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ABSTRACT

Heaton, T.H., 19%0. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet.
Inter., 64: 1-20.

Dislocation time histories of models derived from waveforms of seven earthquakes are discussed. In each model, dislocation
rise times (the duration of slip for a given point on the fault) are found to be short compared to the overall duration of the
earthquake (~ 10%). However, in many crack-like numerical models of dynamic rupture, the slip duration at a given point is
comparable to the overall duration of the rupture; i.e. slip at a given point continues until information is received that the
rupture has stopped propagating. Alternative explanations for the discrepancy between the short slip durations used to model
waveforms and the long slip durations inferred from dynamic crack models are: (1) the dislocation models are unable to
resolve the relatively slow parts of earthquake slip and have seriously underestimated the dislocations for these earthquakes;
(2) earthquakes are composed of a sequence of small-dimension (short duration) events that are separated by locked regions
(barriers); (3) rupture occurs in a narrow self-healing pulse of slip that travels along the fault surface. Evidence is discussed
that suggests that slip durations are indeed short and that the self-healing slip-pulse model is the most appropriate
explanation.

A qualitative model is presented that produces self-healing slip pulses. The key feature of the model is the assumption that
friction on the fault surface is inversely related to the local slip velocity. The model has the following features: high static
strength of materials (kilobar range), low static stress drops (in the range of tens of bars), and relatively low frictional stress
during slip (less than several hundreds of bars). It is suggested that the reason that the average dislocation scales with fault
length is because large-amplitude slip pulses are difficult to stop and hence tend to propagate large distances. This model may
explain why scismicity and ambient stress are low along fault segments that have experienced large earthquakes. It also

qualitatively explains why the recurrence time for large earthquakes may be irregular.

1. Introduction

In this paper the implications of models of the
distribution of slip in time and space that have
been deduced from ground motion data from seven
earthquakes are discussed. Several aspects of these
slip models are inconsistent with standard earth-
quake rupture models, and direct inspection of the
slip models deduced from seismic data leads to
surprising conclusions about the nature of rupture
dynamics. The central issue is the duration of slip

(at a given point) relative to the time required to
rupture the entire fault surface. Evidence is pre-
sented that the slip duration at a given point is
significantly shorter than the time to receive infor-
mation about the overall rupture dimensions. Pos-
sible mechanisms to explain this observation are
discussed. A qualitative rupture model is sug-
gested that will cause the fault to heal itself shortly
after the passage of the rupture front. The sug-
gested healing mechanism is a dynamic fault fric-
tion that decreases with increasing slip velocity.
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The implications of this rupture model for a variety
of issues related to stress and stress changes asso-
ciated with earthquakes are then discussed.

One of the most important observations of
earthquake size is that

M, S (1)

where o signifies proportionality, M, is the
seismic moment, and S is the rupture area
(Kanamori and Anderson, 1975). Since

M, =nSD (2)

where D is the dislocation averaged over S, this
implies that

DxyS (3)

If the average stress drop Ao of an earthquake
rupture is assumed to be proportional to the aver-
age dislocation divided by a length dimension of
the rupture, then

mp% (4)

Relations (3) and (4) imply that average stress
drop is independent of S and therefore of M,. A
common interpretation of these scaling relations is
that the average fault slip D is determined by a
rupture dimension and the average stress drop, i.e.
as a rupture grows over a fault surface, the final
fault slip at any given point is not known until
information reaches that point about the final
dimensions of the rupture surface. In most dy-
namic rupture models, the slip duration varies
from point to point on the fault and the slip time
history can itself be fairly complex. However, ex-
aminination of slip histories for dynamic rupture
models for faults with aspect ratios of <2 (Day,
1982) yields a rough estimate of the average slip
duration that is given by

ﬂz—ﬁ;;—, (5)

where T, is the average slip duration, V, is the
velocity of the rupture front, and = signifies a
very approximate equality. However, as 1 will
show, this estimate of the slip duration for a point
on the fault is an order of magnitude larger than
that inferred from the modeling of earthquake
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Fig. 1. Slip distribution (cm) for the M = 8.1 1985 Michoacan,
Mexico, earthquake derived by Mendoza and Hartzell (1989)
from the simultaneous inversion of teleseismic and strong
motion waveform data. The large dot denotes the hypocenter
and the stippled region denotes the approximate region that is
slipping at a particular instant in time.

ground motions. An alternative earthquake scaling
model is presented in which the dynamic features
of the propagating rupture are of central impor-
tance.

2. Dislocation rise times
Figures 1-7 show contour maps of the slip

distribution for the preferred models for the earth-
quakes used in this study. These models were
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Fig. 2. Slip distribution (cm) for the M = 7.3 1983 Borah Peak,
ID, earthquake derived by Mendoza and Hartzell (1988) from
the inversion of long- and short-period teleseismic waveform
data. The large dot denotes the hypocenter stippled region
denotes the approximate region that is slipping at a particular
instant in time.
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Fig. 3. Slip distribution (m) for the M = 6.5 1971 San Fernando,
CA, earthquake derived by Heaton (1982) from the modeling
of strong motion and teleseismic waveforms and geodetic data,
The earthquake was modeled as a double event and only the
first event is used in this study. The stippled region denotes the
approximate region that is slipping at a particular instant in
time,

derived from deterministic modeling of observed
strong motion and teleseismic waveforms. Al-
though different procedures were used to produce
these models, a general assumption is that rupture
proceeds along the fault with an approximately
constant rupture velocity and that the slip occurs
in some time period (the dislocation rise time)
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Fig. 4. Slip distribution (cm) for the M =6.5 1979 Imperial
Valley, CA, earthquake derived by Hartzell and Heaton (1983)
from the simultaneous inversion of strong motion and tele-
seismic waveform data. The large dot denotes the hypocenter
and the stippled region denotes the approximate region that is
slipping at a particular instant in time,
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Fig. 5. Slip distribution (cm) for the M = 6.2 1984 Morgan
Hill, CA, earthquake derived by Hartzell and Heaton (1986)
from the inversion of strong motion waveform data. The large
dot denotes the hypocenter and the stippled region denotes the
approximate region that is slipping at a particular instant in
time.

after the passage of the rupture front. This class of
models is usually referred to as ‘dislocation mod-
els’ and slip duration is synonomous with disloca-
tion rise time. The spatial distribution of the slip
amplitude is varied to give an acceptable match to
the observed waveforms. In some of these models
the dislocation rise time is assumed to be uniform
on the rupture surface, and in others it is allowed
to vary spatially to improve the quality of the fit.
In principal, dislocation models can be para-
meterized with enough flexibility to encompass all
possible slip histories on a fault surface (including
those that result from dynamic ‘crack-like’ rupture
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Fig. 6. Slip distribution (cm) for the M = 6.0 1986 North Palm
Springs, CA, earthquake derived by Hartzell (1989) from the
inversion of strong motion waveform data. The large dot
denotes the hypocenter and the stippled region denotes the
approximate region that is slipping at a particular instant in
time.
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Fig. 7. Slip distribution from the M =59 1979 Coyote Lake,
CA, earthquake derived by Liu and Helmberger (1983) from
modelling strong motion waveform data. The stippled region
denotes the approximate region that is slipping at a particular
instant in time.
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models), although most applications of dislocation
models assume that the duration of slip is rela-
tively homogeneous on the fault surface.

