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Abstract. A procedure for estimating ground motions using recorded accelerograms is described. The
premise of the study is the assumption that future ground motions will be similar to those observed for similar
site and tectonic situations in the past. Direct techniques for scaling existing accelerograms have been
developed, based on relative estimates of local magnitude, M, . Design events are described deterministically
in terms of fault dimension, tectonic setting (stress drop), fault distance, and site conditions. A combination
of empirical and theoretical arguments is used to develop relationships between M, and other earthquake
magnitude scales. In order to minimize scaling errors due to lack of understanding of the physics of strong
ground motion, the procedure employs as few intermediate scaling laws as possible. The procedure conserves
a meaningful measure of the uncertainty inherent when predicting ground motions from simple parameteri-
zations of earthquake sources and site conditions.

1. Introduction

The purpose of this review is to present a procedure for estimating strong seismic
ground motions that are expected at sites whose tectonic settings and local soil
conditions are known. The premise of this study is the assumption that future ground
motions will be similar to those which have already been observed in past earthquakes.
We seek to find situations with characteristics similar to those found at a site under
investigation. To minimize errors due to our poor understanding of the physics of
strong ground motion, it is desirable to develop a procedure that employs as few
intermediate scaling laws as possible.

This report is a modified version of an in-house manual that was prepared to provide
a seismological perspective for those who are faced with problems of design, but who
also cannot invest the time to digest and evaluate the large volume of seismological
literature concerned with the estimation of strong ground motion. Much of this report
is of a review nature and may seem somewhat simplistic to researchers in the fields of
both seismology and earthquake engineering. We hope that this report does provide an
introductory understanding of the relationship between strong ground motion and
earthquake characteristics.

Guzman and Jennings (1976) have described a procedure that is conceptually simple
and physically reasonable. They argue that ‘design spectra should be established by
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direct comparison with the response spectra of existing accelerograms recorded under
conditions representative of the postulated earthquake’. Thus, in order to determine
expected future motions, we need merely gather and characterize the motions observed
for similar earthquakes and site conditions in the past. However, the main problem is
that the present data set is too small to encompass the wide variation in tectonic and site
conditions that may be encountered. This can be alleviated to some degree by scaling
existing records such that they are appropriate for the conditions of a particular design
earthquake. Since our understanding of ground motion scaling and of the nature of
specific records is poor, it is desirable to keep such scaling procedures to a minimum.

The procedure suggested by Guzman and Jennings (1976) involves scaling records
with attenuation laws that are based upon a characterization of peak acceleration. For
reasons that will be explained later, we have chosen to scale records with the attenua-
tion law which was developed for use in the local magnitude scale (M,) by Richter
(1958). The engineering significance of the M, scale has only recently been recognized
by Kanamori and Jennings (1978) in their study of the local magnitudes of large events
in the western United States. In this study, we extend their results by considering also
the local magnitudes of large earthquakes in Japan.

Although Guzman and Jenning’s procedure is conceptually very simple, the actual
application of the procedure can be confusing and difficult. This is primarily due to the
fact that considerable judgment is necessary when this type of procedure is employed.
In fact, there seems to be an inherent trade-off between the conceptual simplicity and
the tractability for procedures to estimate shaking. As an example, many well-defined
procedures consist of the following type of formalism:

AR, M, w) = f{(R)[,(M)A,(e) (1)

where 4 (R, M, w) is the design spectrum, f, and f, are empirically determined functions
of distance and magnitude, and A4, (w) is some standard response spectrum that is
designed to have the shape of an average record. A procedure that uses this formalism is
easy to use since one merely plugs the values into the equation and then obtains the final
answer. The major problem with these procedures is that the form of Equation (1) is not
defendable. In particular, it is not possible to separate the ground motion into the
product of several independent functions. Unfortunately, the problem quickly be-
comes numerically intractable unless the answer is assumed to have this form.
The procedure that we will demonstrate can be written:

AXps - X, @) = Ag(XT, X 0)fy (X1 x9) L, (%, x0) (2)
where x,, ..., x, are input parameters, A is the design spectrum, 4, is the observed
spectrum at the point x{, ..., x%,andf,, .. ..f, are scaling laws for each of the parameters.
This approximation is best when (x; - x})< <x?, i=1, ..., n. Just as in Equation (1),

there is no adequate mathematical justification for assuming this form for the function.
However, if (x; - x!) is small, then we can be assured that we are not far from the actual
answer. Also, if our parameters, x; and their scaling functions are chosen in a
physically meaningful way, then there is some chance that the approximation given by
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Equation (2) will be meaningful. Unfortunately, many parameters (e.g., the detailed
source time history) are virtually indeterminate, and thus, it is difficult for us to ensure
that x; - x} is small. This is where judgment is important. We must judge the
characteristics of both past earthquakes and future ones. Furthermore, since we are
commonly confronted with situations for which we have few, if any, historical records,
it will often be necessary to make difficult judgments about how to apply past
recordings to these new circumstances.

Itis clear that when using the type of procedure described by Equation (2), the value
of A is quite sensitive to the particular observed spectrum, 4, which we have chosen to
scale. Thus it is important to repeat this procedure in an unbiased way in order to
construct a set of scaled design spectra. The final design spectrum is then constructed
from this set of scaled observed spectra. The particular manner in which the final design
spectrum is constructed depends upon the acceptable level of risk for a particular
project.

In order to make the Guzman and Jennings type of procedure useful, we have: (1)
summarized the data for past earthquakes; and (2) outlined the way in which these data
can be applied to new sites.

2. Engineering Seismology

2.1. THE SIZE OF EARTHQUAKES

The fundamental objective of the procedure to be developed is to translate what is
known about faults near a site, to expected strong ground motion at that site.
Therefore, some means must be found to characterize earthquakes that are expected to
occur on a fault. The most obvious characteristic is the size of the earthquake.
Magnitude is the traditional measure of earthquake size, and is the number that is
generally passed between geologists and earthquake engineers. The geologist uses
studies of fault length versus magnitude to estimate the magnitude of an earthquake on
a particular fault. The engineer, using studies of peak acceleration versus magnitude,
then selects a ground motion which is based on the magnitude. There are, however,
problems associated with this procedure, and these problems can be comprehended
through a better understanding of what magnitude means.

Presently, there are several different magnitude scales that can be used to quantify
the size of an earthquake. Most of these operate on the assumption that the larger the
earthquake, the larger the seismic waves that are radiated. These seismic waves are
typically recorded at large distances on different kinds of seismometers. By measuring
the size of specific wave types, it is possible to estimate the relative size of earthquakes.
The three most commonly used magnitude scales are: M,, m, and M,. The original
Richter magnitude scale is M, and is defined in terms of the logarithm of the maximum
amplitude of an earthquake, as recorded by a Wood-Anderson torsion seismometer at
distance of 100 km from the source. A distance correction has been included so that the
seismometer may lie anywhere within 1000 km of the earthquake. m, is the body-wave
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magnitude and relies upon the amplitudes of body waves (e.g., direct P and S waves)
that are recorded at great distances (>2500km) on a seismometer whose peak
amplification is near 1 sec. M| is the surface wave magnitude and gives an indication of
the amplitude of a Rayleigh wave with a period of 20 sec that is recorded at great
distance. m,, M, and other magnitude scales have been designed such that they are all
roughly compatible with the original Richter local magnitude scale. However, the
radiation of seismic energy from an earthquake is a very complex process, and it is
difficult to know whether these different scales measure the same property of an
earthquake. We will later show that in many instances there are important differences
between different kinds of magnitude scales. Furthermore, although we know that
magnitude gives us some relative measure of size, we do not know exactly what is meant
by this vague term, size. For more comprehensive reviews of the magnitude problem,
see Bath (1981) and Kanamori (1983).

Much of the original work concerning the physical meaning of magnitude scales
centered around the notion of energy. Certainly energy is an excellent candidate for a
measure of the size of an earthquake. However, it turns out that energy is a rather
difficult quantity to measure and to relate to the actual faulting process; ultimately, we
would like to understand what the implications of fault dimensions are in terms of
seismic radiation. There are some scaling relationships that can be derived by intuition.
Consider a fault plane such as shown in Figure 1. L is the fault length, W is its width,
and D is the average dislocation of the fault on that surface. Suppose that U(¢) is motion
recorded at some observation point. If the earth is a linearly elastic system, then U(z)
will double if the average dislocation, D on the fault surface is doubled. If we were to
place two identical earthquakes adjacent to one another, we would effectively double
the fault area and U(z) would also double. This example provides the rationale for the
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Fig. 1. Definition of seismic moment. u is the material rigidity in the earthquake source area.
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definition of the moment of an earthquake. Moment (M,) is the basic scaling parameter
used in the mathematical modeling of seismic waves radiated by a fault. Moment is
defined to be the material rigidity (1) times the fault area (A4) times the average
dislocation (D).

