of the Thurston norm of
a homology class o as the maximum of the quantities (e(F), o), where F runs
over smooth taut foliations of Y. One needs the hypothesis that Hy(Y,Z) is
not generated by tori to ensure the existence of such foliations. This result
can be combined with theorem 9.4 and proposition 9.5 about contact structures
and Seiberg—Witten invariants, and with the observation made at the end of
the previous section about taut foliations. These results imply the following
refinement of Auckly’s result derived in [29].

Proposition 9.8 If ¢;(L) is a monopole class on'Y, i.e. M.(Y,L) # 0, then
the Thurston norm of a class o is bounded below by

loll = {e1(L), o).

10 Further applications

There are several other directions in which Seiberg-Witten gauge theory has
been exploited to provide topological and geometric results. For reasons of
space we are unable to present all the interesting contributions. The reader is
referred to the bibliographical section at the end of this volume for a list of the
literature available at the time when these notes were being collected. We can
spend a few words pointing out some particular aspects. The choice reflects the
taste of the author.

Among the topological results obtained via Seiberg—Witten theory we should
mention work of Morgan and Szabé [39] on the complexity of cobordisms. Gauge
theory had already been used in relation to the failure of the h-cobordism the-
orem in dimension four, in a paper by Donaldson [6]. Morgan and Szabé intro-
duce a notion of complexity that measures the amount by which the h-cobordism
theorem fails. Using Seiberg—Witten theory, they are then able to construct a
family of examples with arbitrarily large complexity.

In a different direction, various authors have re-obtained results of Don-
aldson theory via the new Seiberg—Witten invariants. Among these we should
mention that Donaldson’s theorem on smooth 4-manifolds with definite inter-
section form [5] has been rederived with Seiberg—Witten techniques in [22], and
in [19] in the more general context of 4-manifolds with boundary a disjoint union
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of rational homology 3-spheres. In this case the Seiberg-Witten moduli spaces
have asymptotic values in the Seiberg—Witten Floer homology.

In the field of differential geometry it is worth mentioning some results on
Einstein metrics. A uniqueness theorem for such metrics on compact quotients of
irreducible 4-dimensional symmetric spaces of non-compact type was proven by
LeBrun using Seiberg—Witten theory. Several more recent results were obtained
by similar techniques: see the references listed in the bibliographical section at
the end of the volume.

10.1 Exercises

Fill in the details of the proof of step (1) above.

Check that the argument given in [7] can be adapted to the proof of step
(2).

To complete step (5): check carefully the proof that [Z][w,,] — 0 as
R — o0, as given in [31].

Complete the proof of point (3) of the Thom conjecture: following [31],
consider solutions (Ag,®¥gr) on the cylinder Y x [—R, R]; show that the
change in the functional C(Ag(R),¥r(R)) — C(Ar(—R),%¥r(—R)) is neg-
ative and uniformly bounded, independently of R. For the latter prop-
erty consider gauge transformations such that Ap — )\Rld)\ r and the first
derivatives are uniformly bounded. Show that the functional C changes
monotonically along the cylinder, and deduce that for all NV there is a solu-
tion on Y x [0, 1] for which the change of C is bounded by 1/N. Complete
the argument by showing that there is a translation invariant solution.
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Part IV
Seiberg—Witten and Physics

Tell me, Kapya ——do you know the string on which this world and the next, as
well as all beings, are strung together? ‘That, my lord, I do not know’.

Brhadaranyaka Upanisad, 3.7.1
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11 Mathai-Quillen formalism and Euler num-
bers

In this chapter we discuss a certain unified approach to different problems aris-
ing in Gauge Theory. The approach we present is well known in Theoretical
Physics where most of the gauge theoretic problems originated and where they
can be formulated in terms of the non-rigorous “functional integration”. To a
certain extent the problem of functional integration can be overcome by trans-
lating the Physics formulation into the more appealing mathematical language
of some homology classes of Banach manifolds. The vocabulary that would allow
a satisfactory restatement of the Physics results in topological terms is far from
being fully developed. We recall briefly some of the known results related to the
construction of the Mathai—Quillen form and to infinite dimensional generalisa-
tions and we discuss the connection between the regularised Euler numbers of
certain Banach bundles and Floer homology.

11.1 The finite dimensional case

We begin by recalling a well known construction, due to V. Mathai and D.
Quillen [28], of a de Rham representative of the Thom class of a vector bundle
E over a manifold X of dimension n = 2m. Having a de Rham representative
provides a way of computing Euler numbers as integrals over X. We should think
of this operation as our finite dimensional model for the physicist’s functional
integration.

The object that arises from this construction has three different descriptions:
the form (a de Rham representative of an equivariant cohomology class), the
(co)-homology class (the Euler class), and the zero set of a generic section of
the bundle E.

The advantage of the homological definition over the explicit description in
terms of de Rham representative is that it allows easier generalisations to the
case when the zero set of the generic section is not a smooth manifold. Under
suitable hypotheses, intersection theoretic methods can be used to describe the
singular zero set.

On the other hand it is clear that the representative contains more informa-
tion than the equivalence class, hence it is advisable to seek for generalisations
that carry “the same amount” of information. We shall discuss this point later.

11.1.1 The Mathai-Quillen form

Suppose given a real oriented vector bundle E of rank 2m over a compact
oriented manifold X of dimension n = 2m. In this case the Euler number of the
bundle is given as

x(®) = [ o).



The differential form e(E) defines the Euler class,
€(E) = [e(E)] € H*™(X;R).

This class is the pullback via the zero section of the Thom class 7(E) that lives
in the compactly supported cohomology of the total space of E.

The pullback via any other section would define the same class in cohomol-
ogy, since any two sections of the vector bundle E are homotopic. Therefore
the same Euler number can be also defined by means of the expression

/X es(E), (57)

where the form es(E) is the pullback via the section s of a form representing
the Thom class.

If s has isolated zeroes, we expect (57) to reproduce the Hopf theorem,
namely the fact that the Euler number is the algebraic sum of zeroes of a
generic section.

It is known from the Chern—Weil theory of characteristic classes that a rep-
resentative of the Euler class can be given in terms of the Pfaffian of a curvature

form on E as 1

e(E) = WPJ‘(Q),

where (2 is the curvature 2-form of a connection compatible with an inner
product. For a given antisymmetric matrix A, the Pfaffian Pf(A) satisfies
Pf(A)? = det(A). The Pfaffian of an antisymmetric matrix is given explicitly
o 11

m(§’u)iAij’U)j)m =Pf(Aw' A--- Aw™,

where n = 2m. Here the product on the left hand side is taken in the exterior
algebra generated by the wf. Notice that Pf(A) = Pf(!TAT) for any T €
SO(2m).

It is convenient to express the Pfaffian in terms of the so called Berezin or
fermionic integral. This is a functional on a Z-graded algebra (superalgebra).
In the case where the superalgebra is the exterior algebra A[w] in the generators
w', the Berezin integral is defined as

aH/Dwa,

where [ Dw a is the coefficient of w' A---Aw™ in the expression of a. In terms
of the Berezin integral we can write the Pfaffian of an antisymmetric matrix as

Pf(A) = /Dwexp(%wiA,-jwj). (58)
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Thus the Euler class is represented by a form

wiQ"jwj

e(E)zﬁ / Dwexp(U ) (59)

It is clear that, in order to have a representative of the Thom class, we should
construct a closed n-form on F that is rapidly decreasing along the fibre direction
([28] pg- 98-99), such that integration along the fibres (which is an isomorphism
of degree —n) gives 1 in cohomology, and moreover such that, when pulled
back along the zero section, reproduces the form (59). Mathai and Quillen gave
an explicit form of a representative that satisfies all the expected properties, in
terms of G = SO(n) equivariant differential forms on V' = R"™. The construction
is obtained using the de Rham model (6) of equivariant cohomology. Given a
vector bundle E on X, we can write a form in A*(E) as a form in A*(P xg
V), and this corresponds to the equivariant complex A% (V) under the Weil
homomorphism. Thus we can describe the Mathai-Quillen form as an object in
A% (V), by choosing generators €2;; of degree two and the degree one elements
d&? + 6;1,E*, where the 6, are the degree one generators.

Consider the extension of the Berezin integral to a map

AL]® Afw] — A[J],

with the variables J to be J/ = d&7 + 6;;,£F. In this way we can make sense of
the expression

/Dw exp(1/2(*'wAw) + ' Jw).
This defines a form ®(E) as

—£2/2

E) = % / Dw exp((wiQw;) /2 + iVEwW;). (60)
When pulled back to X via the zero section (i.e. with £ = 0), the expression
(60) reproduces the representative (59) of the Euler class. On the other hand,
integration along the fibres of the component of ®(E) which is a 2m-form in
the fibre direction gives 1. The fact that ®(E) is closed is not immediate and is
proven in [28]. Thus (60) is a representative of the Thom class, 7(E) = [®(E)].
The form (60) can be pulled back to X via any other section s, and still

gives a representative of the Euler class, which is of the form

6_82/2 .. .
e(E) = @ /Dw exp((w; FYw;) /2 +iVstw;). (61)

Remark 11.1 The representative of the Euler class (61) has Gaussian decay
centred at the zeroes of the section. If we introduce a homotopy parameter t and
consider the asymptotic behaviour for t — oo, the form is centred in a small
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neighbourhood of the zeroes of s, and with the stationary phase approximation
this reproduces the Hopf theorem (since we are assuming that the rank of E
equals the dimension of X the set of zeroes will be generically o discrete set of
points).

When the rank 2m of the bundle E is smaller than the dimension n of the
manifold X, the above no longer gives an Euler number. However, it is possible
to evaluate against the fundamental class of X the Euler class e(E) cupped with
cohomology classes that live in H"~2"(X). The numbers obtained in this way
are the intersection numbers of X associated with the bundle E.

Remark 11.2 In the case 2m < n the Euler form can still be thought of as
concentrated near the zeroes of a section s (as the parameter t — 0o0). Now the
zero set of a transverse section will be a manifold of dimension n — 2m.