Several functional forms for the slip time his-
tory have been tried, the simplest being a simple
ramp of duration T,. However, more complex
functional forms have been tried. For instance, a
slip that grows as the square root of time has also
been used (e.g. Beroza and Spudich, 1988), al-
though slip histories of this form have not satisfac-
torily matched observed waveforms. Because these
models were not constructed to match high-
frequency data, details of the slip history cannot
be derived. Instead, the models give an indication
of how much slip occurs within a given time after
the passage of the rupture front.

Table 1 gives a comparison of dislocation rise
times 7, derived from these models with disloca-
tion rise times that would be expected if the

TABLE 1
Observed rupture parameters
Earthquake Moment I w la V. /S 21, Reference
(x10*  (km) (m) (m) (ms™) Fp Iy L
dyn cm) ) ®) ®)
19/9/88 (M =8.1) Mendoza and
Michoacan, Mexico 1500 150 120 ~40 26 33 10 5 Hartzell (1989)
28,/10/83 (M = 1.3) Mendoza and
Borah Peak 23 40 20 9 29 6.5 21 0.6*  Hartzell (1988)
9/2/71 (M =6.5)
San Fernando® 7 12 14 7. .28 3.1 1.9 0.8 Heaton (1982)
15/10/79 (M = 6.5) Hartzell and
Imperial Valley 5 30 10 7 26 4.5 18 1.0 Heaton (1983)
24/4/84 (M =6.2) Hartzell and
Morgan Hill 2.1 20 8 4 28 3.0 10 03 Heaton (1986)
8/7/86 (M = 6.0) Hartzell
North Palm Springs 1.8 18 10 5 30 3.0 1.1 04°  (1989)
6/8/79 (M =5.9) Liu and Helm-
Coyote Lake 0.35 6 6 4 238 1.4 09 059  berger(1983)

* From teleseismic data; may be as large as 1 s.
® Estimates are for the first of two sources.
¢ A maximal value, may have actually been shorter.

¢ A maximal value, may actually have been shorter, Bouchon (1982) modeled this data assuming an instantaneous rise time.
!, approximate rupture length; w, approximate rupture width; /., approximate dimension of the major asperity; V,, average rupture

velocity; S, rupture area (/w); T, observed dislocation rise time.
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duration of slip is comparable to the overall rup-
ture duration of the earthquake. In many in-
stances, the estimate of the rise time from these
models is a maximum number since the data was
low-pass filtered. Although dislocation rise time is
one of the most difficult numbers to extract from
deterministic source models, it would be very dif-
ficult to exceed the rise time estimates given in
Table 1 by a factor of 2. However, in many
instances, it would be possible to use significantly
shorter slip durations. Several estimates of char-
acteristic rupture length dimensions for the earth-
quakes are also given in Table 1. In many in-
stances the slip distribution is spatially heteroge-
neous and therefore the characteristic dimension
{, of the dominant asperity for each earthquake is
also given.

Two predictions of the dislocation rise time are
given assuming that the slip duration is compar-
able to the time required for rupture. These
predictions are based on the assumption that in-
formation must reach a given point on the fault
about the final dimensions of the rupture surface.
In the first it is assumed that the dislocation
continues until information is received that the
entire fault has ruptured, in which case the rise
time T, is approximately given by eqn. (5). In the
second, the dislocation rise time is assumed to be
comparable to the time required to rupture the
dominant asperity, in which case we would expect
the dislocation rise time to be approximated by

21,
L= 3V, (6)

Other methods for estimating the expected dis-
location rise time can be devised. For instance, the
fault width may be the most appropriate dimen-
sion for long, narrow rupture surfaces. However,
for the fault models shown, the rupture widths are
of the same order as rupture lengths and the
widths are larger than the dimension of the domi-
nant asperity. Furthermore, we might expect the
slip duration to be highly variable over the rupture
surface, with long rise times in the center of faults
and short rise times near the rupture boundaries.
A more complete estimate for expected slip dura-
tions would require specific dynamic rupture mod-
els for the earthquakes considered. At this point,
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however, I simply wish to test the hypothesis that
the slip duration at any point is comparable to the
time required for overall rupture.

As can be seen in Table 1, the rise times
derived from modeling data are, on average, only
16% as long as that expected from the overall
rupture duration (eqn. 5) and 42% as long as that
expected from the rupture duration of the domi-
nant asperity (eqn. 6). Kanamori and Anderson
(1975) also reported comparably short dislocation
rise times based on a completely different data set.
We are led to the rather surprising conclusion that
only a small portion of the overall rupture surface
is undergoing slip at any given point in time. This
is shown graphically in Figs. 1-7; the stippled
bands represent the approximate area slipping at
one instant in time. We can imagine that the
rupture is actually a propagating pulse of slip that
covers only 10% of the rupture surface at any
point in time. The size of the slip in this pulse rises
and falls as the rupture proceeds along the fault
surface.

This model of earthquake rupture as a propa-
gating pulse of slip is very similar to the simple
model introduced by Haskell (1964) 25 years ago
to estimate the energy radiated by earthquakes.
Haskell found that relatively short dislocation rise
times were necessary to account for the relatively
large radiated energy from earthquakes. Brune
(1970), qualitatively introduced a similar self-heal-
ing slip-pulse model to explain apparent dis-
crepancies between ‘effective stress’ estimated
from the spectral content of radiated seismic waves
and static stress drops. Brune called this the ‘par-
tial stress-drop’ and ‘abrupt locking’ model and
this model has been suggested to explain the radi-
ation from aftershocks of the 1971 San Fernando,
California, earthquake (Tucker and Brune, 1977)
and from small earthquakes near Anza, California
(Brune et al., 1986).

Other evidence is now presented in support of
short slip durations. The first is eye witness re-
ports of the scarp formation of the M7.3, 1983
Borah Peak earthquake. The time required to
Propagate a rupture front along the 40-km length
of this earthquake exceeded 10 s. Wallace (1984)
documented the recollections of Lawana Knox
who was about 300 m from the surface trace of
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the earthquake. According to Wallace, “Mrs. Knox
reported that the 1- to 1.5-meter-high scarp formed
in about 1 s. She reported that the scarp reached
its full height quickly, and that it did not appear
to adjust up or down later or oscillate up and
down while reaching its full height”. This short
rise time was independently corroborated by the
account of two other eyewitnesses (Pelton et al.,
1984) and is remarkably close to the value used by
Mendoza and Hartzell (1989).

Some may argue that seismic modeling is sensi-
tive only to the high dislocation particle velocities
at the rupture front and that seismic waves are not
sensitive to the long-period slip that occurs after
the rupture front passes through. However, Beroza
and Spudich (1988) attempted to model the 1984
Morgan Hill earthquake with just such a model.
Following the model of Kostrov (1966), they used
a dislocation time history that varies as the square
root of time. This produces a time function with a
very sharp rise and a very smooth tail. Yet in
order to fit the strong motion records, they were
forced to truncate the slip function after a mere
0.2 s, an even shorter dislocation rise time than
that deduced by Hartzell and Heaton (1986).