Moment provides a basic link between the dimensions of a fault and seismic waves
that are radiated. Thus, a determination of the moment is a convenient way to quantify
the size of an earthquake. It is important now to specify the relationship between M,
and the amplitude of ground motions. This is a difficult task since recorded ground
motion depends not only on the overall size of the earthquake, but also upon the
specific time history of fault rupture, as well as the particular seismic velocity structure
through which the waves travel. However, if there exists a general scaling law between
M, and the amplitude of seismic waves, it can be used to scale design ground motions.
Thatcher and Hanks (1973) pointed out that there is a general relationship between the
moments and local magnitudes of southern California earthquakes that is of the form,

LogM, — 16
My = B0 0)

where M|, is given in units of dyne-cm. Later, Kanamori (1978) introduced the energy
magnitude scale, M, which he defined as

wa

ngLogI/IIOS—II.Ei’ ()

where W is the seismic energy release in ergs. He also noted that, on average, total
radiated seismic energy is related to moment by the following relationship.

M,

W, = I 5
°= (2% 10%) ©)
Substituting (5) into (4), we obtain
LogM, — 16.
M, = =B Lo 100, )

Kanamori defined M, in this way so that it would be compatible with the energy-
magnitude relation developed by Gutenberg and Richter (1956). The energy-magni-
tude relation was developed using the surface-wave magnitude M,, for earthquakes in
the range 6 < M, <8. Note that relationships (6) and (3) are remarkably similar. Using
this observation, Hanks and Kanamori (1979) have introduced the moment magnitude
scale, M, which is defined as

Log M, — 16.05

15 )

M=
Since moment magnitude can be estimated directly from fault area and average
dislocation, it provides a convenient quantification of earthquake size. Furthermore,
approximate relationships exist between M and more traditional magnitude scales such
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as M, and M,. However, it is important to recognize that M is conceptually quite
different from other magnitude scales in that previous magnitude scales tell us about
the amplitude of particular seismic wave types, whereas M is related to actual faulting
dimensions. Recently, there has been considerable attention given to the theoretical
problem of the relationship between M and other scales such as M, and M. This
problem is discussed further in Appendix I.

2.1.1. Estimation of Moment Magnitude

We present a simple method for determining the moment of a potential earthquake that
is based upon an estimate of the fault dimensions. In the past, estimates of earthquake
size, as a function of fault dimension, have been based mostly upon empirical studies of
magnitude versus length of surface rupture. The value of such studies is obvious since
surface rupture is the most direct measurement of fault dimension possible, and
magnitude is the most common measure of the size of an earthquake. Unfortunately, a
general misunderstanding of earthquake source processes and earthquake magnitude
scales has seriously undermined our ability to obtain physically reasonable results from
these studies. It is customary to perform a least squares fit of a straight line to a plot of
magnitude versus the logarithm of the fault dimension. This straight line is then used to
predict the sizes of future earthquakes based upon the observed lengths of faults. There
are problems, however. There is no a priori reason to assume that the relationship
between the magnitude and the log of the fault dimension is linear. This assumption can
lead to difficulties when the relationships are used to extrapolate outside the present
data base. For instance, it may be difficult to judge the dimensions of smaller ruptures
having minimal surface expressions. Furthermore, the sizes of earthquakes with large
rupture dimensions may be poorly represented by traditional magnitude scales due to
magnitude saturation phenomena. Finally, it may be that very long ruptures are
affected by the properties of deep crustal or mantle rocks, whereas short ruptures are
affected by shallow crustal rock properties.

A first requirement is to show how M,, and thus moment magnitude, can be
estimated from a knowledge of rupture length, depth, and the stress drop on the fault.
Recall that the definition of moment is,

M, = pAD, (8)

where y is the material rigidity at the source, A is the area of rupture, and D is the aver-
age dislocation on that area. 4 can be estimated directly from estimates of the fault
dimensions. D can be estimated from the average stress drop and the fault geometry.
For simplicity, assume that the rupture surface is approximately rectangular, with a
length, L, and a width, w. Further assume that the total fault has a length L, and a
width w,. Now assume that unless the rupture length is greater than the total fault
width, the rupture surface is a square. Therefore,

w=w,: L>w,. 9)

w=L: L <w,
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LA
M, = ﬁ; L > 2w, (long rupture).

The moment magnitude can then be calculated by using Equations (14) and (7).

M =2LogL +%Logdo —32LogCp—107: L=w <w,

.ZL
Mo b ZLlogde— 107 w, <L <2w,

L
Cp+ o.9<1 . >
\\‘0

M =3Logw, + 3Logdc + sLogL —
—3Log(Cp—09)—10.7: L>2w,

_2
M =4Log (15)

where all lengths are given in centimeters (cm), and the stress drop is given in dyne/cm?2.
Equation (15) still leaves us with some uncertainty. For example, what is the width of a
particular fault and what is the stress drop? For each of these variables, we can only
make an educated guess. In California, there do not seem to be earthquakes deeper than
20 km. There, we might choose the fault’s width to be 20 km/sin 6 (8 is the dip angle), or
else equal to the fault’s length, whichever is smaller. In Benioff Zones, fault widths can
be much larger since earthquake depths are greater. Estimating fault width is a matter
of judgment, and its uncertainty reflects a true uncertainty in the problem.

The other uncertain parameter is stress drop. Kanamori and Anderson (1975) have
reviewed this problem and they conclude that the worldwide average stress drop is
about 30 bars (1 bar = 10° dyne/cm?). However, this number varies from less than 10
bars to over 100 bars for individual earthquakes. There does appear to be some
systematic relationship with respect to tectonic environment. It appears that stress
drops may be highest in regions well removed from plate tectonic boundaries. Such
earthquakes are called intraplate earthquakes and their average stress drop is about 60
bars. Interplate earthquakes, those associated with non-sunducting plate boundaries,
have an average stress drop of about 30 bars. It also appears that shallow interplate
subduction-zone earthquakes may have a somewhat lower average stress drop of 15
bars. In general, the stress drop is a very important quantity about which we know
disappointingly little.

Despite the uncertainties, Equation (15) provides us with the means to scale
earthquake size in a physically meaningful way. In Figure 2 we show the theoretical
relationship between moment magnitude and rupture length assuming stress drops of
15, 30, and 60 bars, C, = 1.6 (surface rupture), and two different types of faults. In one
case, the fault width is set equal to the fault length. In the other case, the fault width does
not exceed 20 km. This second case would simulate a shallow strike-slip environment.
Notice that if there is a maximum fault width, then our relationship cannot be
expressed in terms of a single straight line. Also, keep in mind that we have plotted
rupture length versus moment magnitude. As we will later see, the relationship between
moment magnitude and other magnitude scales is not always simple. Thus we may
expect the relationship between fault length and traditional magnitudes to be fairly
complex.
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Fig.2. Moment magnitude given as a function of rupture length as calculated from Equation (15). Straight

lines correspond to those cases in which the rupture width is assumed to be equal to the rupture length.

Curved lines correspond to cases in which a maximum rupture width of 20 km is assumed. Shallow faulting is
assumed and the material rigidity is taken to be 3.5 x 10'! dyne/cm?.
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Fig. 3. Average dislocation given as a function of moment magnitude as calculated from Equations (13)
and (15). The assumptions used are identical to those used in Figure 2.
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In Figure 3 we show the predicted relationship between moment magnitude and
average dislocation. Again, we assumed stress drops of 15, 30 and 60 bars and two
different cases of fault width. Notice that when the maximum width is fixed, as the fault
length becomes much larger than the fault width, the average dislocation tends to a
constant value which is determined by the fault width and the stress drop. Also, if the
maximum fault width is 20 km, it is unlikely that it will produce an earthquake having a
magnitude much larger than 8.

2.1.2. Relationship Between Moment Magnitude and Other Magnitude Scales

We have seen that it is very convenient to quantify earthquake size by seismic moment.
However, seismic moment alone does not tell us how to scale strong motion amplitudes
with fault dimension. Furthermore, seismic moment is a relatively new concept and
estimates of this parameter are not available for many earthquakes of interest. In this
section we discuss the relationships between moment magnitude and other magnitude
scales. The relationships we will show have been developed primarily on the basis of
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Fig. 4. Plot of observed local magnitudes versus surface wave magnitudes for earthquakes in the western
United States.”
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empirical studies. However, in AppendixI we also discuss the results of theoretical
studies of seismic sources which give insight into this problem.