11.1.2 Intersection theoretic approach

If we restrict ourselves to consider classes instead of representatives, we can give
a generalisation of the Euler class in the case when the section is not generic
and therefore the zero set is not a smooth manifold of dimension n — 2m, but
rather some singular space. This is possible under more restrictive hypotheses
which make the algebro—geometric machinery of intersection theory available.
In a compact smooth manifold X we can define an Euler class in homology,
by taking the cap product of the Euler class €;(E) = s*7(E) with the fundamen-
tal class of X, i.e. by Poincaré duality. The Thom class 7(E) can be thought
of as a class 7(E) € H"(E, Ey), where Eq is E with the zero section removed.
Again we see from this approach [30] that the Euler class (as an element in
homology) is localised on the zeroes of the section s. In fact we can think of s

as a map
s (X,X— {S = 0}) - (EJEO)J

and the pullback s*7(E) as living in H*(X,X — {s = 0}). The evaluation
against X defines a map

H*(X,X — {s=0}) » H.({s = 0}).

Thus we get that €, s(E) = €;(E) N[X] lives in H,({s = 0}). When the sec-
tion s, is generic, i.e. it is transverse to the zero-section (and therefore the zero
set of the section s, is a smooth embedded submanifold), the homological Euler
class is the fundamental class of the manifold Z, = {s, = 0} in H"?>™(Z,). In
the more general case the zero set Z might be singular. Under the assumption
that the bundle has a complex structure and the section is holomorphic, Z will
be an analytic set. It is still possible in this case to give a notion of homological
Euler class by means of Segre classes [15].

We get an expression ([15], [30]) of the form

€,s(E) = [¢"(E |z =TX |2) N ¢« (Z)]n—2m- (62)
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Here the homology class ¢, (Z) is Fulton’s class, defined for the case of a singular
scheme in terms of the Segre classes [15]. It has components in degrees from
zero up to the dimension of Z. In the case of a smooth submanifold Fulton’s
class would correspond just to the expression ¢*(T'Zy) N [Z,)].

Remark 11.3 We can think of (62) as a good generalisation of
€x,54 (E) = €g4 (E) N [X] = [Zg]'

In fact when we consider the section s, transverse to the zero section we can
rewrite (62) as

c*(E)

[ c"(E)
c(TX)

Nex(Zg)ln—2m = [m

n [Zg]]n—Qma

where Nz X is the normal bundle of Z, in X. By the transversality assumption
Nz,X ~ E, therefore in the above we are left just with [Z,] in dimension n—2m.
In general (62) always represents the fundamental class [Z,] even if computed
by means of a section s which is not transverse or such that Z; is not a smooth
manifold.
When s is not transverse to the zero section but, nevertheless, the zero
scheme Z is a non-singular embedded submanifold, we can write (62) as

c'(E)

[m N [Z)ldim(z,) = [¢"(B) N ([Z] = e1(Nx Z) + - - )] aim(z,)

where the contribution in degree dim(Z,) is exactly [Z,], whereas the highest
degree term would give [Z].

11.2 The infinite dimensional case

The purpose of this section is to discuss extensions of the Mathai-Quillen formal-
ism to the case of an infinite dimensional bundle £ over an infinite dimensional
manifold X'. This is the situation that arises in the framework of Topological
Quantum Field Theory, where the topological Lagrangian is written as the func-
tional integral of an effective action which is, formally, the Mathai-Quillen form
of an infinite dimensional vector bundle.

A very clear description of the quantum field theoretic point of view can be
found in [7] and [8]. Our purpose is to rephrase as much as possible the results
of these references in a more rigorous mathematical language.

Starting with Witten’s work [35] and the Atiyah-Jeffrey description [4], it
became clear that the partition function of certain N = 1 supersymmetric gauge
theories can be described as a formal (functional integral) expression

/X es(£),
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where s is a section of an infinite dimensional bundle £ over an infinite di-
mensional manifold X, and es(€) is the formal analogue of the Mathai-Quillen
representative of the Euler class.

Under suitable hypotheses on the bundle and the section, it is possible to
make sense of the above expression in a rigorous way in terms of the Euler
number of a finite rank vector bundle over the zero set of the section s. This
was pointed out in [7], [8], where this procedure of reduction to a finite dimen-
sional subbundle gives rise to an object that is referred to as the “regularised
Euler class”. However in these references the “proof” relies on functional inte-
gral techniques. We describe in the following how the argument can be made
mathematically precise. Our description will also point out the essential differ-
ence between a (co)-homological formulation and a formulation at the level of
representatives.

Remark 11.4 In the finite dimensional case the Euler number does not depend
on the choice of the section s. In the infinite dimensional setup, when xs(E) can
be defined (in a sense that will be made precise in the following), this number
depends on the choice of the section s. Actually it will depend essentially on the
index of the Fredholm operator Ds that linearises the section.

11.2.1 The localised homological Euler class

The construction we illustrate in this section is due to R. Brussee [9]; a similar
construction was also introduced by V. Pidstrigatch and A. Tyurin, [30], [31].
In a different context, the localised Euler class has been introduced by J. Li and
G. Tian [26].

In order to make sense of a homological Euler class for the infinite dimen-
sional case we need to assume certain hypotheses on the bundle and the section.

Definition 11.5 A Fredholm bundle (€£,X,s) is a Banach bundle
ESX

over a Banach manifold X, endowed with a section s which satisfies the condi-
tions:

(i) the linearisation Ds is a Fredholm operator of index d,

(ii) the determinant line bundle det(Ds) is trivialised over Zs = s 1(0).

The linearisation Ds is defined over the zero set Z; as

Ds:TX |2,3 *TE | 7,2 s3TE |2,— € |2,, (63)
where s¢ is the zero-section, via the splitting

00 TX |7, siTE | 7,2 s*TE

Z5_>g |Zs—)0
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of the exact sequence
03E3sTESTX - 0.

Notice that if the bundle £ has a connection the splitting extends off the
zero set Zg.
The result according to Brussee [9] is the following.

Proposition 11.6 A Fredholm bundle (£,X,s) with Ind(Ds) = d has a well
defined localised (or regularised) Euler class

€x5(€) € Hy(Zs; Z).

If we want to set the construction in such a way as to deal with situations
in which the zero set is not a compact set, then the appropriate homology is an
inverse limit of the Cech homology groups over a cofinal family of compact sets,

HY(X;Z) = liIr{n H,(Uk,Ux — K;Z),

and we obtain 5
€ s(£) € H(Z; Z).

Here the sets K are compact and the sets Ux are open neighbourhoods that
embed in some Euclidean space, with K C Ug. The technical details of the
construction are worked out in [9]. The class in this case is defined through a
limiting process over compact sets, with a compatibility condition for K C K’
of the form

€, i,5(E) |z.— k1= € K,5(E)-

The situation is technically less difficult if we restrict our attention only to
cases in which Z; is compact. That will be the case here, since we are mainly
concerned with examples taken from Seiberg—Witten gauge theory, where the
necessary compactness result holds.

The class €., k,s(£) should be thought of as the correct mathematical formu-
lation of the regularised Euler class of [7], [8], defined in terms of a finite rank
subbundle of £ over a finite dimensional submanifold of X.

The essential idea of the construction consists of taking a finite rank subbun-
dle E of € such that on the quotient bundle £ the induced section § has surjective
linearisation D35. This works over Z; by taking E spanned by sections that gen-
erate Coker(Ds). Upon choosing a sufficiently small neighbourhood U of K in
X, D3 is also surjective on Zz. Thus by the implicit function theorem in Banach
spaces Z; is a finite dimensional smooth manifold which is cut out transversely.
The dimension of Zz is N +d, where N is the rank of £ and d = Ind(Ds). Over
the zero set Zz there is an induced section § of E and the localised Euler class
is defined as

6*,K,s(5) = GZ(E |Z§) n [Z§]7
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where €X(E |z,) is the usual cohomological Euler class of the finite rank bundle
E over the finite dimensional manifold Z3.

There is a compatibility condition which ensures that the resulting class is
independent of all choices, namely if E' is another finite rank subbundle of £
with the same properties and with rank N' > N, then the localised Euler class
satisfies

efk,K,s(g) = GE/(EI Zg,) n [Zg/] =

= (B 2) NE(E'[E |2,) N Zs] = &(E |2,) N [Z5] = eocs(E)-

Remark 11.7 If the linearisation Ds is surjective then the localised Euler class
gives, as expected, the fundamental class of the zero set Z.

In the finite dimensional case we have seen that, with some additional struc-
ture, it is possible to extend the construction to the case of a singular zero
set with intersection theoretic techniques. This extension also carries over to
the infinite dimensional case as proved in [9], [30], and [31]. In this case the
intersection theoretic formula which corresponds to (62) is

ex.5(€) = [¢*(Ind(D3)) ™" N e(Zs)]2a, (64)

for the case of a holomorphic bundle £ and a holomorphic section s with the
linearisation Ds of complex index d.

11.2.2 Equivariant homology and the Atiyah-Jeffrey formalism

Unfortunately the precise mathematical formulation works at the level of classes,
whereas at the level of representatives one can only proceed formally as in the
very enlightening introduction to the Mathai-Quillen formalism in Quantum
Field Theory, given in [4].

Some manipulations of the expression (61) that are fully explained in [4] lead
to another expression for a de Rham representative of the regularised Euler class
of a bundle E. This expression can be translated into a formal infinite dimen-
sional integration that describes a “de Rham representative” of the regularised
Euler class of a Fredholm bundle £. An accurate analysis of the conditions
under which the formal expression can be given a more precise mathematical
sense is beyond the scope of this book. It is the author’s belief, however, that
a construction of a regularised Euler class in the sense of Brussee that exists
directly at the level of representatives may be sought within the context of the
theory of characteristic currents of Harvey and Lawson [17].