As a final example, consider the strong ground
motions recorded during the 1985 Michoacan
earthquake. Anderson et al. (1986) showed that
ground displacements (relative to an inertial frame)
could be deduced from the ground acceleration
records. They showed that observed static sea-level
changes coincide with the ground displacement
inferred from strong motion records. Furthermore,
these static deformations occurred within a rela-
tively short time period, and they cited this as
evidence in support of the Brune ‘partial stress
drop’ model (short slip duration). Mendoza and
Hartzell (1989) modeled teleseismic body waves
and the long-period ground velocity (with respect
to an inertial frame) in the near-source region and
found that this data required short dislocation rise
times (< 5 s for a M8.1 earthquake). Comparisons
of the observed displacements with those synthe-
sized by Mendoza and Hartzell (1989) are shown
in Fig. 8. A dislocation rise time comparable to
the rupture time would effectively double the
length of the synthetic records. In Fig. 8, notice
that the motion at CAL (near the epicenter) has
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Fig. 8. Comparison of ground displacements (with respect to
an inertial frame) observed above the 1985 Michoacan earth-
quake with displacements synthesized from the rupture model
of Mendoza and Hartzell (1989). The observed vertical dis-
placement at Caleta de Campos (CAL) coincided with locally
observed sea-level changes (Anderson et al., 1986), indicating
that the final static displacemnent was obtained within the 10-s
interval inferred from the displacement record. The rupture
surface is approximately 30 km below the stations and most of
the duration of the record is due to the finite time required for
the rupture to propagate and for the waves to arrive from
different parts of the fault. If the dislocation rise time was
comparable to the rupture time, then the duration of the
records would be considerably longer.

stopped before it even begins at UNI which is
located near the southern end of the rupture.
Ruppert and Yomogida (1990) also investigated
the ground displacement at CAL and they con-
cluded that it was best explained by a ‘crack-like’
model in which the slip duration is variable on the
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rupture surface and is controlled by the overall
rupture dimension. In order to produce the short-
duration ramp-like displacement at CAL, Ruppert
and Yomogida (1990) propose bilateral rupture
(i.e. both up- and down-dip) on a fault width of
<40 km which results in slip durations of <6 s
and 8-m dislocations in the hypocentral region.
This slip duration is roughly comparable with that
deduced by Mendoza and Hartzell (1989), but
they used considerably larger fault dimensions
and inferred smaller dislocations to model a much
larger set of data.

In summary, there are a number of observa-
tions that suggest that the slip duration at a given
point on a fault is short compared with the time
required for information to travel from the
boundaries of the rupture. However, because the
slip duration must be inferred from interpreta-
tions of rupture models, I believe that it is not yet
possible to consider this as a proven hypothesis.
If, in fact, the dislocation rise times are not short
compared with the overall rupture time for earth-
quakes, then there are many earthquake models
determined from waveform data that have seri-
ously underestimated the slip for earthquakes. For
the remainder of this paper, it is assumed that slip
durations are indeed short relative to the overall
rupture duration. Physical mechanisms that are
compatible with both a short slip duration and
also a correlation between average slip and overall
rupture dimensions will be discussed later.

3. Stress in time and space

Several estimates of stress are now discussed
that can be obtained from the earthquake models
used in this study. In large part, these stress esti-
mates are obtained by estimating strain variations
(spatial derivatives of displacements). Measures of
stress can vary considerably depending upon the
details of the slip history; details that are only
poorly resolved by waveform modeling studies.
Nevertheless, it is possible to get some idea of the
order of magnitude of stress and strain variations
implied by the rupture models considered in this
paper.

The static stress drop for a rupture can be
calculated by first assuming that the rupture
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surface is free to slip along the fault plane; trac-
tions are then applied parallel to the rupture
surface such that they reproduce some distribution
of slip. These tractions are averaged over the
rupture surface to give an average static stress
drop Ao for an earthquake. Since all of the equi-
librium equations for stress and strain are linear
functions of D, the estimate of the static stress
drop only depends on the final distribution of slip
and is independent of how the slip actually oc-
curred in time. Several solutions have been de-
rived for the slip distribution that would result if
the stress drop is uniform. Eshelby (1957) derived
the following stress drop for a circular fault in a
Poissonian whole space.

AT 0.78}17—% 7)

Stress drops have also been numerically computed
from the average slip assuming rectangular faults
at various depths of burial in an elastic half-space
by Parsons et al. (1988) and their results can be
summarized by

Ao = Cp% - (8)

where L is either the fault length / or width w and
C is a constant that can have values between 0.65
and 2.55 depending upon the ratio of / to w, the
rupture depth, and the slip direction.

Das (1988) investigated the relationship be-
tween static stress drop averaged over the rupture
surface Ao and average slip D for models in which
the stress drop is spatially heterogeneous and con-
cluded that egn. (8) is not strongly dependent on
the spatial distribution of the stress drop, i.e. it is
usually valid to approximate the average stress
drop from a heterogeneous stress distribution as-
suming eqn. (8). When the slip distribution is
significantly heteorgeneous, the stress drop may
actually be negative on some parts of the rupture
surface, i.e. an area of low slip that is surrounded
by areas of high slip may have a higher stress after
the rupture than it did before.

Static stress drop estimates are given in Table 2
for the seven earthquakes. For simplicity, the aver-
age stress drop Ao is calculated assuming a cir-
cular rupture in a whole space (eqn. 7). The aver-



TABLE 2

Estimates of stress

T.H. HEATON

Earthquake Vs I I, D 7 Ao Ag, Ba, Aoy,
(km) (km) (km) (cm) (cm) (bars) (bars) (bars) (bars)

19/9/88 (M =8.1)

Michoacan 134 40 13 238 650 5 29 14 37

28,/10/83 (M = 7.3)

Borah Peak 28 9 22 82 147 3 30 26 46

9/2/71 (M =6.5)

San Fernando ® 13 7 2 120 250 25 65 40 84

15/10/79 (M = 6.5)

Imperial Valley 17 7 237 48 180 8 47 13 50

24/4/84 (M =6.2)

Morgan Hill 13 4 0.8 38 100 8 45 2 84

8/7/86 (M =6.0)

N. Palm Springs © 13 5 1,24 26 45 6 18 12 22

6/8/79 (M =5.9)

Coyote Lake © 5 4 141 46 120 22 48 22 57
Lognormal average 9.8 37 20.7 49.5

* From teleseismic data, may be as large as 3.

® Estimates are for the first of two sources.

€ u assumed to be 3.9% 10" dyn cm™2.

4 A maximal value, may actually have been smaller.
® p assumed to be 3.1x10" dyn cm™2.

" A maximal value, may actually have been smaller.