In the last section, we noted that Thatcher and Hanks (1973) and Kanamori (1978)
proposed relationships between M and M, , and M and M, that are virtually identical.
This might lead one to the conclusion that M, and M, are equivalent. Indeed, M, was
defined by Gutenberg and Richter (1956) such that M, is an extension of the local
magnitude scale. They used aftershocks of the 1952 Kern County earthquake to
calibrate the M| scale such that these aftershocks gave similar magnitudes on both
scales. However, their study only considered earthquakes with magnitudes between 5
and 6. Due to the limited dynamic range of available instruments, M, was not available
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Fig. 5. Plot of surface wave magnitude versus log moment or moment magnitude for world-wide
carthquake sample (modified from Purcaru and Berckhemer, 1978).
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Fig. 6. Comparison of several different magnitude scales with the moment magnitude scale.

for larger earthquakes and M, was not available for smaller earthquakes. Recently,
Kanamori and Jennings (1978) have calculated M, for larger earthquakes by using
strong motion records. In Figure 4 we show a plot of M, versus M| using the combined
data sets of Gutenberg and Richter (1956) and Kanamori and Jennings (1978).
Although the line M, = M, runs through many data points, an obvious skew is present
in this plot. This is contradictory to our previous conclusion that M, and M, are
equivalent. Although this may seem somewhat paradoxical, we can better understand
the situation by examining a plot of M, versus log M, that was presented by Purcaru
and Berckhemer (1978). In Figure 5, we see that between M, = 6 and M, = 8, that M| =~
M. This is in agreement with Kanamori’s earlier work. However, for magnitudes less
than 6, M, and M no longer coincide. In Appendix I, we show that this change in slope
can be easily explained by theoretical source models. By examining Figures4 and 5 we
can conclude that M, and M are roughly equivalent up to magnitude 6 and that
thereafter, M, increases more slowly than M.

In Figure 6 we show the relationships between moment magnitude and other
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magnitude scales. Our construction of these curves involves the synthesis of many
different studies. We began by plotting M| as a function of moment magnitude using
the results of Kanamori and Anderson (1975), which apply for moment magnitudes
between 6 and 9, and also the results of Purcaru and Berkhemer (1978) which apply for
moment magnitudes between 3 and 9. We used the results of Thatcher and Hanks
(1973) to define the relationship between M, and M for 3 < M < 6. We then used rela-
tionships between M, and M, given by Gutenbergand Richter (1956) and by Kanamori
and Jennings (1978) to extend the relationship between M, and M for M < 6. The
relationship between M, and M is further corroborated by using relationships between
M, and M, (Japan Meterological Agency) that are presented in Appendix IT and
relationships between My, and M, (Tsuboi, 1954, and also Appendix II). Finally, we
were able to obtain n, (long-period body-wave magnitude) and m, (short-period body-

wave magnitude) as a function of moment magnitude by using relationships between
M, and my (Abe and Kanamori, 1980), M, and m, (Noguchi and Abe, 1977), and

my and m, (Abe, 1981).

There are serveral noteworthy aspects of the relationships shown in Figure 6. All of
the magnitude scales exhibit a saturation level with increasing moment magnitude.
That is, beyond a certain level, individual magnitude scales no longer reflect the true
size of earthquakes. As an example, consider the 1960 Chilean earthquake, the largest
known instrumentally recorded earthquake. Aftershock studies indicate that the fault
ruptured over an area which is comparable to the surface area of the entire State of
California. Kanamori (1978) has estimated the M, of thisevent to be 2 x 10*° dyne-cm.
Another well known large earthquake is the 1906 San Francisco earthquake. The fault
area for this earthquake, though, was much smaller than that which ruptured in the
1960 Chilean event. The San Francisco event had a M, of about 10* dyne-cm, and thus,
in terms of moment (and energy), the Chilean event was about 200 times larger than the
San Francisco earthquake. Yet, these two earthquakes had virtually identical surface
wave magnitudes of 8}. Clearly, the M| scale fails to give an adequate representation of
the size of giant earthquakes. What this means is that beyond a certain magnitude, the
amplitudes of 20-sec surface waves do not increase with increasing earthquake size.
This phenomenon is referred to as saturation of the magnitude scale. Saturation occurs
when the fault dimension becomes much larger than the wave length of seismic waves
that are used to determine the magnitude.

The relationship between M and M, is of great interest since M can be related to fault
dimensions, and M, is a measure of seismic radiation at distances that are close to the
source. As was stated before, M, is a measure of the size of recording made by a Wood-
Anderson torsion seismometer. This instrument is actually a single-degree-of-freedom,
linear, 80% damped, harmonic oscillator with a free period of 0.8 sec and a gain of
2800. There are two important implications of the characteristics of this instrument: (1)
the maximum amplitude, as read on this instrument, gives a point on the response
spectrum for that motion at 0.8 sec and 80% damping, and (2) the period at which M, is
measured is much shorter than the period at which M, is measured. The first implica-
tion tells us that M, provides a scaling of the type of seismic waves that are of interest in
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earthquake engineering. The second means that we should expect a saturation of the
local magnitude scale even before M, saturates. Since we intend to use M, in our
procedure for estimating ground motions, the saturation level of M, is of keen interest.
We give a more detailed discussion of this problem in het next section.

There are several other noteworthy features of Figure 6. We can see that both m,
(long-period body-wave magnitude) and My, give a fairly good indication of the size
of earthquakes having moment magnitudes less than 8. Both of these scales are based
upon measurements of peak amplitudes of waves with periods between 5 and 10 sec.m,
is important since it is available for many older earthquakes (see Abe, 1981). Unfortu-
nately, it is not available for most recent events. Due to changes in instrumentation in
the 1960’s, the m , scale was replaced by the m, scale. m, is based on the amplitude of the
initial several seconds of teleseismic body waves with periods near 1 sec. Unfortunately,
m, does not seem to give a very good indication of earthquake size.

2.2. IMPLICATIONS OF THE LOCAL MAGNITUDE SCALE

Although the M, scale was originally developed to measure the overall size of
earthquakes, it has become clear that M, is well suited to measure the relative sizes of
strong ground motions. As a part of the guidelines, we use M toscale strong motion re-
cords in a very direct manner. A modified version of Richter’s original distance
function is used to scale records with distance. Records are scaled according to
earthquake size by using the definition of the magnitude scale directly. Site effects (the
effects of local soils) are included by introducing an appropriate correction factor.
Local magnitudes are related to fault dimensions by simple relationships that can be
derived from dislocation theory. It is important to recognize that the M, scaleis not a
panecea. Most of the problems that are associated with understanding the motions that
are produced by a particular earthquake still exist. The conceptual simplicity that
results from using the local magnitude scale to estimate response spectra is the major
motivation for incorporating local magnitude into our procedure for estimating
ground motions.
The definition of local magnitude is,

M; =LogA,, — Log A,, (16)

where A, is the maximum trace amplitude on a Wood-Anderson (horizontal) seismo-
meter, and A, is a distance correction which will be discussed shortly. Now if the
displacement response spectrum of a motion is given by S, (t, &), where tis period, and &
is the damping fraction, then

S,(t=08,¢=08)=4,,/2800, (17)
where the factor of 2800 is included to correct for the gain of a Wood-Anderson
seismometer. Combining Equations (16) and (17), we obtain

AO 10;’WL
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Fig. 7. Values of local magnitude plotted as a function of distance for several California earthquakes. Lines
indicate mean values and + one standard deviation. The modified distance attenuation factor of Jennings
and Kanamori (1982) was assumed and data were taken either from Kanamori and Jennings (1978) or were
new data used with the permission of Kanamori and Jennings.
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For periods near one second, there is a general correspondence between response
spectral level and the peak velocity of the ground motion. In fact, the output of a Wood-
Anderson seismometer usually looks very similar in character to records of ground
velocity. Thus, the local magnitude scale can be thought of as a scaling relationship for
ground velocity. We must now address some important, but difficult, questions
concerning the local magnitude scale. How well does the local magnitude scale work
when scaling strong ground motions? How well can we estimate the relationships
between fault dimensions and local magnitudes? Before discussing these problems, we
warn the reader that a full resolution of these questions has not, to date, been possible.

Kanamori and Jennings (1978) have studied the local magnitudes of the larger
earthquakes in the western United States, and their results demonstrate the feasibility
of using local magnitude as a scaling relationship for strong ground motions. Notice
that Equation (16) indicates that the correction for the decay of amplitude with
distance is not a function of magnitude. Since Richter originally derived this relation-
ship using small earthquakes, it is not clear whether it also applies to large earthquakes.
Kanamori (1978) has pointed out that ‘it is possible that, for very large earthquakes,
complex interference of seismic waves originating from different parts of the fault plane
may significantly affect the decay rate of the maximum amplitude resulting in distance
dependent M,’.