Proposition 11.8 A representative of the Euler class of a (finite dimensional)
bundle E is computed in terms of the Mathai—Quillen form as the integral over
the principal bundle P of the form

2-dg=d=m [oxp(— | s |? —}—tw"# + itdsw

(65)
—i < dv,h > +i(q, Rh)+ < dy,v(f) >)DfDwDgDh.
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In the above expression d = dim(G); q, h, and f are Lie algebra variables
that arise in the use of a Fourier transform and in expressing the invariant
volume in terms of the Killing form; the y’s are coordinates on P; and v is a
canonical 1-form with values in £(G), defined by the action of G on P. The
operators v and R arise in the definition of v as

vg(v) =< v(€),v >,

where v is a tangent vector, and & € L(G); v(€) is the vector field given by the
infinitesimal action of £ (like in definition 2.12). The operator R is defined as
R = v*y,i.e. <v(&),7(¢) >= (RE,(), where the inner product (,) is the one
given by the Killing form.

A very nice description of the representative (65) in terms of equivariant
homology can be found in [5]. In the case of a free G-action on a manifold M,
the form (65) is exactly the current that represents the fundamental class of the
quotient M /G in the dual equivariant de Rham complex of M.

The argument given here carries over, at least formally, to some infinite
dimensional cases, [4], [28], and it provides therefore the right mathematical
setup in which the topological Lagrangian introduced by Witten for Donaldson
theory [35] lives. The analogous construction works for Seiberg—Witten theory,
as shown in [10] or [25]. We are going to discuss this in detail in the following.

11.3 Euler numbers in Seiberg—Witten theory

The Fredholm map Ds given by the linearisation (63) is the operator that
specifies the deformation complex of the gauge theory. Typically the Banach
manifold X is some configuration space .4/G of connections (or connections and
sections) modulo gauge transformations. It is often better to think of framed
configuration spaces in order to avoid singularities that otherwise occur at the
points where the action of the gauge group is not free. Alternatively, one can
restrict the action only to the irreducible elements in 4. The section of the
Banach bundle is given by the differential equations of the gauge theory and
the operator Ds corresponds to the linearisation of the equations, with some
gauge fixing condition. The zero set Z, is the moduli space M of solutions of
the equations modulo gauge.

The deformation complex can be thought of as the short complex C* given
by

0>Tx X e,

where H°(C*) = Ker(Ds) and H*(C*) = Coker(Ds). However it is often the
case that C* can be written as the assembled complex of a longer deformation
complex involving the infinitesimal action of the gauge group G.
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Consider the example of Seiberg—Witten gauge theory on four-manifolds.
Let X be a compact oriented four-manifold without boundary, with b3 (X) > 1.
The Banach manifold A is the manifold of pairs (A, 1) with a non-trivial spinor
section ¢ € I'(X,W). Upon topologising the space A and the group of gauge
transformations G with the appropriate Sobolev norms, the quotient X = A/G
can be made into a Banach manifold. The fact that we only consider non-trivial
sections ensures that the action of G is free, hence no singularities occur in X.
The bundle £ over X has fibre A?T(X,ilR) & A°(X,iR)®T (X, W ). The section
s of £ is given by the Seiberg—Witten equations with a gauge fixing condition

S(Aﬂﬁ) = (FX - U(w7¢)7d*("4 - AO)aDAw)v (66)

with o(1, ) =< e;ejh, 1 > et Ael.
The linearisation Ds at a point (A4,4) in Z, is the Fredholm operator

Ds: AYX,iR) @ T(X, W) = A**(X,iR) @ A°(X,iR) ® T(X, W)
given by

dta—1Im(< eejih, ¢ >)et A e
Ds |(a) (@, ) = d'a—i<1,¢>
Dad +ia- .

This can be rewritten in terms of the long deformation complex
0 A S A eT(X,WH) 5 A @ T(X,W ") >0,

where the operator G is the linearisation of the action of the gauge group G(f) =
(—idf,ifv) and T is the linearisation of the section s regarded as a map from

Ato &,
1 . :
T |(A,'(/)) (aa ¢) = (d+Oé - i‘lm(< eiejwa ¢ >)eZ A CJ,DA¢ +io- d})

Thus we obtain Ds =T + G*.

In the case of the long deformation complex we have H°(C*) = 0 (the
infinitesimal action of the gauge group in an injective operator whenever 1 is
not identically zero). We also have H'(C*) = Ker(T)/Im(G) = Ker(Ds) and
H?(C*) = Coker(T) = Coker(Ds). Thus we get the exact same information.
In particular notice that the H?(C*) is an obstruction to Z, being a smooth
and cut out transversely. Under the assumption that the four-manifold has
b (X) > 1 it is possible to perturb the section by adding a self dual 2-form
and make H?(C*) trivial, as we discussed previously. The zero set Zs is the
Seiberg—Witten moduli space, which in this case is a compact smooth manifold
of dimension given by the index of the operator Ds,

_ c1(L)? — (2x + 30)

Ind(Ds) 2 .
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Another example is the dimensional reduction of the Seiberg—Witten theory
on three-manifolds. Let Y be a closed oriented three-manifold. Let W be the
spinor bundle associated to a Spin.-structure. If Y has b,(Y) > 1, then we can
consider the infinite dimensional manifold 4 of U(1) connections and non-trivial
spinors, and the quotient X by the action of the gauge group. The bundle &
has fibre A1(Y,iR) ® A°(Y,iR) ® I'(Y, W) and the section s is given by

S(Aa'lp) = (*FA - T(¢7¢)a d* (A - Ao), 6A¢)7 (67)

where 7(1),4) is the 1-form given in local coordinates as < e;3), ¢ > e’ and 94
is the Dirac operator on W twisted with the connection A.
The linearisation Ds determines the short deformation complex

0= AYV)a AL Y)Y, W) Z A°(YV) e AN Y) e T(Y,W) = 0,

with
xda + 2Im(7(¢, 9)) — df
Ds |(A,¢') (f7a7¢) = _8A¢_7/a¢+7/f'¢
d*a—if <i,¢>.

The space A°(Y) ® AY(Y) @ I'(Y, W) is the tangent space TX at the point
(A, ) of Zs. Since we are assuming by (Y) > 1, we can guarantee that under
a suitable perturbation of the section by a 1-form the zero set will not contain
points with trivial .

The more general case can be worked out in the equivariant setup [27], by
considering X = A/G, where G is the group of based gauge transformations,
i.e. those maps that act as the identity on a preferred fibre of W. In this case
the framed configuration space X is a manifold, even though the action of the
full gauge group is not free.

11.3.1 Atiyah-Jeffrey description

Some of the references available on the Mathai-Quillen formalism in Seiberg—
Witten gauge theory are [25], [10]. A different construction that uses the BRST
model of equivariant cohomology (see [19], [12], [13]) can be found for instance
in [16].

Consider the case of perturbed Seiberg—Witten equations on four-manifolds.
The section s(A,1)) given in (66) satisfies

| s(4,9) I’= S(4,4),

where S(A, 1) is the Seiberg—Witten functional defined in (11).

We can identify the various terms of the Euler class, as given in proposition
11.8 following the case of Donaldson theory analysed in [4]: this has been done
in [25], [10].
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Note that, according to (17), we have variables dy = (a, ¢), with a € A1(X)
and ¢ € T'(X,WT), that represent a basis of forms on A; and the variable f
which counts the “gauge directions”: f € A°(X) satisfies e’/ € G. Similarly ¢
and h are in the Lie algebra, i.e. in A%(X). w = (8,x) € A (X) e [(X,W")
is the variable along the fibre.

The term ds, therefore, is just the linearisation Ds of the Seiberg—Witten
equations given in lemma, 4.2:

1 . )
ds(a,p)(a,¢) = (Dad+ia-¢,d"a— 5[m(< eiej), ¢ >)e' Nel).

Moreover, it is clear that the operator «y is the map G of the complex (17)
that describes the infinitesimal action of the gauge group. Hence

v(f) = G(f) = (~idf,ify) € A'(X) @ T(X, W)

and 1
v (a,¢) = —d*a+ §Im(< eiej, ¢ >).

Thus the operator R is given by
R=d*d+ ¢ |*.
Thus all the terms in (65) can be computed:
itwp(q)w = _Tiq | x [? dv,
itds w =i A*dTa — %(ﬁ,]m(< ¥, ¢ >)et Aed)dv+ < Dag +iaap, x > dv,
—i < dv,h >=—ih |8 ?,
i(q, Rh) = iq(d*dh+| ¢ |* h),

<dy A1) >= (7dy, ) = df Awdac -

The only expression that requires some more comments is the third above,
where dvy*(dyi,dy2) is computed [25] using

dy* (dy, dy2) = dy: (v*(dy2)) — dy2(v*(dy1)) — 7v* ([dys, dy=])

and constant vector fields dy; and dy», whose Lie bracket vanishes identically.
Thus we have constructed a “topological Lagrangian”; we want to recover
the Seiberg—Witten invariants as correlation functions.

Im(< eje; i, ¢ >)dv.
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11.3.2 Seiberg—Witten Invariants Revisited

There is an essentially unique possible definition of the Seiberg—Witten invari-
ants when the moduli space M is zero-dimensional, which we introduced in
definition 4.11. As already mentioned, there is a natural choice of how to ex-
tend the definition of the invariants for a higher dimensional moduli space. In
fact we have seen that the choice of the line bundle of lemma 4.12 is preferable
for homotopy-theoretic reasons. Nevertheless, there are other constructions that
can be considered and that bear a certain naturality within the context of Quan-
tum Field Theory. We describe one in this section and another, related to the
concept of regularised Euler characteristic, in the following.

What follows here is partially just a formal argument, as the computations
have to be carried out in an infinite dimensional setup. In the previous para-
graph we have shown that the Mathai-Quillen form of the Euler class of the
bundle E on A/G is

d —i i .
e=2"% d/exp(—|s|2+(Zq|x|2—§(ﬂ,fm<¢,¢>e Ael)
f
2
+iB A xdta + df A +da)DfDhDgDADY.