=4 M,
{,, length of the rupture pulse (¥, T;); D, average dislocation (S—:; p=3.5%x10" dyn cm~?); D,,,, peak dislocation; Ag, average

static stress drop; Ag,, static stress drop in the vicinity of the dominant asperity; HP, average dynamic stress drop in the vicinity of
the rupture pulse; Ag,,, dynamic stress drop of the rupture pulse at the dominant asperity.

age dislocation D is calculated from the moment
estimates assuming the given rupture area S and a
rigidity of 3.5 X 10" dyn cm ™2, Static stress drops
Ao, for the dominant asperity are also given,
where Ao, was calculated using the assumption
that

D
Ag, = 0.52p—max (9)

Ia

where D, is the peak slip and /, is the ap-
proximate diameter of the dominant asperity.
Equation (9) assumes uniform stress drop over a
circular crack and is similar to eqn. (7) except that
it is computed using the peak displacement in-
stead of the average displacement (Eshelby, 1957).
Of course, these are very rough estimates of the
static stress drop and higher stress drop estimates
are expected for models in which the slip distribu-
tion is elongated in a direction.

The static stress drops provide some estimate of

the overall change in stress state on the ruptured
surface. However, it has been hypothesized that
slip occurs in a narrow pulse that propagates
along the rupture surface, and therefore we can
anticipate that there are larger transient stress
changes in the vicinity of the propagating slip
pulse. Calculation of these stress changes in the
vicinity of the slip pulse must be made by assum-
ing a detailed model of the conditions on the fault
during slip. As pointed out by Freund (1979), the
stress from a propagating crack is a function of
the rupture velocity. Calculation of these stress
variations for the models used in this paper is a
formidable task that is beyond the scope of this
study. Furthermore, the details of the slip history
are not sufficiently resolved by these models to
warrant such calculations. However, it is possible
to obtain some insight into this problem by ex-
amining a very simple model of a pulse of slip that
propagates steadily along a fault surface.
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Fig. 9. Idealized model of Freund (1979) in which a pulse of
slip of length [, in the x-direction and infinitely wide in the
y-direction propagates steadily at velocity V, in the positive
x-direction. A uniform shear stress 7,, =7, is applied at infin-
ity and the shear stress on the slipping portion of the fault is
assumed to be uniformly equal to a dynamic friction 7. In this
model, the slip is confined to a pulse artificially, i.e. there is no
physical condition that causes the rupture to heal. Because the
problem is steady-state, the pulse causes a finite dislocation
that propagates over an infinitely large fault and thus the static
stress drop is zero, The dynamic stress drop in the pulse Ag,, is
a function of the dislocation and the length of the slip pulse,
and is given by eqn. (10).

Freund (1979) gives the solution for a pulse of
slip that propagates steadily at velocity ¥, along
the x-axis assuming that a homogeneous shear
stress 7, is applied from infinity. In this model
(shown in Fig. 9), the fault is assumed to be
welded everywhere, except in a strip of length /;

in the x-direction and infinitely wide in the y-di-
rection, that propagates steadily along the x-axis.
The shear stress across the slipping part of the
fault is assumed to be uniformly equal to 7. As
can be seen in Fig. 9, the stress on the fault
changes dramatically with respect to the location
of the slip pulse. There is a square root singularity
at the leading edge of the slip pulse. One measure
of the dynamic stress change in this model is the
shear stress applied at infinity minus the shear
stress on the slipping strip of the fault which is
referred to as Ag,, given by Freund (1979) as

w D
m’p="'0_"'r=;E

V2

1—39—2

(10)

where B is the shear-wave velocity and /, = VT, is
the length of the slipping region. If the rupture
velocity is assumed to be 80% of the shear-wave
velocity, then Ao, = 0.19 p.D /. It should be noted
that this definition of stress drop is similar in form
to eqn. (8) for static stress drops, but with a small
value for the geometric constant C. In fact, since
Freund’s (1979) solution is steady state, it can be
solved as a static problem superposed on a moving
coordinate system. As a consequence of this
steady-state condition, this solution does not
radiate seismic waves to the far field (even though
there is an infinitely large stress change at the
crack tip). Another unusual feature of this model
is the fact that the static stress drop is zero, i.e. the
stress at large distances behind the propagating
slip pulse is the same as the stress at large dis-
tances ahead of the slip pulse. Furthermore, notice
that as the rupture velocity approaches the shear-
wave velocity, a pulse with an arbitrarily large slip
will propagate with an arbitrarily small dynamic
stress drop Aoc,. Because there are many non-
physical consequences of the restrictive assump-
tions of Freund’s model and because the length of
the estimated slip pulse /, is an upper bound in
many of the slip models, I expect that the dynamic
stress drop given by egn. (10) gives a lower bound
on the dynamic stress drops implied by the slip
models shown in Figs. 1-7.

Estimates of the average dynamic stress drop
A, in the vicinity of the rupture pulse are given in
Table 2. The average dislocation D is used in eqn.
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(10) to calculate the dynamic stress drop Au
the slip pulse averaged over the rupture, and the
maximum dislocation D_,, is used to calculate the
stress drop Ag,, in the slip pulse in the region of
the dominant asperity. The logarithmically aver-
aged (the antilog of the average of the logarithms)
dynarmc stress drop in the vicinity of slip pulses
ﬁ.u is 21 bars, whereas the average static stress
drop Ao is only 9.8 bars. Thus, according to this
very simple steady-state model, the dynamic stress
drop (the difference between the ambient shear
stress and the shear stress at the slip pulse) is
several times larger than the static stress drop (in
Freund’s model, the static stress drop Ac is zero).

Dynamic stress drops Ag,, are also calculated
in the vicinity of the donunam asperities (Table 2)
using eqn. (10) together with the estimated length
of the slip pulse and the maximum slip in the
asperity. Unfortunately, the assumptions used to
derive eqn. (10) are severely taxed for this calcula-
tion, i.e. the length of the slip I, is, on average,
only one third the average dxmenszon of the domi-
nant asperity. Whereas in Freund’s model, the slip
is assumed to be infinitely wide along the rupture
front and it is assumed to propagate uniformly an
infinite distance in the x-direction (thereby result-
ing in zero static stress drop). In the vicinity of the
dominant asperity, application of eqn. (10) yields
an average dynamic stress drop Ag,, of 50 bars,
whereas the static stress drop Ao, averages 37
bars. However, it is important to recognize that
these numbers are based on very crude models.
Until more realistic numerical models are avail-
able to estimate the dynamic stresses implied by
rupture models such as those shown in Figs. 1-7, I
can only speculate that the dynamic stress drop in
the region of the dominant asperities is greater
than the static stress drop, but less than several
times as large. Of course the stress just ahead of
the leading edge of the rupture can be much larger
and presumably is limited by the overall strength
of the materials in the fault zone. Furthermore, if
the rupture propagates smoothly, then there is no
far-field radiated energy and thus the ultimate
amplitude of the stress change in the vicinity of
the crack front cannot be deduced from observa-
tions of radiated high-frequency waves.