Figure 7, which was constructed from studies by Kanamori and Jennings (1978) and
Jennings and Kanamori (1982), shows the value of M, as a function of distance for
several well-recorded California earthquakes. The values of M, are defined according
to the definition given in Equation (16). However, we have used a distance attenuation
factor which Jennings and Kanamori (1982) modified from the original one given by

TABLE I

Local magnitude distance attenuation factor
(modified by Jennings and Kanamori, 1983)

Distance (km) —Log 4, Distance —Log 4,
0 1.4 120 3.1
3 1.5 140 32
6 1.6 160 33
9 1.7 180 3.4

12.5 1.8 200 3.5
16.5 1.9 220 3.6
21 2.0 240 3.7
26 2.1 260 3.8
31 2.2 280 39
37 2.3 300 4.0
43 2.4 320 4.1
51 2.5 340 4.2
60 2.6 360 4.3
70 2.7 380 4.4
80 2.8 400 4.5
90 2.9 450 4.6

100 3.0 500 4.7
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Fig. 8. Distance attenuation laws for local magnitude scale. Dotted line signifies the attenuation law
originally proposed by Richter (1958) and the solid line is the modified attenuation law proposed by Jennings
and Kanamori (1982).

Richter (1958). Both the original and modified distance attenuation curves are shown
in Figure8. In Figure7 we see that there are not obvious systematic trends with
distance, indicating that the modified attenuation curve is appropriate for strong
motion scaling purposes. This new attenuation curve is also compatible with recent
simulation studies conducted by Hadley and Helmberger (1980). Throughout the
remainder of this study, we will assume that the modified attenuation curve is more
appropriate for scaling strong motions. Table I gives values of Log 4, as a function of
distance.

Figure 7 also shows the scatter typically encountered in the measurement of local
magnitudes. The degree of scatter for these larger events is not significantly larger than
that encountered when studying the local magnitudes of small earthquakes. It should
be remembered, however, that the local magnitude scale is logarithmic, and a factor of
2 in amplitude corresponds to a difference in magnitude of only 0.3 units.

At this point, it is instructive to compare the distance scaling in the local magnitude
scale with some of the familiar distance scaling laws that have been traditionally used in
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Fig. 9. Comparison of different distance attenuation laws for M 6-1/2 earthquakes (modified from
Trifunac and Brady, 1976).

earthquake engineering. Figure 9 shows the distance scaling for M, along with a variety
of other distance scaling laws. Several of these other scaling relationships are for peak
acceleration, whereas M, is more related to a peak velocity relationship. Kanamori and
Jennings (1978) were not the first to use local magnitudes in the scaling of strong
ground motions. Trifunac and Brady (1976) also used Richter’s distance scaling law to
scale strong motions with distance. Figure 9 is a modification of Figure I in Trifunac
and Brady’s (1976) paper. A detailed inspection of Figure 9 shows some interesting
differences between the M, scaling and other scaling relationships. Although all of the
curves pass through the bulk of the data, Richter’s original curve shows a generally
higher rate of attenuation in the distance range of 20 to 200 km than the other curves
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do. However, in this same distance range, the modified M, attenuation law shows an at-
tenuation rate that is compatible with the attenuation law for ground velocities
proposed by Espinosa (1977). This observation further supports the use of the modified
M, attenuation curve. Although the modified M, curve shows a more gradual
attenuation than the original between 20 and 200 km, it does attain the same high value
for zero distance as Richter’s original. This value is significantly higher than that
predicted from Schnabel and Seed’s (1973) or Donovan’s (1972) acceleration attenua-
tion curves. However, the scatter in the data is quite large and there are still relatively
few data available at very small distances. At present, it does not seem possible to verify
the level of shaking that is predicted by the M, scale at very small distances. However,
new data from the 1979 Imperial Valley earthquake tends to support the hypothesis
that the M, distance attenuation curve is indeed appropriate for very small source
distances and moderate sized earthquakes. Papers by Trifunac and Brady (1976) and
Trifunac (1976) contain enlightening discussions on the use of Richter’s distance
scaling law.

We now comment on the way in which local magnitude scales amplitude with
magnitude. By the definition of local magnitude (Equation (21)), the peak amplitude,
as recorded by a Wood-Anderson torsion seismometer, depends exponentially on the
local magnitude. That is, for each unit increase in M, , the response spectrum at 0.8 sec
for 80% damping increases by a factor of 10. Although this is a statement of the
obvious, the implications are significant. In Figure 10, the expected peak amplitude of a
Wood-Anderson recording (approximately related to the peak ground velocity) are
plotted as a function of magnitude and distance. For comparison, Schnabel and Seed’s
(1973) estimation of peak acceleration, as a function of magnitude and distance, is also
shown. The difference in the nature of these curves is striking. Not only are the distance
attenuation curves different, but the peak accelerations clearly do not depend on
magnitude in an exponential fashion. There is a variety of explanations for this.

The first thing to remember is that the local magnitude scale saturates before the
surface wave magnitude scale does. Schnabel and Seed’s curves are given as a function
of M, and for magnitudes of 6-1/2 and above, the local magnitude scale does not give a
good representation of the overall size of the earthquake. This point was discussed in
the last section. Also, Schnabel and Seed’s curves are for peak acceleration which is a
measure of the amplitudes of high-frequency waves generated by the earthquake. The
same phenomenon that is responsible for the saturation of M, also causes the peak
acceleration to saturate, but at a lower magnitude. Trifunac (1976) documents the fact
that peak accelerations are a weaker function of earthquake size than peak velocity.

Finally, the relationships shown in Figure 12 are basically empirical in nature. Since
there are very few data at small distances or from large earthquakes, both of these sets
of curves could be inappropriate for small distances or large earthquakes. In fact, there
is good reason to suspect that the M, scaling law may not be appropriate at small
distances and for M,’s above 6-1/2. This can be seen best by examining the local
magnitudes of the 1971 San Fernando earthquake. Kanamori and Jennings (1978)
determined that the M , of this earthquake was 6.5. They also found that the accelero-
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Fig. 10. Scaling of peak amplitude as measured on a Wood-Anderson torsion seismometer as a function of
M, and distance (modified distance attenuation curve assumed). Schnabel and Seed’s (1973) scaling of peak
acceleration with distance and magnitude (unspecified, but assumed to be M) is shown for comparison.

graph recording from Pacoima Dam, the station closest to the epicenter, indicated a
local magnitude of 6.5. Kanamori and Jennings (1978) also calculated M, for the 1952
Kern County earthquake and found it to be 7.2. If the Pacoima record is representative
of the motions to be expected in the nearfield from an M, 6-1/2, then what motions
would we expect in the nearfield of an M, 7.2? Taken at face value, the logarithmic
scaling associated with M, would indicate that motions in the nearfield of the Kern
County earthquake were about five times those recorded at Pacoima Dam in 1971.
Since the Pacoima motions were some of the most violent ever recorded, it does not
seem likely that the Kern County motions were five times larger.

How large can the motion be in the nearfield? Of course, this is a question that cannot
presently be answered. However, based on some rather crude, but straightforward,
source models, Brune (1978) has concluded that ground velocities of order two meters
per second could be expected in the nearfield of some large earthquakes. Although
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Brune’s estimate is defendable, based on the present knowledge of earthquake sources,
there are far too few data and too much uncertainty in faulting parameters to access ful-
ly the significance of Brune’s calculations. In fact, there is not sufficient control on
faulting parameters to rule out the possibility of motions large enough to yield a local
magnitude of 7 in the nearfield. However, building damage observed near large
earthquakes has usually not been as great as engineers would have expected for such
large velocities. Even this observation is complicated by the fact that the local
magnitudes of most large earthquakes are lower than 7, and thus, the macroseismic
effects of the nearfield motions, due to an earthquake with a local magnitude of 7, are
rarely observed.

We have reached an impasse. The local magnitude scale predicts very large motions
in the nearfield of earthquakes with high local magnitudes, and these large motions
cannot be summarily discounted on the basis of theoretical seismological considera-
tions. However, these large motions do not seem to be consistent with the observed
damage of large earthquakes. Due to a lack of data, the problem of the sizes of motions
in the nearfield of a larger earthquake (in the sense of M) is unresolved. However,
based on observations of macroseismic effects, it is our opinion that the M, scale is
inappropriate to scale the nearfield motions of earthquakes with M, greater than 6-1/2.
In addition, it seems unlikely that future nearfield recordings will yield an M, greater
than 6-3/4. Because of our poor understanding of very nearfield motions from large
earthquakes, we have included a limit on the range of applicability for the curves shown
in Figure 10.