+ < Dag+iarh, x > —ih | B |* +ig(Ah+ | ¢ [* h) + ZIm < ejej), ¢ >)dv

When the moduli space is zero dimensional the Seiberg—Witten invariant
is obtained as the Euler number of the bundle, [4], i.e. by integrating the
above class over the total space P (here DaD¢ is just a formal measure, or
a “functional integration” in the language of physics, since the form is being
integrated over an infinite dimensional manifold).

The Euler class above formally has “codimension” equal to the dimension
of the moduli space, since that is —Ind(C*) where C* is the chain complex
obtained by linearising the Seiberg-Witten equations [4].

Hence, when the moduli space is of positive dimension, in order to obtain
numerical invariants, we need to cup the class above with other cohomology
classes of A/G.

The following is a possible construction, mimicking Donaldson’s construction
of the polynomial invariants. The idea is to choose a bundle over A/ g x X,
integrate a characteristic class of this bundle against a homology class of X,
and then, restricting to M x X — A/G x X, get a map

w: Hy(X) - H % (A/G),

where ¢ — k is the dimension of M, and i is the degree of the characteristic class.

There is a U(1)-bundle A/Gy — A/G, where Gy is the gauge group of base
point preserving maps. In fact G/Go = U(1). The restriction of this bundle to
M < A/G is the U(1) bundle used in definition 4.13.
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We can form the bundle Q = A xg, L? over A/G x X and consider its first
Chern class ¢1(Q).

Then take the pullback via the inclusion of the moduli space M — /i/ g;
this gives i*Q — M x X.

The construction above gives a map

w: Hy(X;Z) = H> *(M;Z).

In fact, take a class a € Hi(X;Z), and its Poincaré dual a = PD(«); take the
first Chern class

c1(Q) € H*(A)G x X;Z)

and decompose it according to the Kiinneth formula
H2(A/G x X;Z) = @;H (X;Z) ® H* I (A/G; Z),

as )
a(Q) =e;a(Q) ;.

Evaluate against X to get a class
/ 1(Q)f_4 Aa€ H*(A/G;Z).
b'¢
The pullback via i* defines a class in H?(M;Z):

w(a) = i* /X c1(Q) Aa.

This defines maps
qd : Hkl(X) X - X HkT(X) -7

with Z;:1 (2 — k'J) =d

qa(a1, -, 0p) = /Mw(oq) A ANw(ay),

where d is the dimension of the moduli space M. These play the role, in our
construction, of Donaldson’s polynomial invariants.

Thus, according to the quantum field theoretic formalism, we obtain the
invariants by evaluating over A/G the Euler class cupped with classes w(a):

N= [ s*(e)Awla)A---Aw(ay),
AlG

with d = dim(M).
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This should be considered as the definition that corresponds to the descrip-
tion of the invariants as expectation values of the operators obtained by the
formalism of Quantum Field Theory, [35].

The operators constructed in [25], or [10] following [35], are:

k

Wio = P

Wi =aWg_1,,
1
Wio=FWy_10— 3¢ ANaWg_ayg,

1
Wis=FANaWy_20 — ga ANaANaWi_3y,

1 1 1
Wk,4 = iF A FWk_Q,O - iF ANaA Oth_3,0 - ga NaANal aWk_4,0.

The choice of different k should correspond [35] to different choices of char-
acteristic classes to pair with the homology classes of X in the construction
of the invariants. In particular we should obtain a relation between some of
these operators and the polynomial invariants constructed above, adapting to
the present case the argument given for Donaldson theory in [4].

The Chern class ¢;(Q) should be interpreted as a curvature on the infinite
dimensional bundle Q in such a way that the components c¢;(Q)}™* € A{(X) ®
A2~i(A/G) should be written in terms of the operators W as

/A S*(e)H/ Wz:/ / cl(Q)z?l—h/\.../\/ CI(Q)z?T—i,.’
A/G i1 Y MJay o

id

integrated over submanifolds «a; of X of the proper dimension.

It is not clear that the polynomial invariants defined in this section are non-
trivial for positive dimensional moduli spaces. In fact it is conjectured that for
simple type manifolds (see the section on Seiberg—Witten and Donaldson theory)
the only non-trivial invariants are associated to zero-dimensional moduli spaces.

11.3.3 Remarks

There are many other cases of interest in which the Mathai-Quillen formalism
and the mathematical formulation of regularised Euler classes can be applied.
Most of them present technical problems due to the non-compactness of the
moduli space. The case of Donaldson theory was considered with similar tech-
niques in [4], [7], [8], [30], [31], [35]- The case of SU(2) gauge theory on three-
manifolds was considered in [7], [8]. Another interesting case is the moduli space
of J-holomorphic curves on a symplectic manifold. A construction via the regu-
larised Euler class has been recently introduced by Tian [26]. Interesting insight
on the use of analogous techniques for moduli spaces of curves can be found in
[1], [20], [36]-
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11.4 N =2 symmetry and the Euler characteristic

It was already noticed in [7] and [8] that, in the formulation of gauge theories via
the localised Euler class, the examples on four-manifolds and the dimensional
reductions on three-manifolds present different behaviour. This phenomenon is
described in [7] and [8] as essentially related to the index of the operator Ds
being zero or not. The index is, in fact, the virtual dimension of the moduli
space or, in other words, the homological degree in which the regularised Euler
class sits.

To have positive index means that the Euler class has no component in degree
zero. From the viewpoint of Physics the degree zero term of the regularised Euler
class is the partition function of the field theory. Therefore in this case they
say [7], [8] that in the presence of zero-modes (the non-trivial kernel of Ds) the
partition function vanishes identically.

In gauge theory this problem is overcome by capping the regularised Euler
class with other classes until the resulting class sits in degree zero. This method
is used to produce numerical invariants when the moduli space is of positive
dimension, as in the case of Donaldson polynomials. In Seiberg—Witten theory
there is a canonical choice of a class which is used to lower the homological
degree of the Euler class, namely the Chern class of the line bundle

22" 7,

where Z! is the zero set of the section s defined on the framed configuration
space X = A/Gp, with G the group of based gauge transformations that act
as the identity on a preferred fibre of W. It is a canonical choice, since Z,
is a model of the classifying space of the group G and it is therefore homotopy

equivalent toCP> x K (H'(X,Z),1). The circle bundle Z° QP Zs is a principal
U(1)-bundle with first Chern class given by the generator of the homology of
the CP factor, as we discussed in the first part of these notes.

When the index of Ds is zero the Euler class lives in degree zero (or degree
zero and higher in the singular case) and it computes the regularised Euler
number of the bundle £. In this case, even when the section is not transverse
to the zero section and the set Z; can be a positive dimensional manifold, the
partition function does not vanish and we can still get a non-trivial invariant.

This simple observation leads to what the physicists call the N = 2 super-
symmetric formulation of regularised Euler numbers. We state some mathemat-
ical results and then we try to explain the meaning of the physical interpretation.

Proposition 11.9 Suppose given a Fredholm bundle (£,X, s) such that the op-
erator Ds is surjective. Under this assumption s induces a section st of the
tangent bundle TX|z,. Thus we can associate to the bundle (£,X,s) a regu-
larised Euler characteristic, which is in fact the Euler characteristic of Zs and
which we can regard as a regularised Euler characteristic of the infinite dimen-
stonal manifold X .
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Proof: Since we assume that Coker(Ds) = 0, the zero set Z; is a smooth
manifold which is cut out transversely and Ker(Ds) is the tangent bundle of
Zs. Thus we have a splitting

0 — Ker(Ds)|z, = TX|z, I—)‘>95|Zs — 0.

The restriction to Ker(Ds) = TZ; of the induced section st of TX|z, gives
us the Euler characteristic of Z;, computed as the pairing of the cohomological
Euler class of the bundle TZ, with Z;.
QED

Thus we can define a regularised Euler characteristic of the Fredholm bundle
& with a transverse section s as the topological Euler characteristic of the zero-
set Zg, which can be obtained in terms of regularised Euler classes,

Xs(E) = X' PNZs) = €45, (TX|2,) = €,,(Ker(Ds)) N [Z].

The hypothesis that Ds is surjective is essential in 11.9 in order to be able
to lift the section s to a section sp. Morevor, if Ds has a non-trivial cokernel, in
general Ker(Ds) would not be a bundle, hence a different formulation is needed.

We can expect the definition of the regularised Euler characteristic to gen-
eralise to the singular case. The construction in that case would require an
accurate analysis of degeneracy loci. A particular case has been considered in
[36].

One can seek an intersection theoretic formulation for the Euler character-
istic as well. In fact, in the finite dimensional case we have

x(Zg) = [¢"(TX|z — E|z) N[c*(E|z — TX|z) N ¢x(Z)]aim 7)o,
where Z, is the zero set of a generic (transverse) section, whereas we would have
x(2) =[c(TX|z - E|z)c*(E|lz = TX|z) Nex(2)]o = [cx(Z)]o

for Z = Z; the smooth zero set of a non-transverse section.

Notice that, under the hypothesis of 11.9, the construction provides a dif-
ferent gauge theoretical invariant associated to a positive dimensional moduli
space, namely its Euler characteristic. In a sense this is more canonical than
capping with cohomology classes, since it does not depend on the choice of the
classes.

We digress briefly to explain the relation of all this to supersymmetry. The
N = 1 supersymmetry is already intrinsic in the construction of the Mathai-
Quillen form [28], in as it enters the definition of the Berezin integral. This
relation has been exploited in Witten’s interpretation of Donaldson’s theory as
a Topological Quantum Field Theory [36] and in the subsequent work of Atiyah
and Jeffrey [4]. Now consider the expression

x(Zs) = €5, (Ker(Ds)) N [Zs]
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that we obtained as the regularised Euler characteristic, under the strong as-
sumption that Ds is surjective. In this case we can rewrite the fundamental
class [Z;] as the regularised Euler class of £,

x(Zs) = €, (Ker(Ds)) N [e5(E|z;) N [Zs]]-

The N = 2 supersymmetry enters the picture when we want to interpret the ex-
tra cohomological factor €} (Ker(Ds)) that appears in this formula as another
fermionic integral. This is related to the Riemannian structure of the moduli
space Zs [6] and to the presence of a compatible complex structure. An expo-
sition of this in the case of Donaldson moduli spaces can be found for instance
in [18].