T.H. HEATON
4. Healing of the rupture pulse

A mechanism for producing a self-healing rup-
ture pulse is now discussed. This begins with a
very simple model that does not heal and then
proceeds to a more complicated model that does
heal within some characteristic dislocation rise
time. First consider the simple model shown in
Fig. 10. Assume that a rupture that is infinitely
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Fig. 10. Idealized model of a rupture (infinitely wide in the
y-direction) propagating at a velocity V. in the x-direction.
Fracture initiates when the stress at the crack tip exceeds the
static strength of the fault 7, and the stress on the fault behind
the crack tip is some constant frictional level 7,. The stress
before the initiation of rupture is %, and the stress after the
rupture is 7, = 7, giving a stress drop of Ao = 7, — 7,. This type
of rupture is described by Kostrov (1966) and the dislocation
continues to grow as V"V;.f— x and does not heal until infor-
mation is received that the rupture front has stopped propagat-
ing.
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long in the y-direction is propagating uniformly at
a rupture velocity ¥, in the x-direction. The shear
stress on the fault 7, is assumed to be 7, at a
large distance in front of the rupture and 7, at a
large distance behind the rupture, giving a static
stress drop Ao of 7y—;. In the region ahead of the
rupture, the shear stress T, 18 assumed to be given
by crack theory and to be less than some critical
strength 7,. In the region behind the rupture front,
the shear stress is equal to a friction stress 7, that
is constant in time once the fault has ruptured. If
this model applies to earthquakes, then the fact
that average static stress drops are only tens of
bars allows us to conclude that the frictional stress
7 has an amplitude that is close to the ambient
shear stress. Furthermore, experimental studies of
rock friction indicate that the coefficient of fric-
tion for a sliding surface is within several percent
of the static coefficient of friction (Dieterich,
1979). if the coefficient of friction is somewhere
near 0.6 (typical for rocks in laboratory experi-
ments), then we conclude that for the model in
Fig. 10, all of the shear stresses plotted would be
in the kilobar range, and any variations in the
stress would be relatively small compared with the
ambient tectonic shear stress.

The dislocation D is zero ahead of the crack tip
and in the region behind the crack tip it is given
by

D=f(Ac)Vii—x (11)

where the function f depends upon the stress drop
and the elastic properties of the medium. The slip
velocity D(V,t — x) is given by

_ flao)w,

Vit —x (12)

The slip on the fault continues to increase until
the growth of the rupture is arrested. Models of
this type produce dislocation rise times that de-
pend upon the final dimensions of the rupture
surface. A review of these types of models can be
found in Aki and Richards (1980, chap. 15).

If dislocation rise times are short compared
with the overall duration of the rupture, as is
suggested from the modeling of seismic waves,
then some other model for the rupture process
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must be considered. Dynamic rupture models in
which the rupture heals before the rupture
terminates are relatively rare. Yoffe (1960) pre-
sented such a model for a plane-strain extensional
fracture, but the healing condition was artificially
imposed and several key features of Yoffe’s model
are physically unrealistic. Similarly, Freund’s
(1979) model discussed in the last section (Fig. 9)
features a self-healing pulse of slip that propagates
steadily along a fault. However, the healing is
merely introduced as a boundary condition and
there is no physical process included to determine
when the healing should occur.

Day (1982) constructed finite-element models
of dynamic rupture on finite faults having stress
boundary conditions on the fault that are similar
to those in Fig. 10, ie. the shear stress =, is
limited to be a constant value 7, once rupture has
occurred. Day also added the following condition;
if the shear stress on the fault becomes less than r,
then the rupture heals itself. With this type of
boundary condition, Day shows that, in some
circumstances, the rupture can heal itself before
the rupture process terminates. In particular, for a
long, narrow rupture of width w (the rupture is
confined both above and below), Day shows that
the dislocation rise time approaches a value of
w/2V, as the rupture propagation approaches a
steady state. In some ways it is surprising that
Day’s (1982) simple model produces a healing
time that is so short, since the rupture heals while
the leading edge of the rupture is only half of a
fault width away. In a pseudo-static crack prob-
lem, the slip would continue to grow as the rup-
ture front extends. S. Day (personal communica-
tion, 1989) attributes this rapid healing to over-
shoot of the slip (with respect to the static prob-
lem) caused by the momentum of the sides of the
fault during the rupture process. The rapid healing
in Day’s (1982) model only appears for steady
rupture along a long, narrow fault. When Day
assumed a square fault with a radially spreading
rupture front, the dislocation rise time was com-
parable to the rupture time.

Archuleta and Frazier (1978) constructed dy-
namic finite element rupture models for a vertical
semi-circular fault in a half-space and stress
boundary condtions on the fault identical to those
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Fig. 11. Idealized model of a self-healing rupture pulse (in-
finitely wide in the y-direction) propagating at a velocity of ¥,
in the x-direction. Fracture initiates when the stress at the
crack tip exceeds the static strength of the fault 7, ( ~ k bar)
and then drops to a sliding frictional level that is inversely
proportional to the dislocation particle velocity D. Dislocation
particle velocities are high and sliding friction is very low
( < 200 bars) near the rupture front. As the dislocation particle
velocity decreases away from the rupture front, the sliding
friction increases and the fault heals itself. In this simple
model, the strength of the fault returns to a high level im-
mediately after the rupture. 7, is the stress before the initation
of rupture and 7, is the final stress after rupture has terminated,
yielding a static stress drop Ao =7, — 7,, which may be very
low ( ~ 10 bars) depending on the final length of the rupture.
The average stress drop locally within the rupture pulse may be
considerably larger ( ~100 bars) with dislocation particle
velocites in the range of 1m s~!. The dislocation amplitude D
and the length of the slip pulse /, may be a sensitive function
of the friction law during slip.
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just described. They show that if the hypocenter is
located at the bottom edge of the fault, then short
slip durations can occur for points where the fault
breaks the free surface of the half space. This
short duration is attributed to overshoot of the
slip with respect to static equilibrium as the dy-
namic rupture breaks the free surface. However,
this short slip duration is only seen in special cases
of Archuleta and Frazier’s models, and in all cases
that they considered, points interior to the rupture
boundaries have long slip durations.

Spatially complex distributions of stress and
strength introduce shorter length scales and it
should be possible to construct hypothetical mod-
els that have short slip durations for at least some
points interior to the boundaries of the rupture
surface. However, if the average slip in such mod-
els is determined by the overall dimension of the
rupture surface, then average slip durations are
expected to be long, despite the introduction of
shorter length scales. Chen et al. (1987) show
numerical examples of the slip history for a dy-
namic fault model in which the stress drop is
spatially heterogeneous (but positive everywhere
in the rupture surface). Although the slip history
becomes complex in their models, the duration of
slip is still comparable to the overall duration of
the rupture.

One way to make the slip duration short at a
given point is to introduce barriers. That is, an
earthquake consists of a number of short-dura-
tion, crack-like ruptures on small rupture areas
that are separated by locked regions (Aki, 1979;
Papageorgiou and Aki, 1983a,b). Barrier models
differ from the heterogeneous stress drop models
of Chen et al. (1985) in that there are actually
locked patches remaining throughout the rupture
surface. Large shear stress accumulates in these
locked patches as the rupture propagates around
them, effectively resulting in large negative stress
drops in the barriers. Although barrier models can
produce short slip durations, it appears that slip is
relatively smoothly distributed in many of the
earthquake models shown in Figs. 1-7, and yet,
the duration of slip is short.