2.3. ESTIMATION OF LOCAL MAGNITUDE

We have discussed how the overall size of an earthquake can be estimated through the
use of seismic moment. We also discussed how the local magnitude scale can be used to
scale the sizes of strong ground motion. Furthermore, we demonstrated that thereis a
general relationship between local magnitude and seismic moment. In this section, we
refine the relationship between local magnitude and seismic moment by including
considerations of tectonic setting and local site conditions.

Up to now, we have stressed the relationship between M, and the earthquake source.
We assumed that distance was the only parameter that needs to be considered other
than the source characteristics. However, it is clear that the nature of the observed
motions also depends on the velocity structure of the medium through which the waves
travel. The effects of the travel path are so complex and varied, that a complete
parameterization of the problem appears impossible. It is possible, however, to
parameterize at least a small portion of this problem in a rather simple way. The
conditions of the local soil can be characterized by estimating the stiffness. In this
study, we will use the following convention: 0 represents soft alluvium deposits, 2
represents basement or crystalline rocks, and 1 represents an intermediate condition
such as sedimentary rocks. This particular soil classification is explained more fully by
Trifunac and Brady (1975). Although more elaborate soil classifications have been



ESTIMATING GROUND MOTIONS USING RECORDED ACCELEROGRAMS 47

devised, it seems rather pointless to give a detailed parameterization of the soils when so
many other physical parameters are ignored. As could be expected, the great variation
in other physical parameters tends to obscure the relationship between the amplitudes
of ground motions and the local soil conditions. In general, it appears that soft soils
produce larger ground motions. Trifunac (1976) has studied this in some detail and he
found that this effect is frequency dependent. He found the weakest correlation existed
for peak accelerations, while the strongest correlation existed for peak displacement.
Most of the data used in Trifunac’s (1976) study was recorded during the 1971 San
Fernando earthquake. Liu and Heaton (1984) studied the strong-motion waveforms of
this event and concluded that the excitation of surface waves in large sedimentary
basins is the principle reason why soft sites recorded relatively larger long-period
motions than bedrock sites. Trifunac’s study of peak velocity suggests the following site
correction for the local magnitude scale; add 0.15 for sites designated 0, do not correct
sites which are designated 1, subtract 0.15 for sites designated 2.

It is interesting to note that most accelerograms (approximately 2/3) have been
recorded on sites which are classified as soft alluvium. We consider our uncorrected-
sites to be intermediate sites and, since Kanamoriand Jennings (1978) did not apply site
correction factors in their computation of M, , their values are systematically higher (by
about 0.1 unit) than those which would be computed using a site correction factor.

Earlier, we pointed out that there is both theoretical and empirical justification for a
saturation of the local magnitude scale for earthquakes beyond a certain size. The level
at which the local magnitude scale saturates is an issue of central importance in the
estimation of strong ground motions. In Figure 4, we showed the empirical relationship
between M, and M, which was derived from the data sets of Gutenberg and Richter
(1956) and Kanamori and Jennings (1978). A local magnitude of 7-1/4 (Kern County
earthquake) is presently the highest M, recorded. If we assume that Kern County is
fairly typical of intraplate (high stress drop) earthquakes, and if we account for the fact
that 7-1/4 represents values measured on soft soil sites, then we would recommend a
saturation value of 7.1 for intraplate earthquakes with sites having intermediate site
conditions.

In Appendix [ we investigate hypothetical fault models to deduce that the saturation
level of different magnitude scales should be proportional to Log As (Equation (I.32)).
This relationship is in agreement with the notion that the average dislocation velocity is
proportional to stress drop. If ground velocity is linearly related to dislocation
velocities, then we expect the saturation of M, to depend on Log Ac. Thus if we assume
that M, = 7.1 represents the average local magnitude saturation of intraplate earth-
quakes with stress drops of about 60 bars, one would expect interplate earthquakes
with 30 bar stress drops to have an average local magnitude saturation level of about
6.8, and the average local magnitude saturation level of shallow subduction-zone
events would be about 6.5 since their average stress drop appears to be about 15 bars.
These values assume intermediate site conditions.

In Appendix II, we compare strong ground motions recorded in Japan with those
recorded in the western U.S. We find that the distribution of available Japanese records
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with respect to earthquake magnitude and site distance is markedly different from the
distribution of U.S. records. In contrast to U.S. records, there are few Japanese records
available at small distances from moderate to large earthquakes. There are, however,
many recordings of large off-shore Japanese subduction zone earthquakes that are
taken at large distances. Despite the difference in distribution of available strong
motion records and the obvious difference in tectonic setting, we find that when ground
motions observed at comparable site distances and earthquake magnitudes are com-
pared, Japanese and U.S. motions are remarkably similar. Calculation of the local
magnitudes of large Japanese subduction zone earthquakes indicates a local magnitude
saturation level of about 7-1/4. This value is comparable to the value we deem
appropriate for intraplate crustal events. This seems to contradict our speculation that
subduction zone earthquakes should exhibit a relatively lower magnitude saturation
level due to their lower average stress drops. However, average stress drop is not the
only source parameter that is significantly different when comparing large crustal and
subduction zone earthquakes. Subduction zone earthquakes may have both large fault
lengths and widths, whereas crustal earthquakes may have large fault lengths, but the
fault widths are limited. In general, a recording site is most affected by that part of the
rupture that is closest to it. Thus, we generally expect long, narrow faults to have
relatively less area of faulting nearby to any site than does a nearly square fault. Also,
square faults produce larger dislocations than long, narrow faults of equal area and
stress drop (Equation (11)). For these reasons, we expect subduction zone events, with
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their relatively large fault widths, to have higher levels of local magnitude saturation
than events with long, narrow faults and equal stress drops. Exactly how stress drop
and fault aspect ratio trade off is not presently understood. However, evidence
presented in Appendix II, supports the local magnitude saturation of about 7-1/4 for
subduction zone events. As we pointed out in the last section, there are reasons to
believe that the local magnitude distance attenuation curve may not be appropriate for
very large earthquakes and small source distances. We can anticipate that fault aspect
ratio will be an important parameter in the solution of this problem.

In this study, we will assume that the basic relationship between moment magnitude
and local magnitude is the one that is shown in Figure 11. It is derived from empirical
data, Equation (I.32), and the arguments just given. It is important to recognize that
both our data and our source theory are quite limited. Thus, this relationship must be
considered to be a crude hypothesis that includes stress drop, a parameter which the
study of simple source models indicates is of fundamental importance in the scaling of
seismic radiation. Tt is also important to recognize that our understanding of the stress
drop of earthquakes is fairly limited. Stress drop cannot be measured directly and must
instead be inferred from estimates of fault slip and fault dimensions. Kanamori (1980)
has summarized many of the important studies of the state of stress in the earth’s
lithosphere. Figure 12 is taken from his paper and shows the calculated stress drops of
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Fig. 12. Relationship between fault area and seismic moment. The solid lines denote constant stress drops
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well-studied earthquakes as a function of earthquake size. Itis clear from Figure 12 that
stress drop is not a parameter which can be accurately predicted. However, it is of such
physical importance that an understanding of the strong ground motions would be very
difficult without it. Thus, the relationships given in Figure 11 are our attempt to include
stress drop in an average way.

3. Seismic Design Guidelines

3.1. GUIDELINES FOR ESTIMATING THE MOTIONS FROM SMALL AND MODERATE
EARTHQUAKES

In the previous sections we concentrated on understanding the sizes of earthquakes, the
scaling of strong ground motion, and the relationships between earthquake size and the
amplitude of strong ground motion. In this section we demonstrate a technique for
estimating ground motion time histories based on estimates of fault dimensions and
tectonic setting. As was stated in the introduction, we modify and expand a technique
thatis described by Guzman and Jennings (1976). The basic idea is to find records from
sites with settings similar to those for the area to be studied. The local magnitude scale is
used to scale these records with respect to distance, site condition, and earthquake size.
Because of the many problems that are associated with such scaling, it is important that
we use records that require minimal scaling. Since the data set is very limited, this is not
always easy. In particular, there are no strong motion records of giant (M >8-1/2)
earthquakes, and for these earthquakes, the procedure described in this section is not
recommended.

From all we have said in the preceding section, it should be clear that we feel that
merely specifying a surface wave magnitude and a distance is insufficient input to derive
the ground motions expected at a particular site. Given no constraints, what would be
the best way to estimate the future motions at a site? The most obvious answer to this
problem would be to have a collection of all the ground motions experienced by that
site over the last several thousand years. We could then forget about the difficulties
associated with understanding the physics of what controls the ground motions.
Although this solution is unattainable, it gives the basic philosophy for the procedure
we will describe. By collecting records from sites with geologic conditions that are
similar to the study site, we can incorporate important physical parameters into our
procedure in a very direct fashion. The major drawback in this procedure arises from
the limited size of our data set. By selecting sets of the data, our ability to estimate the
statistical variation within that subset becomes limited. As the data set grows, this
limitation will become less important. Since the data are limited, it is possible that only
a few records will be found that are appropriate for a particular site, but it is possible to
include records taken under somewhat different conditions by scaling these records
with the relationships that have been discussed in the preceeding sections. Obviously, it
is desirable to keep such scaling to a minimum.