After the brief digression into Physics, we would like to come back to our
favourite gauge theoretic examples. Consider again Seiberg—Witten theory on
three-manifolds. The section s(A4,v¢) = (xFa — 7(¢,v),d*(A — Ap),0av)) can
be thought of as being a section of the tangent bundle of X.

Since the index of the linearisation is zero, the regularised Euler class sits in
degree zero and already computes the Euler characteristic of the moduli space.
Thus we have the following result.

Proposition 11.10 Assume that b1(Y) > 0. In this case the section s can be
perturbed in such a way that Zs contains no reducible point and the linearisa-
tion Ds is surjective. The Seiberg—Witten invariant in three dimensions then
represents the regularised Euler characteristic of the Fredholm bundle (£,X,s)
with X = A/G and fibre A*(Y,iR) @ A°(Y,iR) ® T(Y,W).

11.4.1 Three dimensional Atiyah-Jeffrey formalism

Using the complex (23) and the Mathai—Quillen formalism, it is possible to
construct a topological Lagrangian for the three-dimensional theory as well.
This is dealt with in [10]. The upshot is that the invariant can be recovered
as a partition function of the QFT. This has been explained in the language of
regularised Euler classes by saying that the properties that Ind(Ds) = 0 and
that s is transverse give rise to a regularised Euler class that lives in dimension
zero and is just the sum of the oriented points in the (compact) moduli space.
This is the analogue of the gauge theoretic description of the Casson invariant
[32].

Again we face the problem of having a mathematical formulation which is
rigorous but which only makes sense at the level of classes, whereas the language
spoken in the Physics literature tends to represent the partition function as the
formal integral of a de Rham representative of the regularised Euler class. The
result would then be rephrased by saying that the integral is localised at the
points of Z;.

The formal expression of the de Rham representative, as we have already seen
in the four dimensional case, is given following the Atiyah-Jeffrey formulation.
The case of three dimensional gauge theory has been analysed in [10].

155



Proposition 11.11 The expression of the formal de Rham representative of
the regularised FEuler number associated to the three-dimensional Seiberg—Witten
gauge theory is of the form (65) with s the section (67), ds the corresponding
linearisation Ds(a,y)(f, o, ¢), and

V() = G(f) = (~idf,ify) € A'(Y) © D(Y, W),

'Y* (Cl, ¢) = G?A,q/;) (aa ¢)7

R(f) =d*d+ | ¢ %,
1

1 _ Tt 2
1% plg)w 4(1|x| dv,

—i < dv,h >= —ih | B %,
i(g, Rh) = ig(d*dh+ | ¢ |> h),
<dy,y(f) >= (V'dy, f) = ia A xdf+ < ¢,ifyp > dv.

The formal functional integral (65) computes in this case the regularised
Euler characteristic of the Fredholm bundle £ with the section s(A4, 1) given in
(67), that is, the Seiberg—Witten invariant of three-manifolds. The mathemati-
cian might think that the use of expression (65) to define the invariant rather
than the sum of gauge inequivalent solutions of equations (21) and (22) is a use-
less complication, especially given that it is expressed in terms of non-rigorous
functional integration. However, it must be understood that the quantum field
theoretical formulation provides the physicist with appropriate tools and formal
rules designed to the purpose of computing these functional integrals. Often
it is precisely the fact that one can rephrase the computation as an integra-
tion over all the “unconstrained fields”, rather than just the sum over the fields
“constrained” by the differential equations, that makes it computable. It is the
author’s belief that a further study of the properties of the regularised Euler
classes of Fredholm bundles will help to make some of these tools available to
mathematicians as well.

11.5 Quantum Field Theory and Floer homology

The three dimensional invariant and the Floer homology were first introduced
within the quantum field theoretic formalism [10]. It is well known from Atiyah’s
formulation of quantum field theory [2],[3] that we can think of a quantum field
theory as a functor which associates to a closed three manifold a vector space
and to a four-manifold with boundary an element in the vector space attached to
the boundary. A pairing of the vector space with its dual corresponds to gluing
two four-manifolds along their boundaries. The numbers that results via this
pairing are invariants of the differentiable structure of a closed 4-manifold. In
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our case the Floer homology is the vector space associated to a three-manifold.
However, our case does not entirely fit into Atiyah’s definition. In fact we have
seen that there is a subtle problem of metric dependence in the Seiberg—Witten
Floer homology: a phenomenon that did not appear in Donaldson theory.

Instanton homology also didn’t quite fit into Atiyah’s formulation, but for
a different reason. In that case the main difficulty was to extend the definition
of the Floer homology from the case of homology spheres to all closed three-
manifolds. To a large extent this problem was overcome following two different
strategies: the Fukaya-Floer [14] homology or the equivariant Floer homology
[5]. The latter can be used also in Seiberg-Witten theory to deal with a similar
problem; and the equivariant formulation turns out to be effective also in dealing
with the metric dependence problem. A Fukaya-Floer complex for Seiberg—
Witten theory has been considered in [11] in connection to the formulation of
relative invariants.

The problem of the metric dependence also has a physical formulation.

Definition 11.12 A gquantum field theory is determined by a manifold X and
a Fredholm bundle (£,s) defined by means of geometric data on the manifold
X (metrics, connections and sections of some vector bundles, etc.). The “ex-
pectation values” of a quantum field theory are the Euler numbers obtained by
capping the regularised Euler class €;(E) with cohomology classes of total degree
Ind(Ds), which also encode some geometric data of the manifold X. A quantum
field theory is called “topological” if the expectation values are independent of
the metric on X.

We distinguish two kinds of topological quantum field theories (see the
overview [23], [24]).

Definition 11.13 A topological quantum field theory is said to be of Schwarz
type if it satisfies the condition that the variation of the section s of the Fredholm
bundle £ with respect to a one parameter family of metrics on X is zero and that
the cohomology classes that are capped with the regularised Euler class €5(E) are
also chosen in a way that is independent of the metric on X.

A typical example of topological quantum field theory of Schwarz type is
Chern-Simons theory.

Definition 11.14 A topological quantum field theory is said to be of Witten
type if it satisfies the condition that the cohomology classes capped with €s(E)
are independent of the metric on X and the variation of the Mathai—Quillen
form (65) with respect to a one parameter family of metrics on X is an ezact
form.

An example of topological quantum field theory of Witten type is the twisted
Yang-Mills theory that reproduces Donaldson polynomials as expectation val-
ues [35]. Seiberg—Witten gauge theory also fits into this second type. In the
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three-dimensional case when b; (Y') > 0 the invariant is metric independent even
if the section (67) and the functional (32) depend on the metric. This result can
be rephrased exactly in terms of the property that defines topological quantum
field theories of Witten type. This corresponds, in our more general picture of
Floer-type homologies, to the independence with respect to perturbations that
preserve the index of the linearisation Ds and the compactness of Z,. On a ho-
mology sphere, however, there is a problem of metric dependence and this means
that Seiberg—Witten theory is not a topological quantum field theory. Never-
theless a topological theory can be obtained by factoring the Floer homology
through the equivariant complex via the map (47) and its dual map.

11.5.1 Relative Seiberg—Witten invariants

If we try to fit the construction of Seiberg—Witten-Floer homology into the
framework of axiomatic topological quantum field theory [3], we need relative
invariants. In fact we want to associate to a four-manifold with boundary an
element that lives in the vector space (the Floer homology) of the boundary
Y. The construction of relative Seiberg—Witten invariants has not yet appeared
in full details. A construction based on a Fukaya-Floer complex has been con-
sidered in [11], where the corresponding gluing theorems are stated. Relative
Seiberg-Witten invariants are also discussed in [22], [21], and [29].

Suppose that X is a four-manifold with boundary Y, endowed with a metric
with a cylindrical end [0, 00) x Y and a Spin.-structure that coincides along the
cylinder with the pullback of a Spin.-structure on Y. Solutions of the Seiberg—
Witten equations on a cylinder with the temporal gauge condition have an
asymptotic value that is a critical point of the functional (32). Moreover, if the
critical point is non-degenerate, the decay is exponential at a rate determined
by the first non-trivial eigenvalue of the Hessian. This implies that for each
fixed critical point a it is possible to define a moduli space M(X, a) of solutions
(A, ) of the Seiberg—Witten equations on X that are in a temporal gauge on
the cylinder [0, 00) x Y, with the asymptotic condition

Jim (A(), (1) = a
on [0,00) x Y.
There is a compactification of M (X, a) with strata of the form

Upn(s)— u(a)y=1 M (X, b) x M(b,a). (68)

Thus, if the moduli space M(X,a) is zero-dimensional, one can define the
relative invariant N (X, a) as the sum of points in M (X, a) with the orientation.
As in the case of a compact manifold, the invariant depends on the choice of
the Spin.-structure.
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The compactification (68) ensures that the expression

N(X,Y)= ) N(X,a)a,
aEM.

which is an element in FC.(Y), is in fact a cycle. Thus N(X,Y) defines an
element in the Floer homology HF,.(Y).