Are there physically reasonable ways to rapidly
heal the rupture before information arrives that
the rupture has stopped propagating? The stress
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distribution in the slipping region may be the key.
Brune (1970, 1976) suggested that earthquake rup-
ture may be analogous to the propagation of dislo-
cations in crystals where a localized slip propa-
gates through a crystal lattice (for example, see
Nabarro, 1967). Brune further suggested that a
self-healing rupture pulse would result if the fric-
tional stress 7; is limited to some relatively low
value immediately behind the rupture front but is
then allowed to assume relatively high values at
some finite distance behind the rupture front. A
simple way to accomplish this is to assume that
the friction stress 7, is inversely related to the slip
velocity D at any point on the fault. A slip-veloc-
ity-weakening friction law for faults was suggested
by Burridge and Knopoff (1967) who numerically
simulated earthquake rupture by assuming that a
fault could be modeled as a system of discrete
masses, coupled by springs, and sliding over a
rigid surface. Their simulations did produce self-
healing, propagating rupture pulses, although they
did not emphasize the significance of such behav-
ior.

One simple hypothesis would be to assume that
the frictional stress on the fault 7, is approxi-
mated by

=T — aD (13)

where 7, is a static friction and @ is a material
constant. A simple model of this type is shown in
Fig. 11. In this model, slip only occurs if the shear
stress on the fault 1;y=7,(15), and if 7,, < (D),
then the fault is locked. As was the case in the
previous simple model (Fig. 10), the dislocation is
assumed to vary as |Vt — x in the region behind
the rupture front and thus the dislocation velocity
has an inverse square root singularity. The dy-
namic friction on the fault 7, drops dramatically
in the region immediately behind the crack tip and
then increases as the square root of distance be-
hind the rupture front. The rupture heals itself at
a distance /, behind the rupture front when =
exceeds the ambient stress on the fault. As is the
case with most crack models, the square root
singularities at the rupture front result in some
non-physical artefacts such as infinite strains (de-
rived from infinitesimal strain approximations),
infinite particle velocities, and even more infinite
particle accelerations. The infinite dislocation par-

13

ticle velocity, when used in conjunction with egn.
(13), forces 7; to actually go infinitely negative at
the rupture front. Thus, when thinking of the
behavior of these models at the rupture front, the
square root singularity should be taken to mean
that strains may become very large, but they must
be finitely bounded. In particular, the shear stress
on the fault cannot exceed the yield strength of
the fault, and dynamic friction 7; cannot be nega-
tive.

S. Day (personal communication, 1989) has
constructed finite element models of dynamic rup-
ture assuming the velocity-dependent friction law
given by eqgn. (13). He reports that such a friction
law can produce a self-healing pulse of slip that
propagates along a rupture surface, although the
stable propagation of such pulses occurs only for
specific ranges of the constant a which determines
the degree of slip velocity weakening.

Is there any physical basis for a dynamic fric-
tion of the type assumed in eqn. (13)? One simple
hypothesis is that the friction on the fault is re-
lated to the normal stress across the fault surface
T..- In idealized planar fault models, the normal
stress 7,, is constant across the fault throughout
the rupture process. That is, the fault plane is
assumed to be a perfect node for P-waves. How-
ever, if there are geometric irregularities in the
rupture surface or spatial variations in elastic
properties in the vicinity of the rupture surface,
then the fault plane will no longer be a perfect
node for P-waves. In fact, observations of the
high-frequency P-waves in the near-source region
usually yield a fairly isotropic P-wave radiation
pattern (Liu and Helmberger, 1985). If there are
large-amplitude variations in the normal stress 7,
in the rupture region, these will almost certainly
have some effect on the effective frictional strength
of the fault. Since the amplitude of high-frequency
radiated waves is proportional to the dislocation
velocity D, it might be expected that the dynamic
friction is a function of the slip velocity.

Brune et al. (1989, 1990) have studied sponta-
neous stick-slip failure in foam rubber and have
documented that variations in normal stress on
the slipping surface are responsible for slip-veloc-
ity-weakening friction. They found that when thin
strips of foam rubber are mounted to rigid surfaces
and then forced to slide, the sliding friction is the
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same as the static friction. However, when the
surrounding medium is entirely foam rubber, then
significant normal stresses are observed in the
vicinity of the sliding region and the apparent
sliding friction is reduced. Tolstoi (1967), Oden
and Martins (1985) have argued persuasively that
dynamic variations in normal stress are of primary
importance in determining the dynamic behavior
of dry friction in metals.

If irregularities occur on a very small scale,
then it may be that high-intensity, high-frequency
compressional waves may exist in the immediate
vicinity of propagating rupture pulses in earth-
quakes. Melosh (1979) discusses a model of this
type that he calls ‘acoustic fluidization’. He shows
that very high-frequency acoustic waves may be a
reasonable mechanism for producing slip-
velocity-weakening behavior that dramatically re-
duces frictional stress during fault rupture. If such
compressional waves are to significantly reduce
the confining stress on the rupture surface, then
their intensity would have to be some significant
fraction of the confining stress (on the order of
kilobars for seismogenic depths). If this explana-
tion is appropriate, then it may only be valid for
ruptures that propagate within specified ranges of
confining pressure and dislocation particle veloci-
ties.

Sibson (1973) and Lachenbruch (1980) discuss
an alternative model for decreasing frictional stress
during rupture. They propose that frictional stress
may be dramatically reduced during.rupture by
the expansion of pore fluid caused by frictional
heating. They suggest that frictional stress could
be reduced from the range of kilobars to hundreds
of bars as pore fluids rapidly heat during fault
slip. Lachenbruch (1980) suggests that the pore
fluid pressure may rapidly dissipate by the propa-
gation of hydrofractures thereby causing re-
strengthening of the fault. The time required for
this re-strengthening could range from seconds to
years depending upon the characteristics of the
fluid flow.

5. Consequences of self-heating rupture

There are some interesting implications that
result from a model of the type shown in Fig. 11.

T.H. HEATON

The constant a, which controls the slip velocity
weakening in the friction law (eqn. 13), has a
fundamental effect on the rupture. If a is large,
then the length /, of the rupture pulse is large and
so is the dislocation. If a becomes small, then the
dynamic friction increases and rupture stops. The
length of the slip pulse and size of the dislocation
in the slip pulse rises and falls as it proceeds down
the fault, depending on the relative amplitude of
the ambient stress 7, and the dynamic friction 7
(which itself depends on the dislocation particle
velocity). Because the slip velocity and the dy-
namic friction are dependent on each other,
mathematical solutions for the slip are likely to be
rather unstable with respect to assumed initial
conditions. It is conceivable that the static strength
7,.and the ambient stress 7, may both be relatively
homogeneous along a rupture that has a relatively
irregular slip distribution, i.e. the slip distribution
may be controlled by details of the behavior of the
dynamic frictional strength in the region of the
slip pulse. It might be difficult to recognize which
segments of a fault may have large slips just by
looking at physical samples of fault material.