Itis important to have access to a fairly extensive collection of strong motion data if
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the procedure is to be effective. Crouse ez al. (1981), have compiled an extensive
catalogue of digitized accelerograms. Nearly 1000 accelerograms from many countries
are included. This catalogue is probably unique, since it contains information about
site conditions and also seismological information for causative earthquakes. Al-
though thisis the most complete strong motion catalogue that we know of, it should not
be considered exhaustive. Furthermore, in our opinion, some of the parameters listed
should be considered prelimary estimates. Therefore, it is recommended that a more
detailed investigation of the characteristics of each earthquake be conducted for those
records that are proposed for use in the design of important facilities.

The first task is to decide which records are appropriate for a particular site. The
basic input parameters will be: (1) source dimensions, (2) distance from rupture, (3)
tectonic setting, and (4) site conditions. Ideally, it would be nice to sidestep the problem
of using magnitude as an estimate of earthquake size, and to use source dimension
directly by simply finding those earthquakes with similar source dimensions. Unfortu-
nately, the source dimensions of most earthquakes have not been well studied, and the
magnitude scale must be used to estimate the overall size of an earthquake. As
previously discussed, it is our opinion that moment magnitude is the best way to
estimate earthquake size at this time. Given the fault dimensions, Equation (15) can be
used to estimate the expected moment magnitude.

Records taken at similar distances from earthquakes of similar seismic moments can
be found by studying Figure 13. In this figure, we have plotted each of the records found
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in the Crouse et al. (1981), catalogue as a function of magnitude and distance. Although
the magnitudes plotted are not moment magnitude, some care was taken to choose the
magnitude value that was not affected by the saturation phenomenon which was
described earlier. Notice that all of our records are for earthquakes with moment
magnitudes of less than 8.

Also shown in Figure 13 are contours of equal local magnitude scaling, that is, equal
peak amplitude as measured on a Wood- Anderson seismometer. These contours are
for an average stress drop of 30 bars, and can be derived directly from our hypothesized
relationship between local magnitude and moment magnitude, which is shown in
Figure 11, and from the modified version of Richter’s original distance attenuation law,
which is shown in Figure 8. Records that fall along the same contour should have
approximately equal peak spectral velocity.

We will now describe the procedure that, in our opinion, is appropriate for obtaining
the ground motions which can be expected at a particular site.

( 1) Characterize the source type and tectonic setting.

( 2) Determine the dimensions of the expected rupture surface, and then calculate a
moment magnitude using Equation (15).

( 3) Determine the closest distance from the site to the rupture surface.
Determine the site conditions (soft, intermediate, and hard) (Trifunac and Brady,
1976).

( 5) Determine M, (site) for postulated earthquake by using Steps 1 and 2 and Figure
11.

( 6) Determine site correction factor C,, where C, = 0.15 for soft, 0 for intermediate,
and —0.15 for hard.

( 7) Determine distance correction A, (site) using Figure 8.

( 8) Compute expected amplitude on a Wood-Anderson seismometer using the for-
mula,

A(site) _ aol()(MLa(\)' (19)

( 9) Search the Crouse et al. (1981), catalogue for records taken at similar distances
and with similar magnitudes and tectonic settings. Choose as many records as
possible. Index the records i= 1, ... n.

(10) For each earthquake, determine a moment magnitude. Use either published
estimates of seismic moment or convert other magnitudes to moment magnitude
using Figure 6.

(11) For each record, determine an M using the estimated moment magnitude of the
earthquake and Figure 11.

(12) Determine site correction factor C' for each record.

(13) Determine distance correction factor 4}, for each record; use figure 8.

(14) Compute expected amplitude on a Wood-Anderson seismometer for each record
using the formula,
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Al = AL 10M+ €, (20)
(15) Multiply the it record by the scaling factor s,, where

S = A(sile)

1 A( :

The end result of this process is a suite of n records that should be representative of
the types of motion that could be expected at the study site. Since the scaling process is
not well understood, it is desirable to use records that require as little scaling as is
possible. As Guzman and Jennings (1976) stated, ‘the final product of the scaling
procedure is only dependent on relative values, not on the absolute values of accelera-
tion’ (amplitude on a Wood-Anderson seismometer for this procedure). This means
that the scaling factors depend primarily on the shapes and relative amplitudes of the
attenuation curves for different magnitudes.

We now give an example of how this procedure can be used to obtain a free-field
design spectrum. In this example, we assume a site that lies at a distance of 50 km from a
strike-slip fault that has dimensions appropriate for producing an earthquake with a
moment magnitude of 6-1/2. We will further assume that the study site is of intermedi-
ate hardness. Figure 13 shows that there are a number of records that could be included
in our suite of records. We use the fifteen records (thirteen western United States and
two Japanese) listed in Table IT as our set of analogous records. We have also used the
steps outlined previously to compute a scale factor for each record. Notice that only
records with scaling factors of less than 2 have been chosen. Also listed are both the
scaled and unscaled average peak horizontal ground velocities. If the unscaled veloci-
ties are averaged over all records, then we obtain a value of 14.3 centimeters per second
(cm sec™ ') with a standard deviation of 8.5 cm sec '. The scaled velocities, however,
scatter less and yield an average value of 17.9 cmsec ™' with a standard deviation of 9 cm
sec . The highest scaled velocity is 35.1 cm sec™', and the lowest is 3.6 cm sec .
Although this variation may seem large, it reflects the true uncertainty in the answer
given our present level of understanding of earthquake motions.

It is worth noting that both the highest and lowest scaled average peak velocities in
Table IT were produced by a single earthquake, the 1979 Imperial Valley earthquake.
The difference in peak velocities between stations at Delta and Plaster City is nearly an
order of magnitude. Yet both stations are located within the Imperial Valley at roughly
comparable distances from the earthquake rupture. Although there are undoubtedly
good physical explanations for this difference, it probably would have been quite
difficult to predict this result. It is also worth noting that the third highest and second
lowest velocities are from two records which were also produced under nearly identical
circumstances. That is, records #4 and #8 are both from the station at El Centro,
California, and were produced by M, 6-1/2 earthquakes on the Coyote Creek fault. In
fact, the two earthquakes (1942 Borrego Valley and 1968 Borrego Mountain) occurred
very close to one another. Nevertheless, the El Centro records from the closer 1942
earthquake are much smaller than the records from the 1968 earthquake. A close
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North Component of Ground Motions Recorded at El Centro
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Fig. 14. North component of ground motion for two M 6-1/2 Borrego, California earthquakes as recorded

at El Centro. Note that the 1942 records are plotted on an amplitude scale half as large as that used to plot the
1968 records.
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inspection of the motions produced at El Centro by those earthquakes reveals striking
similarities and differences. The long-period surface wave parts of the records are very
similar and yet, the higher-frequency acceleration time histories are very different. This
can be seen in Figure 14 that shows the processed records of the north component of
motion recorded at El Centro for the 1942 and 1968 earthquakes. The exact causes for
the differences between the records in Figure 14 are a matter of future study. However,
there is presently an important lesson to be learned from these records. Although we
may approximately scale for site effects, source dimensions, travel path, and tectonic
setting, there are also very important indeterminate parameters associated with the
earthquake source.

In Figure 15, we show the scaled response spectra (3% damping) for the horizontal
components of records in our suite. In general, the scatter is about an order of
magnitude. Furthermore, records that have the largest values at high frequencies may
have relatively small values at low frequencies. Although this large scatter may not
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Fig. 15. Response spectra (3% damped) for horizontal components of 15 records from strike-slip
earthquakes which are scaled to a distance of 50 km and a magnitude of 6-1/2.
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Fig.16. (a) Average spectrum, (b) average plus one standard deviation spectrum, (c) spectrum of the largest
single record, (d) spectrum which envelops all others; based on spectra shown in Figure 17.

seem very satisfactory, it represents our ability to parameterize strong ground motion
in terms of magnitude, distance, soil condition, and fault type. We show an example of
how the free-field design spectrum for a M 6-1/2 strike-slip earthquake at a distance of
50 km can be chosen in Figure 16. The average spectrum, the average plus one standard
deviation spectrum, the spectrum of the single largest record, and the spectrum which
envelops all others are shown. The suite of spectra shown in Figure 15 forms the basis
for these choices of design spectra.