11.6 Exercises

e This and the following are not really thought of as exercises. They are just
meant to address some questions that arise from the QFT formalism intro-
duced above. The first problem is to describe more precisely the relation
between the infinite dimensional bundle used to compute the invariants
in this context, and the choice made by [33] (definition 4.13). The two
following problems deal with supersymmetry.

e The formalism above that produces the topological Lagrangian can be
rewritten in terms of superalgebras, [35]. Try to follow the argument
given in [25], [10].

o We already know that the Seiberg—Witten functional provides other crit-
ical points that are non—minimising. Therefore, they do not correspond
to solutions of the Seiberg—Witten equations, but rather of the second
order variational problem (14), (15). Thus, we would like to modify the
functional (11) in such a way that it still encodes all the information con-
cerning the solutions of the Seiberg—Witten equations, but also in such a
way to get rid of all non—minimising critical points. In Physics this kind
of problem is taken care of in the supersymmetric formulation of gauge
theories. How does this relate to the results of this section?
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12 Seiberg—Witten and Donaldson theory

In this chapter we would like to outline briefly the expected relation between
Seiberg—Witten and Donaldson theory, and the different approach that physi-
cists and mathematicians follow in intertwining the two theories.

In a fundamental paper [16], Kronheimer and Mrowka gave a description of
a relation that constrains the values of the Donaldson invariants for a manifold
of Donaldson finite type. The finite type assumption is a technical hypothesis
on the behaviour of the polynomial invariants, which is satisfied by all presently
known examples of simply connected 4-manifolds with b;r > 1.

Let us recall that the polynomial invariants are defined in terms of homol-
ogy classes a € Ha(X;Z) and the moduli space M%7 of anti-self-dual SU(2)-
connections on a bundle E with instanton number k& = ¢o(E). The moduli space
M54 is of dimension 8k — 3(b5 + 1). As we already discussed in relation with
the Mathai-Quillen formalism, one can think of the space X x M&%? inside the
infinite dimensional space X X A/ B, where the second factor is the space of ir-
reducible SU(2)-connections modulo gauge [17], [18]. One can form a bundle £
over this base space and integrate the second Chern class of this bundle against
a homology class of X. This gives a map

p: Hy(X) — HYHA/G).

Thus, given a = (a1, . ..,aq) with a; € H2(X; Z), one gets a polynomial invari-
ant [17]
qa(@) = {u(ar) A--- A p(aa), [M*7).
We denote the term pu(aq) A --- A pu(aq) as p(a) for simplicity.
It has been shown [16] that the polynomial invariants satisfies the relation

da-2(a) = (u(@) Av, M*),

where o = (a1,...,aq—2). Here v is the class in Hy(X;Z) obtained from the
element ¥ ® 1 in the Kiinneth decomposition of the second Chern class c2(€). A
detailed discussion of Donaldson polynomial invariants can be found in chapter
9 of [18]. The Donaldson simple type condition can be formulated as follows.

Definition 12.1 X is of Donaldson simple type if the polynomial invariant
satisfies
ga-a(@) = 4(p(e) A v, M),

where o = (@, ...,04-4).

The following result, due to Kronheimer and Mrowka [16], is proved for
manifolds of Donaldson simple type.
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Theorem 12.2 Let X be a simply connected manifold of Donaldson simple
type, with b; > 1 odd. Combine the Donaldson polynomial invariants qq in the

expression
dd

q= a
d

Then this expression satisfies
e Q@) P~
g(e) = exp(~ );ake b,

Here @) is the intersection form of the four-manifold X and the classes
z, € H3(X;Z)

are called the Kronheimer—Mrowka basic classes and they are subject to the con-
straint that the mod 2 reduction of each xy is the Stiefel-Whitney class wo(X),
and the corresponding coefficients ay, are non-zero rational numbers.

The conjecture formulated by Witten in [29] is the following.

Conjecture 12.3 In the expression
1= () Laue”

the basic classes t, € H*(X;Z) are exactly the Seiberg-Witten basic classes,
namely those that satisfy
2x + 30
oy = (VL) = XT,
and correspond to a Spin. structure sy with non-trivial Seiberg—Witten invari-

ant,
Ny, (X) #0.

Moreover, the corresponding coefficient ay, is exactly, up to a topological factor,
the Seiberg—Witten invariant N, , that is, we have

0y = 2HOCOHCO) N (XY,

The Physics underlying this conjecture is sketched in the next section: the
reader can consult [1], [29], or [30]. More detailed references are [26], [27], see
also the bibliographic section at the end of the book.

From the conjecture 12.3 it seems that the Seiberg-Witten invariants should
contain more information than the Donaldson invariants. In fact all the Don-
aldson polynomials can be recovered from the knowledge of the Seiberg—Witten
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invariants associated to zero dimensional moduli spaces. Thus, in principle,
the Seiberg—Witten invariants associated to positive dimensional moduli spaces
might give more information.

A related conjecture, which we mentioned already, is the following.

Conjecture 12.4 A simply connected manifold X is of Donaldson simple type
if and only if it is of Seiberg—Witten simple type, namely if the only non-trivial
Seiberg—Witten invariants correspond to a choice of Spin.-structure such that
dim(M) = 0.

12.1 The Physics way: S-duality

The physicists’ approach to the equivalence of Seiberg-Witten and Donaldson
theory is based on Witten’s interpretation of Donaldson’s theory as a twisted
supersymmetric Quantum Field Theory [31] and on the concept of electro-
magnetic duality. We attempt here a very rough overview of some of these
topics. From the mathematician’s point of view this concept of “duality” is
rather mysterious; however, we’ll try to present the basic ideas, mainly based
on [1], [30], and on the exposition [2]. We especially recommend the very nice
introduction to S-duality given in [5].

12.1.1 Maxwell equations

The first appearance of electromagnetic duality is in Maxwell equations. It is
well known that the Maxwell equations in vacuum can be written as

dF =0 d*F =0,

where F' = dA is an imaginary 2-form, the curvature of a U(1) bundle with
connection A. In Physics notation one would write

Ey = —iFpy
for the electric field, and
1
Bk = —iECkPquq

for the magnetic field. The symbol €7 is £1 according to the sign of the
permutation {k,p,q} of {1,2,3} and zero if any two indices are equal.
It is clear that there is a symmetry given by the Hodge *-operator

BixF

that preserves the equations and interchanges electric and magnetic fields.

The Maxwell equations are no longer invariant under the %-operator if one

considers the presence of electric charges and electromagnetic currents, unless
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one postulates the existence of isolated magnetic charges, namely magnetic
monopoles.

Magnetic monopoles satisfy a quantisation condition which states that the
magnetic and electric charges are related by

2r
m=—.

e
There is an elegant topological motivation for this quantisation condition which
is beautifully explained by Raoul Bott in [3].

There is an analogue of electromagnetic duality for monopoles in non-abelian
field theory, where again one can see that electric and magnetic charges live in
dual lattices and the magnetic charge can be given a topological meaning.

The electric charge enters the Lagrangian as a coupling constant (as we are
going to discuss in a moment). Thus, one can see how electromagnetic duality
interchanges weak and strong coupling (a small with a large coupling constant).
Interchanging a weak with a strong coupling means to exchange the range in
which perturbative theory can be applied with one in which it cannot. This will
be discussed in the following.

12.1.2 Modular forms

In the abelian context, that is, with structure group U(1), we can write the
Lagrangian density on a four-manifold X as

1 47 0

The second part of the Lagrangian density is a topological term,
0

%Cl (.[/)27

where L is the chosen line bundle on which the Maxwell equations are considered.
The angle 0 is the U(1)-symmetry of the vacuum state.

Upon setting
0 Armi

T=o ot

one can rewrite £ in terms of 7,

1

=& (F(FT)? — 7(F7)%)dv.
T Jx

The partition function, formally written as an infinite dimensional integral

Z ~ / e FDA,
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is invariant under the transformation
T 7+ 2.

Under the transformation
TH—T+1

we have
Z s Z - emien(D)”

In the case of a Spin-manifold ¢;(L)? is an even integer, hence there is an
invariance under 7 — 7+ 1. A more complicated computation with the formal
rules of infinite dimensional integrals “shows” that there is also an invariance
under

1
ThH ——.
T

This can be viewed as a consequence of a Poisson summation formula applied
formally to the infinite dimensional integrals, which leads to the result

7(=1) = P00 2 O+0(X) g (7

T

This implies that Z(7) behaves like a modular form under the action of
SL(2,Z). This fact is an appearance of the phenomenon known as Montonen-
Olive duality. It is related to electromagnetic duality, since the transformation

1
T ——
-

corresponds to
BixF,

in the sense that all the expectation values are preserved under the combined
action of the transformations together. Thus, the modularity can be thought of
as a refined version of the Hodge duality which manifests itself at the quantum
level.

We should remark, however, that the picture presented here is quite incom-
plete. In fact it ignores the essential role of supersymmetry.

In the case of non-abelian monopoles the analogous phenomenon happens if
one considers the Lagrangian density

1 10
= — | Tr(FAxF)+— | Tr(FAF).
L 92/X r(F A * )+87r2/x r(FAF)

The presence of the coefficient 515 depends on the fact that the Killing form on
the compact Lie group G is only defined up to a scalar multiple which is usually
set equal to one in the mathematical literature, while it appears in Physics as
a coupling constant. The second term represents the second Chern class of the
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vector bundle E on X on which the connection and curvature F =dA+ AN A
are considered. The fact that this topological term appears explicitly in the
Lagrangian is already an effect of the presence of N = 1 supersymmetry. In
fact also other terms appear in the partition function that contain the “auxil-
iary fields” introduced by the supersymmetry. These are the analogue of the
elements of the algebra A[w] in our definition of the fermionic integral in re-
lation to the Mathai-Quillen formalism. The fact that the vacuum state (that
is, the minimum of the classical potential) has a U(1)-symmetry which explains
the presence of the angle # is also an effect of the presence of the “unbroken”
supersymmetry.
Thus the partition function can be formally written as

/e_LDA: Z e"o/e_LTDA,
r=ca(FE)

where £, = 2 [ Tr(F A *F) on the fixed bundle E.
Again one can introduce the variable

0 47

T:% gz.

The modularity in this context can be formulated in a different way, which
leads to an interesting conjecture [28].

Conjecture 12.5 consider the expression
oo
Za(1) =4 xrd',
=0

where ¢ = €™ and x, is some suitable reqularised Euler characteristic of the
moduli space of G instantons on the four-manifold X with instanton number
r = c3(E). There is an action of SL(2,Z) and Zg transforms like

where G is the Langlands dual of G.