The amplitudes of various stresses for the self-
healing slip pulse model of Fig. 11 are now specu-
lated upon. The static friction on the fault 7, could
be quite high, perhaps in the kilobar range, which
is the inferred strength of materials at confining
stresses appropriate for seismogenic depths. Yet
since the dynamic friction during rupture 7, may
be relatively low (perhaps in the range of several
hundred bars), the work done against friction dur-
ing rupture may be relatively low, thus explaining
the relatively low heat flow seen in the vicinity of
the most active faults (Brune et al. 1969;
Lachenbruch and Sass, 1973, 1980; Richards,
1976). The static stress drop, which is measured
from the overall fault dimensions, may be much
lower still (in the range of tens of bars). If propa-
gation of a rupture pulse of a given slip amplitude
is arrested in a relatively short distance, then a
relatively high static stress drop results. If that
same rupture pulse travels a long distance, then a
relatively low static stress drop results.

In the slip pulse model, frictional heating is
controlled by dynamic friction during rupture and
not by the static friction 7,. Heat flow measure-
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ments apparently constrain the dynamic friction
of the San Andreas fault to be less than several
hundred bars. Furthermore, the very rough esti-
mate of dynamic stress drops Ao, from the earth-
quakes considered in this paper (Table 2) leads me
to guess that the ambient stress is usually no more
than several hundred bars higher than the average
dynamic friction. Therefore, the ambient shear
stress on the San Andreas fault may be expected
to be less than 400 bars. Zoback et al. (1987) also
infer relatively low shear stresses on the San
Andreas fault because many independent mea-
surements imply that the maximum compression
axis is nearly perpendicular to the fault. Of course,
heat flow measurements do not constrain the dy-
namic frictional stress values for relatively low
slip-rate faults. The existence of large mountains
is convincing evidence that the ambient shear stress
in the crust is in the range of a kilobar at some
localities (Jeffreys, 1959).

Once a slip pulse has initiated, the ambient
stress T, necessary to support the propagation of
large slip pulses may be considerably less than the
static friction 7,. Thus, sections of the fault that
support large slip pulses would tend to be at an
ambient stress that is low compared to the stress
necessary to initiate rupture. This may explain
why sections of the fault that have large coseismic
slips tend to have low seismicity levels (the stress
is too low to initiate rupture).

We see, then, that the slip pulse model allows
for a large variation between the different mea-
sures of stress in the earthquake process. The
static strength of the fault zone 7, may be in the
kilobar range; the ambient shear stress in the
region of the earthquake may be lower but still
quite high (perhaps in the range of hundreds of
bars on very active faults to a kilobar on relatively
inactive faults); the dynamic stress differences in
the region of the rupture may be relatively high (in
the range of tens to hundreds of bars in the
slipping part of the fault to kilobars at the crack
tip); the sliding friction during rupture 7, may be
relatively low (less than several hundred bars);
and the final change in ambient stress (the static
stress drop Ac) may be very low (in the range of
tens of bars).

If there is a region of small slip surrounded by
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regions of large slip, then in the region of small
slip, the stress after the earthquake 7, may actu-
ally be higher than the stress before 7,. In the case
of the Morgan Hill earthquake, there was an ex-
tensive area of small slip between two regions of
large slip (Fig. 5). Although behavior of this type
can be understood in the context of the simple
model of Fig. 10, it seems to imply a very hetero-
geneous distribution of either ambient or fric-
tional stress. However, this behavior seems to fol-
low naturally from the slip pulse model shown in
Fig. 11. The slip pulse, which was less than a
kilometer wide, propagated from north to south at
a velocity of about 2.8 km s~'. The size of the slip
pulse was initially large, then diminished as it
propagated southward and then grew relatively
large again at the south end of the rupture. The
small slip in the region between the asperities did
not grow large when the second asperity broke
because the fault had already become locked.

If indeed the slip pulse model is appropriate,
then the ambient stress along many active faults
may be much lower (perhaps by a factor of 0.20)
than the stress necessary to initiate rupture and
the problem of earthquake prediction becomes a
problem of predicting when and where large slip
pulses will propagate. Or restating the problem,
we must know how to predict when a slip pulse
will stop propagating (this problem is discussed in
more detail by Brune, 1979). Since the static stress
drop Ac is small compared with other stresses
involved in this model, prediction schemes that
depend on static stress drop estimates (for in-
stance the time-predictable or slip-predictable
models; Shimazaki and Nakata, 1980) may not be
appropriate. Even after a large earthquake, there
may be sufficient ambient stress to support the
propagation of another slip pulse. As an example,
consider the apparent 6-m slips that occurred on
the San Andreas fault at Pallett Creek in both
1812 and 1857, a mere 45 years apart (Salyards,
1989). Alternatively, a region may experience a
long interseismic period simply because no slip
pulses of large enough size propagated into the
region (some interevent periods at Pallett Creek
exceed 300 years; Salyards, 1989). If this is true,
then even the approximate prediction of the time
of large earthquakes may be difficult. Kagan and
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Jackson (1990) report that mature seismic gaps as
defined by McCann et al. (1979) had fewer large
earthquakes in the period from 1979 to 1988 than
recently filled seismic gaps.

In the introduction of this paper, it was noted
that the average fault slip D correlates well with
the square root of the rupture area for a wide
variety of earthquakes (Kanamori and Anderson,
1975). If earthquake ruptures have approximately
constant ratios of width and length, then this
correlation implies that average static stress drops
Ao are approximately independent of the rupture
dimension. However, Scholz (1982) argues that
average dislocations correlate well with fault
lengths, even for faults in which the apparent
rupture width is small compared to the length.
This observation is evidence that long, narrow
ruptures tend to have higher static stress drops.
However, in the slip-pulse model proposed here,
the most natural explanation for a correlation
between average dislocation and rupture length
(regardless of the rupture width) is that pulses
with very large slip tend to propagate large dis-
tances. If a very large slip pulse develops on a
long, narrow fault (e.g. the San Andreas), it may
run for a very large distance. This problem is
discussed at some length by Bodin and Brune
(1990).

For faults of a given aspect ratio (length to
width ratio), the static stress drop is controlled by
the distance that a slip pulse propagates. If for
some reason, large slip pulses are arrested after
relatively short rupture lengths, then high static
stress drops would result. If the same size slip
pulse does not stop, then a lower static stress drop
would result, even if the dynamic behavior along
the slip pulse was approximately the same. This
suggests an interesting interpretation of the ob-
servation that geologic slip rates inversely corre-
late with static stress drop (Kanamori and Allen,
1986). That is, faults with the highest geologic slip
rates tend to have earthquakes with relatively low
static stress drops. If we assume the slip pulse
model, then this implies that slip pulses with a
given dislocation tend to travel larger distances on
very active faults than they do on relatively inac-
Yive faults. Perhaps faults with high geologic slip
rates tend to be long faults with relatively homo-
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geneous properties that allow slip pulses to propa-
gate large distances. Therefore, it is conceivable
that the static strength of faults and the dynamic
stresses during rupture may be relatively indepen-
dent of geologic slip rate.

Although the model that has been presented
may imply that it will be very difficult to predict
the time of large earthquakes, it also implies that
it should be possible to predict (at least statisti-
cally) the overall size of an earthquake soon after
the rupture has initiated and well before the rup-
ture stops. That is, since there is a well-established
correlation between average dislocation and fault
length, and because the final dislocation is
reached quickly after the passage of the rupture
front, it should be possible to recognize the dislo-
cation size quickly. This would allow a statistical
prediction of the rupture dimension before the
rupture stops. This principle may be useful in
real-time earthquake warning systems that are de-
signed to provide very short-term predictions (sec-
onds to tens of seconds) of strong ground shaking
for sites located at large enough distances from
the epicentral region (Heaton, 1985).