4. Conclusions

We have presented a procedure for estimating ground motions using simple scaling of
existing recorded ground motions. The scaling procedure incorporates fundamental
seismological concepts regarding the sizes of earthquakes and the saturation of
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different magnitude scales. We have seen that considerable ambiguity may be present
when the term earthquake ‘magnitude’ is loosely defined. We choose to define
earthquake size in terms of seismic moment. We have parameterized strong ground
motions using M, scale. We suggest that saturation of the local magnitude scale may
vary systematically with average earthquake stress drop which may in turn vary
systematically with tectonic setting. Although subduction zones may produce the
largest earthquakes, they do not necessarily produce the most intense ground shaking.
Furthermore, relatively rare intraplate earthquakes may produce relatively severe
ground motions.

The procedure we have presented conserves a meaningful measure of the uncertainty
inherent when predicting ground motions from a simple parameterization of earth-
quake size and station distance. In an example, we showed that although the scatter
may be as much as an order of magnitude, it would be extremely difficult to reduce that
scatter by a better parameterization of the earthquake source or the recording site.

Appendix I: Spectral Scaling Relations

In this appendix we discuss the relationship between earthquake magnitude and
rupture parameters for several simple models of the earthquake source. These rela-
tionships are derived from estimates of the Fourier amplitude spectra of seismic energy
produced by our simple source models.

We begin with some simple observations about the way magnitude is related to
Fourier spectral amplitude. Let us define a hypothetical magnitude scale M thatis the
logarithm of the peak amplitude of a specified wavetrain on a seismogram produced by
a specified seismometer. Seismogram wavetrains may have a wide variety of character-
istics, depending upon the nature of the input ground motion and the response of the
seismometer. In general, we can break the problem into the following four categories.

(i) A seismogram wavetrain consists of a near monochromatic waveform. Such
waveforms are often produced by narrow-band seismometers or by wavetrains that are
well-dispersed by wave propagation. In this case, we expect the peak observed
seismogram amplitude to be proportional to the Fourier spectral amplitude of the
signal at the dominant period of the signal. Thus, we expect that

U<2;>I , (I.1)

where ~ denotes Fourier transform.

(i) A seismogram wavetrain consists of a simple pulse that is recorded by a band-
limited seismometer whose free-period is large compared to the duration of the actual
ground motion. Since the duration of the signal 7, is small compared to T, we may
conclude that the seismogram in this case is simply the impulse response of the

instrument. Hence
- 27 ~ (27
Ul—=——|~LogU| = ]|.

My~ Log

MT"' LOg
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(iii) A seismogram wavetrain consists of a simple pulse that is produced by a simple
pulsein ground displacement as recorded on a broad-band seismometer. This case may
arise when observing body waves on simple damped harmonic oscillators whose period
T'is longer than the signal duration 7',. In this case, the peak seismogram amplitude is
proportional to the area of the pulse divided by its pulse width and thus,

(),

My~ Log T, Log T, | (I.3)
(iv) A seismogram wavetrain consists of a complex collection of randomly spaced
pulses. This case may arise when observing body waves on a simple damped harmonic
oscillator whose period T'is short when compared with the signal duration 7', . In this
case, the Fourier spectra of the individual pulses can be summed with random phase in
order to produce the total seismogram. The amplitude spectrum of the sum of m
impulses of random phase is simply proportional \/m. Thus, the amplitude spectrum of
the ground motion is proportional to the square root of the signal duration. Thus,

3 <2n>
Ul
1
My~ LOg't"’~ (I.4)
IV T
Actually, real seismograms do not usually fit completely into any of these categories.

However, it is clear from the preceding discussion that a general definition of M is
given by the following:

My~ Log

(2
U<7n)’ — LogTy,, (1.5)

where 0 < & < 1 and £ depends upon the type of seismometer and wavetrain that is ob-
served.

We can now demonstrate how our generalized magnitude scale M, behaves as a
function of rupture parameters for several simple source models. First we investigate a
model that was initially introduced by Haskell (1964). This model assumes that faulting
occurs uniformly on a rectangular surface. A finite, planar fault in a homogeneous
whole-space is assumed. The receiver is assumed to be at distances that are large when
compared to the fault dimensions. Rupture initiates along a line, and the linear rupture
front proceeds along the fault length at constant velocity. The dislocation time history
forevery point on the fault is assumed to be a linear ramp in time. A sketch of this fault
model is found in Figure 17. Although this is a very simple fault model, it does allow us
to demonstrate phenomena that help explain the differences between various magnitu-
de scales. The following discussion was developed by Kanamori and Anderson (1975)
and later extended by Geller (1976) and Noguchi and Abe (1977).

Let us investigate the nature of motions which are produced by the model just
described.
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Fig. 17.  Schematic of Haskell-type fault model.

Define a boxcar function, B (1/7), as follows:

0. i/r>0
B(t/r)=1, O0<t/t<l (L.6)
0, t/t>1.

Furthermore, define
T,=T,~T,
where T, and T are the arrival times of energy from the i,, and j, corners of the fault, re-

spectively. It can be shown that the displacement history at the receiver can be
approximated by the following relationship:

U(t) ~ My B(t/T,3)* B(t/T,,)* B(T/7), (1.7)

where M, is the seismic moment, 7 is the duration of the dislocation time history and *
denotes convolution. Let M, be the magnitude scale that is defined in Equation (I.5)
and, for simplicity, let us assume that £ = 0. Taking the Fourier transform of (I1.7), we

obtain
e Lo ( >;'< >S‘“<5>r. "

13 T
T
We now postulate the following similarity conditions:
w ~oal, (I.9)
D ~ 4o, (1.10)
D e (L11)

ol,
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where w is fault width, and L is fault length, and « is a constant which gives the aspect
ratio of the rupture surface. Relationship (I.10) is the only one that we have not yet
introduced. This relationship was introduced by Brune (1970) and it states that the
dislocation velocity is proportional to the stress drop (provided certain dynamic
conditions are met). Since D(¢) is assumed to be a ramp,

_= 112
=5 (1.12)

and from (I.10), (I.11), and (I.12), we conclude that

T~ Lo~ My>Ac™ 3ol (I.13)
From the definition of T; it is also clear that

Tys ~w~La~MY>A6™ 3ol (I1.14)
and

Tiy~L~M\d A6 1 3g 23, (I.15)

we can now derive the relationship between M, and moment magnitude as L increases.
We approximate the function (sinx)/x by its extremal asymptotes (= 1 ifx—0;
=1/x if x—o0). We separate the problem in the following cases.

(i) L very small and then t, T3, and T}, are small compared to 7/ and (I.8) reduces

to
My~ LogM, ~3M. (I.16)

(i1) L becomes large enough so that t < 7\; < T/n < T, and then

1
MT ~ Log <M0T

12

>~ Log (MJ? Ac' o) (1.17)
~ M + {Log Ao + jLogo.

(ii1) L largeryet,t < T/n < T,; < T, and

M
My~ Log| —2 | ~ Log(M}? 46*? &' ?) (1.18)
T12713

~1M +2Logdo + 4§ Loga.
(iv) Finally, for L very large, T/n < t < T}; < T}, and

M
My~ Log(——~%~> ~ Log 4a. (1.19)

In Figure 18, we sketch the approximate relationship between moment magnitude
and magnitude M, based on spectral amplitude at a certain period. Although this is a
very simple source model, it does illustrate several features that should be observed for
actual earthquakes. For instance, a comparison of M, vs M in Figure 5 shows a similar
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Fig. 18.  Schematic showing the way in which any band-limited magnitude scale depends upon moment
magnitude assuming a simple Haskell-type fault model and three different values of stress drop. The shapes
of the curves are given by Equations (1.16) through (1.19).

form to the one that we just derived. We note that this model predicts that the effect of
stress drop becomes important only as our hypothetical magnitude scale begins to
saturate. We also note that both the stress drop and the fault aspect ratio are relatively
important parameters in determining the period at which saturation occurs.
Unfortunately, the model of source rupture just presented is still far too simple in
several important aspects. For instance, it has become clear that earthquake rupture is
not uniform over a fault surface. In the homogeneous faulting model just presented,
high-frequency radiation appears only at the beginning and end of the observed
motion. Real seismograms, however, are usually characterized by high-frequency
arrivals that are randomly spaced throughout the entire duration of ground motion. At
smalllength and time scales it may be more appropriate to characterize variations in the
rupture process with statistical parameters (Haskell, 1966; Aki, 1968; Andrews, 1980).
We now introduce a new spectral scaling law that relates source dimensions to
spectral characteristics of U. Although this law is more general than that given in
Equation (1.7), itis rather ad hoc. It also shares features of other source models in which
the rupture time and dislocation amplitude are allowed to have a specified degree of
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random variation on the fault surface. Assume that

‘vl ‘Sin <F~;2>‘L‘281'n <7ZTT3>‘L3

. (mt,
(o Sin <r>
U ~M,|

1 | 2Ty || Al || Al | e
T T T

As before, assume the following similarity conditions.

w=al, (1.21)

D~ Aow ~ Agol, (1.22)
where  denotes the averge over the fault surface. Further assume that

D ~ Aa, (I.23)
then

My ~ DwlL ~ Ago®L>, (1.24)
We further assume that

Ty~T,~L~My>Ac "o 23, (L.25)

Ty~w~My*Ac™ 3ol (1.26)
and

Ty~ D/D ~ ol ~ MY Ag™ 13513, (1.27)

T,, T, and T, are similar to the corresponding variables defined in our earlier
‘smooth’ fault model, but are in general smaller quantities. This definition is motivated
by Haskell’s (1966) conclusion that rupture heterogeneity tends to introduce more
high-frequency energy than derived from similar ‘smooth’ models. In our previous
model, the exponents v,, v, and v; are equal to plus one. This produces a high-frequency
spectral decay rate of 7°. As random variations are added to the ‘smooth’ model, these
exponents become less positive. When v, + v, + v; < 3/2, then the degree of
heterogeneity is high enough that infinite radiated energy is produced by this spectral
scaling law.