We do not discuss this statement any further, but just mention that the
Langlands dual interchanges the torus lattice with its dual. It is thus related to
electromagnetic duality for non-abelian monopoles.

12.1.3 Weak and strong coupling

As we have seen in the example of Maxwell theory, the interchanging of electric
and magnetic charges due to Hodge duality also interchanges weak and strong
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coupling in the action. When the coupling constant is small, one can formally
compute the infinite dimensional integral by means of a stationary phase ap-
proximation [3], [30]. The model is the finite dimensional situation in which
one has a function F(z) with an isolated minimum at z = 0. We can write
F(z) = F(0) + 2Q(z) + - - - and for a small coupling constant we can approxi-
mate the integral

Lo A2 - - d . 1 o) ATy - - d
7 - [ ~iF@ 921 n g :/ ~1(F(0)+3Q(z) 4%1 "~ dTn
fe emr T ) (2m)n/2

The latter can be computed exactly and it gives

/\n/2

Z = 7LF(0)7.
0T (@)

The finite dimensional computation can be easily related to the computation of
the Pfaffian that we presented in relation to the Mathai-Quillen formalism, with
the only difference that the matrix ) is symmetric instead of antisymmetric.
This explains why one gets det(Q)~'/? instead of det(Q)'/? = Pf(Q).

In order to generalise this argument to the infinite dimensional context, the
problem is reformulated in terms of a functional F' with non-degenerate minima.
The approximation of the partition function in this case can be taken to be
the well defined mathematical object det(Q) /2, where Q is a positive elliptic
operator (the Hessian of the functional F' at a minimum) and the determinant
is the Ray-Singer determinant [24], [25]. If the coupling constant is large this
approximation method no longer works and the partition function is in general
no longer computable.

12.1.4 The u-plane

In the case of N = 2 supersymmetry, the auxiliary fields that are introduced
can be described as two independent variables of the type of the A[w] used in
the definition of the fermionic integral, and a field ¢ which is a section of the
adjoint bundle of E. The classical potential can be written as a function V(¢)
and as mentioned before the supersymmetry imposes that in the vacuum state
V(¢) = 0. This allows for certain symmetries of the vacuum. This means that
the vacuum state is not an isolated point but there is some parametrisation of
a certain manifold of possible vacuum states. In our case the parameter that
classifies inequivalent vacua is Tr(¢?).

This is better said by introducing a variable u = (Tr(¢?)) which is the
expectation value (with respect to the partition function Z) of Tr(¢?). The
expectation value of the field ¢ is proportional to a variable a, (¢) ~ a. In the
classical limit, that is, when the coupling is weak, one has the relation u ~ %a2.
In the strong coupling range the relation is more complicated.
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In terms of the parameter a one has the corresponding modulus

The symmetry of the action under the transformation 7 — =L can be formally
described in terms of a Legendre transformation over a potential (called prepo-
tential in the Physics literature) F. In fact, a dual variable ap is introduced by
the relation

0F(a)

ap = T, (69)

and a dual field ¢p is defined by (¢p) ~ ap. Here “dual” is intended in
analogy to coordinates and moments in classical mechanics that are related by
a Legendre transform similar to (69). The transformation 7 — ’71 exchanges
the action Z with a dual action Zp where the field ¢ is replaced with ¢p and
a with ap. This exchanges weak and strong coupling.

The reason why this can be still thought of as electromagnetic duality is that
one thinks of the purely electric or purely magnetic charge as quantities g, = n.a
and ¢, = nnap, for a pair of integers (ne,n.,,). One can also consider states
(which are called dyons in the literature) that have both electric and magnetic
charge ¢ = n.a + npap. The group SL(2;Z) acts by mixing the electric and

the magnetic charge
me \ ., (@ b Ne
N c d Nm )

If one wants to express the variables a and ap as functions of the parameter
that determines the vacuum state, a(u) and ap(u), one gets two multivalued
functions, defined for u € € with branch cuts. In particular one can compute the
monodromy at the branch points [2]. One point is certainly the one at infinity,
where the weak coupling range is attained. In this case the prepotential takes the
form F(a) ~ 5-a®In X—Z and as u — 2™y one has a = —a and ap — —ap +2a.
Thus the monodromy at u = oo is

-1 2
wem (7 2),

An argument depending on the factorisation of the matrix M, in SL(2;Z)
shows that there are other two branching points. Up to the choice of a normal-
ising constant these can be taken to be u = +1. Asu — +1 the strong coupling
range is attained. The corresponding monodromies [2] are

10
=2 1)
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-1 2
wa= (72,

The physical interpretation of the eigenvalues of the monodromy matrices
leads to interpreting these branch points as the vacua at which a magnetic
monopole (when u = 1) or a (1, —1)-dyon (when u = —1) become massless.

12.1.5 Elliptic curves

Given the data obtained above by physical arguments, namely the punctured
sphere CP! — {o0,1,—1} (or u-plane) and the prescribed monodromies at the
punctures, it is possible to proceed with a rigorous construction. The mon-
odromies obtained above span a subgroup I'(2) in SL(2;Z). The wu-plane is
equivalent to the quotient of the upper half plane with respect to the group
I'(2). This gives the moduli of the family of elliptic curves

y? = (2" = 1)(z —u)

that becomes singular at the points u = +1.
The functions a(u) and ap(u) can be interpreted within this geometric pic-

ture as the periods
a=[ A ap=[, X,

with
N 2(x —u) .

2mv/x?2 — 1

The relation of all this with the Witten conjecture comes when one reads
the weak coupling limit of Z as Donaldson theory (that is twisted N = 2 su-
persymmetric Yang-Mills theory) and the strong coupling limit of Z as the
Seiberg—Witten theory. Then the idea that leads to the equivalence of the two
theories is that the geometric data encoded in this family of elliptic curves
should provide “the gluing instructions” of how to interpolate for all values of u
knowing the asymptotic behaviour at the singular points. The relation obtained
would then be in the form given by Kronheimer and Mrowka, as in theorem 12.2.

More recently, the conjecture 12.3 has been extended by Moore and Witten
[21] to the case of manifolds with b3 (X) = 1. In this case a correction term to
the relation 12.3 comes from integration over the u-plane.

12.2 The Mathematics way

A detailed strategy for the proof of the Witten conjecture 12.3, using a rather
different approach, which does not involve functional integration, has been out-
lined by Pidstrigatch and Tyurin [23].

The main idea of the strategy is to relate Donaldson and Seiberg—Witten
theory within a “mixed theory” of non-abelian monopoles, designed in such
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a way that the Donaldson and the Seiberg—Witten moduli spaces appear as
singular submanifolds of the moduli space M of non-abelian monopoles. In this
way the larger moduli space describes a cobordism between the links of the two
types of moduli, thus defining a relation between the invariants, which turns
out to be the one prescribed by the Witten conjecture.

As we pointed out in the brief remarks about the conjectural relation be-
tween Seiberg—Witten and instanton Floer homology, the program outlined by
Pidstrigatch and Tyurin can be thought of as the four-dimensional analogue
of Thaddeus’ construction that links the moduli space of stable bundles over
a Riemann surface ¥ to the symmetric products s"(X). The latter, in fact,
are moduli spaces of vortex equations on ¥ and can be thought of as the two-
dimensional reduction of Seiberg—Witten theory, whereas the moduli space of
stable bundles over ¥, according to the results of Narasimhan and Seshadri [22],
can be identified with the two dimensional reduction of Donaldson theory.

Although the idea is rather elegant and clear, the actual construction of the
cobordism presents enormous analytical difficulties. These are being attacked
and conquered, with a large display of technical skills, by Feehan and Leness in
a long series of papers [7], [8], [9], [10], [11], [12], [13], [14].

In the following we summarise the various technical steps involved in the
program of Pidstrigatch and Tyurin and of Feehan and Leness. The reader
who is more seriously interested in the results and technical issues is advised to
read the introductory paper [7], that we mostly follow here, and then the other
references where the various technical problems are attacked separately.

Mostly the difficulty lies in the lower strata of the moduli space of non-
abelian monopoles. The compactness argument fails in the non-abelian case.
This is easily seen, in fact, the whole Donaldson moduli space M®**¢ which is
itself non-compact, is recovered as a singular submanifold of the non-abelian
monopole moduli space, corresponding to solutions with vanishing spinor.

There is an Uhlenbeck compactification M of the moduli space of non-
abelian monopoles, obtained by adding lower dimensional strata. Each of these
strata may itself contain reducibles.

There are invariants associated to the non-abelian monopoles. These are
obtained as in the Donaldson case, by integrating some cohomology classes over
the fundamental class of M, or equivalently by intersecting their homology rep-
resentatives with M. The problem arises when there is a non-trivial intersection
with the links of the reducibles in the lower strata. In this case, an analogue of
the Kotschick-Morgan conjecture is needed in order to compute the integrals of
the cohomology classes over these links in the lower strata.

The Kotschick—Morgan conjecture was formulated for the case of Donaldson
invariants of four-manifolds with b3 (X) = 1, where there is a chamber structure
and a phenomenon of metric dependence [15]. The conjecture states that the
wall crossing terms only depend on the homotopy type of the manifold X. The
relevance, in our context, lies in the fact that the Kotschick-Morgan conjecture
is in fact a problem of describing the links of reducibles in lower level strata

172



in the Uhlenbeck compactification of M?%¢ and computing the integrals of the
Donaldson cohomology classes over these links.

A substantial part of the work of Feehan and Leness goes into proving this
analogue of the Kotschick-Morgan conjecture for the non-abelian monopoles.
Most of the technical issues involved had not previously been worked out even
in the ‘simpler’ context of the anti-self-dual moduli spaces.