6. Nucleation of rupture

The slip pulse model shown in Fig. 11 assumes
a running rupture pulse. Since in this model no
slip pulse will propagate unless a slip pulse al-
ready exists, the model clearly begs the question of
how the rupture pulse starts in the first place. A
different class of models is necessary to trigger the
initial slip instability (for example; Rice and Tse,
1986; Okubo, 1989). At what point (or earthquake
size) does the physics that controls the rupture
change from the nucleation process (for which
inertia is not important) to the slip pulse process
(where inertia is very important)? Presumably, this
transition is related to the size of the rupture, and
we would expect that the slip pulse model does
not apply to earthquakes that are small enough.
How small is that? Unfortunately, detailed rup-
ture models have not yet been developed to study
the relationship between rupture time and disloca-
tion rise time for earthquakes smaller than about
magnitude 5. However, the overall seismic radia-
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tion from earthquakes down to at least magnitude
3 seems to be self-similar (assuming certain scaling
relationships) with that of larger events (for exam-
ple; Brune et at., 1986; Frankel and Wennerberg,
1989). Although this doesn’t prove anything, it
does suggest that the rupture pulse model may be
applicable for relatively small earthquakes as well.

Presumably sections of faults that primarily
creep do not support the propagation of slip pulses.
For example, consider the creeping section of the
San Andreas fault in central California. Whereas
the locked Carrizo Plains section of the fault is
devoid of seismicity, the creeping section has a
high seismicity rate. One explanation is that the
Carrizo Plains segment supports the propagation
of large slip pulses that maintain the ambient
stress at a relatively low level. However, the creep-
ing section of the fault evidently does not support
large slip pulses, thereby allowing the ambient
stress to increase to a level sufficient to cause
creep and the nucleation of numerous small rup-
tures that don’t propagate very far.

A serious problem still exists with this interpre-
tation. Laboratory measurements indicate that
creep generally does not initiate until shear stresses
are a substantial fraction of the confining stress
(typically 0.4 to 0.6; J.H. Dieterich, personal com-
munication). Since the notion of low dynamic
friction in this model is not relevant to the prob-
lem of fault creep, I cannot claim that shear
heating on creeping sections of the San Andreas
fault is low because of low dynamic friction. Al-
though there is a tendency for the heat flow to be
somewhat high in the general region surrounding
the central creeping section of the San Andreas
fault (Lachenbruch and Sass, 1980), the heat flow
is not localized to the fault and is not high enough
to be compatible with kilobar shear stress levels
on the creeping section of the fault (Brune et al.,
1969). High fluid pore pressures that reduce the
effective confining stress can be invoked to assert
that the yield strength of the creeping fault may
only be hundreds of bars. Unfortunately, I know
of little corroborating evidence for this somewhat
ad hoc explanation.
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" 7. Dislocation particle velocities

Using the values for dislocations and rise times
given in Tables 1 and 2 to compute dislocation
particle velocities results in the conclusion that the
logarithmically averaged velocity for a particle on
the fault is 43 cm s~! and in the regions of
asperities this average is about 103 cm s~ ! (assum-
ing that the motion is symmetric with respect to
the fault). These values are averages throughout
the duration of the slip pulse, and the particle
velocities may be considerably higher (perhaps
10-20 m s~!') in the immediate vicinity of the
rupture front.

These dislocation particle velocity estimates
have disturbing engineering consequences for some
classes of structures located very close to large
earthquakes. For example, dislocations of 7 m
were observed for some sections of the San
Andreas fault during the 1906 San Francisco
earthquake. This implies that some regions near
the fault shifted their position with respect to an
inertial frame by at least 3.5 m in several seconds.
This may prove to be an engineering problem for
some structures. In particular, base-isolated build-
ings are usually designed with the assumption that
short-period (<5 s) ground motions are less than
50 cm.

8. Conclusions

It has been demonstrated that slip durations for
a given point on a fault (dislocation rise times)
deduced from many rupture models derived from
seismic waveform data are significantly shorter
than the time required to notify points on the fault
that the rupture has stopped. These slip durations
are about 15% (or perhaps less) as long as the slip
durations that result from dynamic crack-like rup-
ture models. One explanation is that long-period
parts of the fault slip history are unresolved from
these models, which would imply that they have
seriously underestimated the total slip for earth-
quakes. However, evidence has been presented
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that the slip durations are indeed short. Several
potential models result in short slip durations. In
the first, earthquakes are composed of a sequence
of small dimension (short duration) events that
are separated by locked regions (barriers). How-
ever, in at least some of the dislocation models for
specific earthquakes, it appears that the slip is
relatively smoothly distributed (no barriers), and
yet, the duration of slip is short. In the second
model, rupture occurs in a narrow self-healing
pulse of slip that travels along the fault surface. In
this model, the frictional strength on the fault is
high everywhere except in the immediate vicinity
of the rupture pulse. It is suggested that the fric-
tional strength of the fault is inversely related to
the dislocation particle velocity in the slip pulse,
perhaps caused by intense compressional waves
that would tend to decrease confining stresses
locally in the region of the slip pulse.

It is suggested that this dislocation-velocity-
weakening, slip-pulse model may allow for the
following features: the static strength of fault
materials at seismogenic depths may be relatively
high (on the order of kilobars); the ambient stress
in the vicinity of active faults may be any value
between several hundred bars and a kilobar (de-
pending on the size and frequency of occurrence
of the slip pulses that propagate on the fault); the
frictional stress during slip may be less than several
hundred bars (thereby generating relatively little
heat); the average dynamic stress drop in the
region of the slip pulse is on the order of 50-100
bars; the average static stress drop may be rela-
tively low (tens of bars) and is controlled by the
final length that a slip pulse will propagate; large-
amplitude slip pulses tend to propagate long dis-
tances; regions that do not efficiently propagate
slip pulses may accumulate high ambient stresses
and may be regions that nucleate many small
earthquakes; and regions that do support the
propagation of large slip pulses maintain relatively
lower ambient stresses and would rarely produce
rupture nucleation. This model would tend to
de-emphasize the importance of static stress drop
in the region of large earthquakes and may help to
explain why some earthquake recurrence times are
surprisingly irregular.

Kinematic models of fault rupture in which slip
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occurs in a short time period after the passage of a
rupture front (often referred to as dislocation
models) have been very successful for matching
waveforms over a broad range of frequencies.
However, they have often been criticized on the
basis that they violate basic physical constraints.
In this paper, a mechanism has been suggested
that would produce the types of slip pulses that
seem to fit waveform data so well. While the
hypothesized slip-pulse model presented here is
admittedly speculative, it does seem to provide a
solution for a first-order problem that any model
of rupture must ultimately deal with. It is now
clear that the ambient shear stress and dynamic
friction on the San Andreas fault are low com-
pared to the confining pressure at seismogenic
depths. Realistic rupture models must satisfy this
constraint.
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