12.2.1 Non—abelian Monopoles

Generalisations of the monopole equations to the case of a non-abelian structure
group have been investigated by various authors. There are many more contri-
butions in the Physics literature where several versions of non-abelian monopoles
are considered. The reader should consult the bibliographical appendix for a
partial list of references. The important remark is that the generalisation of the
Seiberg—Witten equations to non-abelian groups is not unique. A nice introduc-
tion to the subject that compares various possible generalisations is [4]. Some
of these extensions seem to have a natural interpretation [4] when restricted
to the case of Kihler manifolds. In fact the usual Seiberg—Witten equations
on a Kéahler manifold take a particular form (which we discussed in Part IIT),
which is a slightly modified version of equations known as the vortez equations.
There are various known generalisations of the vortex equations in non-abelian
context. These are analysed in [4]. The authors consider that, as the usual
Seiberg—Witten equations can be though of as a Riemannian generalisation of
the vortex equation, so in the non-abelian context the possible extensions of
the vortex equation in the world of Kihler manifolds serve as a model for pos-
sible extensions of the Seiberg-Witten equations for more general Riemannian
manifolds.

Here we want to give an idea of how one can construct these non-abelian
monopole equations and why they contain information of both the Seiberg—
Witten and the Donaldson theory. We follow [7].

We consider a compact oriented four-manifold X endowed with a Spin.
structure W=, as in Part I. Consider a Hermitian rank two vector bundle E on
X, and a fixed connection Ag on the determinant line bundle Det(E). Given
any connection A on E inducing the fixed determinant connection Ag, we can
form the twisted Dirac operator

Dy :T(X,Wt®E) > T(X,W~ ® E). (70)

We can consider the traceless part (Ff)o of the self-dual component of the
curvature F4 € A2 ® u(E). Given a section 1 € T'(X, Wt ® E) , we denote
1 < eiejih,1h >g €' A el the component in AT (su(E)). Under the map

p ®idgyp) : AT (su(E)) - su(W) @ su(E)

this is mapped to an element, denoted by (¥ ® 1*)gp, which is the component
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in su(W*) ® su(E) of the Hermitian endomorphism 9 ® ¥* of W+ ® E, as in

[7].

Thus, we have the equations
Day =0 (71)

and

1 . )
(Ff)o — 1< eiej P, >g e Nel =0. (72)

On the configuration space Ag = Cg @ T'(X, W' ® E) we have an action of
the gauge group Gg of unitary transformations of E with determinant one. The
moduli space M lies in the quotient Bg.

There is a deformation complex for the equations (71) and (72),

0— A%(su(E)) S Al(su(E) @ (X,W+ ® E) 5
AT (su(E)oT(X,W~ ® E) = 0.

This computes the virtual dimension of the moduli space M,
dimM = —3(c1(E)? — 4c2(E) + x(X) + 0(X))
+3((cc(WH) + e1(E))* —o(X)) - 1.

The transversality result is one of the most delicate technical issues. In fact,
it is necessary [8] to develop a suitable class of perturbations that make the
linearisation surjective. This is achieved by constructing a sequence of holonomy
perturbations, supported on the balls of a covering of X, with a universal energy
bound, such that if the curvature gets concentrated over one of the balls, thus
exceeding the energy bound, the corresponding perturbation vanishes. This
ensures continuity over the Uhlenbeck compactification. The use of a unique
continuation argument then shows vanishing of the cokernels of the perturbed
linearisations at an irreducible solution (A, ).

The proof of orientability carries over following the case of Donaldson and
of Seiberg—Witten theory.

The reducibles belong to two classes, denoted in [7] respectively as zero
section pairs and reducible pairs.

The first case corresponds to solutions with trivial spinor. These are solu-
tions of the anti-self-dual equations. The singular stratum gives a copy of the
Donaldson moduli space M?*¢, of dimension

dim M®? = —2(cy(E)? — 4eo(E)) — g(X(X) +o(X)).

The other case corresponds to a splitting £ = L; & Ly as a sum of two line
bundles, with Ly = Det(E) ® L. A solution

(Avw) = (Al 52 (AO ® AT),%)
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has a U(1)-stabiliser and can be regarded as a solution of a perturbed version
of the Seiberg—Witten equations on X with respect to the Spin. structure with
spinor bundle W+ ® L;. In this case we obtain as singular strata the moduli
spaces M,, of solutions of Seiberg-Witten equations for Spin. structures s;
with determinant det(W*) ® L;. )

Upon passing to a blowup X=X # CP2, it is possible to guarantee that
the two types of singular strata do not intersect. Thus the irreducible part M*
gives a cobordism between the links of the two types of singular strata.

The space M* U M**¢ U,, M,, is still non-compact. There are lower di-
mensional strata My, for £ > 0 an integer, in the Uhlenbeck compactification.
These contain the classes of the Uhlenbeck limits (A,,z) with (A4,) in

Ag, =Cg, ® F(X, Wt e Eg)

and z € Sym‘(X). The U(2)-bundle E; has Det(E;) = Det(E) and c2(E;) =
Co (E) — 4.

The work of Feehan and Leness then proceeds by constructing the links of
the strata M?*? and My, in the top Uhlenbeck level and their intersection with
the geometric representatives of the cohomology classes

p:H(X,Q) - H* *(Bg, Q).

If there were no reducibles in the lower strata, this would be enough to re-
cover the relation given in 12.3. Unfortunately, the lower strata also contain
reducibles, hence a detailed analysis of the intersection of the geometric repre-
sentatives with the lower strata is necessary.

The authors consider tubular neighbourhood of the lower strata defined by
the gluing maps. This requires a very careful and technically demanding analysis
of the relevant gluing theorems [10], [11].

It should be mentioned that the approach of Feehan and Leness has led to
a rigorous mathematical proof of some results derived from the physical theory
of S-duality, besides the original goal of establishing the Witten conjecture. An
example is the proof of a conjecture of Marifio, Moore, and Peradze [19], derived
by Feehan, Kronheimer, Leness, and Mrowka [6]. In [19] the authors consider
the Seiberg-Witten invariants of a smooth oriented 4-manifold X with b > 1,
assembled in the expression

SW¥(h) = Z (_1)%w2+01(L)wNS(X)e(Q(L)Uh,[X])'
sES(X)

Here L is the determinant line bundle of the Spin.-structure as we discussed
in Part I, and h varies in H%(X,R) and w is any integral lift of the Stiefel-
Whitney class wo(X). They introduce the notion of “superconformal simple
type” to denote a class of compact oriented smooth 4-manifolds with b3 > 1
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and of Seiberg-Witten simple type, such that SW¥(h) has a zero at h = 0 of

order at least
C(X ) - 33

where 1
e(X) = _Z(7X(X) + 110(X)).

In [20] it is then shown that all known 4-manifolds with b > 1 are of
superconformal simple type: in fact, it is shown that the superconformal simple
type property is preserved under blowup, fibre sum along embedded tori, knot
surgery, and generalised log transforms. Moreover, it is shown that compact
complex surfaces with b} > 1 are of superconformal simple type. This leads to
the following conjecture [20].

Conjecture 12.6 All compact oriented smooth 4-manifolds with by > 1 are of
superconformal simple type.

Using the analysis of PU(2)-monopoles of Feehan and Leness, the conjecture
is reduced in [6] to the technical hypothesis that reducibles which appear in the
lower levels of the Uhlenbeck compactification of the moduli space of PU(2)-
monopoles do not contribute any non-trivial Seiberg—Witten invariants. This is
possible under the assumption that the 4-manifold is of Seiberg—Witten simple
type and is abundant, that is, the intersection form restricted to the orthogonal
complement of the basic classes contains a hyperbolic sublattice. ~ The latter is
a condition which guarantees that the index of the twisted Dirac operator (70)
is positive, Ind(D4) > 0. This is a technical condition that is needed in order
to apply the results of [9].
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Part V
Appendix: a bibliographical
guide

by Erion J. Clark® and Matilde Marcolli

We have decided to complete this volume with a separate Appendix that
collects a reasonably updated bibliography on Seiberg—Witten theory. The bib-
liography is updated as of May 1998. In order to give this bibliography in a
more user-friendly appearance, the items have been divided roughly into vari-
ous denominations. General Introduction collects works that are meant to give a
broad overview on Seiberg—Witten theory and are often of an expository nature.
Then Four-manifold topology, and Three-manifolds and Floer theory collect ref-
erences that cover the material discussed in part I and II of the book, including
many more results that have not found space in the text. The references on
Non-abelian monopoles cover the mathematical approach to the equivalence of
Seiberg—Witten and Donaldson theory. The references on Symplectic Geome-
try and Kdhler surface; algebraic geometry, cover the results discussed in the
beginning of Part III, and much more. Most of the papers quoted directly use
techniques of Seiberg—Witten theory, but we have also listed some references
whose relevance to Seiberg—Witten theory is more indirect. The list of refer-
ences on Finstein metrics will lead the reader through an interesting topic that
has not been covered in the book. Moreover, there are lists of references that
more properly belong to the Physics literature. We have decided that, in order
to give as complete as possible a picture of the current status of the field, it is
necessary to present both the results of physicists and mathematicians. Thus,
we have collected the Physics references under the denominations Quantum field
theory, String theory and duality, and Integrable systems, somewhat following
the logical order of Part IV of the book. Often the same paper or book is quoted
under different classifications, and clearly, for many of the references, the at-
tribution to one or another denomination is largely arbitrary. Therefore, the
reader should take such a subdivision only as a guideline. Another disclaimer:
the bibliographical guide contains mostly papers that have appeared in print (as
of May 1998) or that are easily available on electronic preprint archives. Some
interesting contributions may not be listed here, simply because they have not
yet been made available by the authors. We apologise anyway to all the authors
whose work is not mentioned in this list. Despite the possible omissions, we

3Partially supported by Undergraduate Research Opportunity Program at the Mas-
sachusetts Institute of Technology
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hope that this bibliographical guide provides a useful tool and gives a fairly
accurate picture of these four years of development of Seiberg—Witten theory
from its first appearance in 1994, and of how fast the current research develops.
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