We now derive the scaling relationships between our generalized spectral magnitude
M ,whichis given by Equation (I.5) and the fault parameters, fault length, aspect ratio,
and stress drop, assuming the scaling relationships given by Equations (1.20) through
(I.27). As before, we separate the problem into 4 cases and approximate the sinc
function by its extremal assymptotes. This approximation is even more appropriate in
this model since random variation eliminates the spectral holes produced by the
homogeneous rupture model.
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(i) L very small and then T}, T, and T are small compared to 7/n and then

M,~L0gMO—EL0gTL

g 2¢
~ <1 — 3>LOEMO + 3Long*—l— “Logua

3-—¢
< e >M+3LOEAG+3 Loga. (I.28)

<~

(i) L becomes large enough that Ty < T, < T/n < T, and then

(i) Llargeryet, T, < Tln < T, < T,

M
My~ Log(T,,l;l_) —CcLlogT,
1 2"

C v+ c+u, +v
~< _g;2>LogMO+<' 7; lZ)LogAa—i—

3
3-¢&— q
N <—211 L"')M + <C’ ot LZ)LogAa +
264+ 2v, — v
- <312> Loga. (1.30)

3 3

<|

N (25 +2v, — v, — v3> Loga
3

¢

E4uv +u,+0 + v, + o, +
—'123>L0gM +<g 1LZL%)Long*-i—

(1.31)

~

2 3

<2f +2u, 3— v, — C3>L0goz.

3—CfAL‘1L72v53>M+<g+L +L2+L}>L0gﬁa+
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The value of ¢ depends upon the type of seismogram used to measure peak amplitude
and is, in general, also a function of 7. Considering the complexity of the resulting
scaling relationships, it is not too surprising to find that the various magnitude scales in
use today are not interchangeable. One significant feature of this model of magnitude
scaling is the fact that we can explicitly determine the relationship between stress drop
and M, simply by knowing the relationship between M, and M. That is, in all cases
(Equations (1.28) through (I1.31)) we can write,

My~ AM + (1 — 3 A)Log 40, (1.32)

where A4 is a function of fault length.

As an example of our more general scaling law, we now construct a specific model
which produces a short-period spectral decay rate of T2, For simplicity we assume that
v, = v,= v;= 1. We will define & in a way such that it is consistent with measuring both
surface wave magnitude (¢ = 0 for all 7) and a broad-band body-wave magnitude (¢ =
1 for T>T, and {= ! for T<T,). Our solution becomes
(i) Lsmallsothat T, < T, < T, < T/m and

My ~3M (M approximates M) (1.33)

My~ M + {Logdc + Loga (M, approximates nip). (1.34)
(i) Llarge enoughsothat 7, < T, < T/n <T,,

Mp~EM+3Logdo + $Loga  (My~ M,) (I.35)
'dnd 11 7 7

Mp~i; M+ glogdo 4+ §Loga (Mg~ myp). (I.36)

(ili) Llargeryetsothat T, < T/n < T, < T,
My ~oM+jLogde + jLoga  (My~ M) (1.37)
My~ {5M+ i Logdo + 5 Loga (Mg ~ my). (1.38)
(iv) Finally, L large enough that T/ < T, < T, < T,

My ~3M + 2Log Ao (My~M,) (1.39)
and
My~ iM+2Logdo + jLogo (Mg~ mp). (1.40)

By examining these hypothetical magnitude scales and source models, we have seen
that the relationships between magnitude scales in use today and fault dimension and
stress drop are likely to be quite complex. This is consistent with the observed complex
relationships between various magnitude scales that was presented in Figure 6. The
principle conclusions to be drawn from these models are: (i) magnitude scales should
saturate at large fault dimension, (ii) magnitude scales based upon short-period
measurements should saturate before magnitude scales based upon long-period meas-
urements, (iii) the ratio of fault width to fault length can be an important source scaling
parameter, (iv) stress drop is relatively unimportant before a magnitude scale begins to
saturate, but becomes the dominant parameter after a magnitude scale saturates.
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Appendix II: A Comparison of U.S. and Japanese Strong Ground Motions

The purpose of this appendix is to compare recordings of strong ground motion from
Japan with those from the western U.S. To this end, we compare peak values of ground
acceleration, velocity, and displacement recorded at comparable source distances and
earthquake magnitudes. We also compute local magnitudes of Japanese earthquakes
to study magnitude saturation for subduction zones. We have collected data from
several catalogues for this comparison. Most of the digitized accelerometer data is
listed in the catalogue of Crouse ez al. (1981). Additional U.S. data are from the 1979
Imperial Valley earthquake (Brady er al., 1980a) and from the 1979 Coyote Lake
carthquake (Brady et al., 1980b). The Japanese data is primarily from Crouse et al.
(1981). C. B. Crouse of Ertec has graciously supplied listings of peak accelerations of
unprocessed accelerograms as well. Some of the values of peak ground velocity from
the 1968, M, 7.8 Tokachi-Oki earthquake are from Inoue (1983). Finally, some
unprocessed peak acceleration points from Alaska (Beavan and Jacob, 1984) are
included in the Japanese data set. Unfortunately, it is beyond the scope of this study to
provide a full catalogue of all recordings used for this comparison. We have, however,
included a listing of all Japanese records for which we computed local magnitudes
(Table III). Plots of processed records included in Table I11 can be found in the
catalogue compiled by Mori and Crouse (1981).

The meaning of distance between the earthquake and recording site can sometimes
be ambiguous. Most distances listed in Table I11 are either epicentral or hypocentral
distances. However, when the earthquake dimension is large, some other measure of
distance may be appropriate. In Figures 19 through 21, we have used the closest
horizontal distance between the site and the rupture. In most instances, this means that
we used the epicentral distance. In the case of the 1968, M, 7.8 Tokachi-Oki earthquake,
we computed the closest distance to the rupture surface as defined by the locations of
the first several hours of aftershocks. Some of the Japanese events occur at considerable
depth and in these instances, it may be more appropriate to use hypocentral distance to-
gether with a new set of distance attenuation laws. However, we found that the use of
epicentral distance for earthquakes of depths up to 50 km resulted in consistent peak
motions for both shallow and deeper (less than 50 km) Japanese earthquakes.

In Figures 19 through 21, we plot peak values of ground acceleration, velocity, and
displacement as a function of distance for Japanese and U.S. records for selected
carthquake magnitude ranges. When comparing peak values of ground motion,
regardless of earthquake magnitude (Figure 19 a and b; Figure 20 a and b: Figure 21 a
and b), we see that the distribution of observed Japanese ground motions is very
different from the U.S. ground motions. In general, the largest ground motions have
been recorded in the western U.S. at small source distances. Although there are few
Japanese records of peak acceleration greater than 0.5 g, impressively large motions
have been recorded at distances of 100 km and more in Japan. Taken at face value, this
might suggest that ground motion attenuates less severely with distance in Japan.
However, when we compare motions that were recorded at comparable earthquake
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TABLE II1
Distance
Site Center of
Earthquake No. Epicentral energy Component Log4,, M) Mg
2/14/56 Mpya= 6.0
Kashiwa TK024 21 50 North 4.07 6.56 6.07
Depth=45 M, = 6.1 East 4.09 6.56 6.09
North 4.07 6.57 6.13
Tiko24 23 ol East 4.09 6.59 6.15
4/23/62 Mpa= 7.0
Tokachioki HK005 75 N S
Depth= 60 M, =72 4 : ' :
4/30/62 Mpya= 6.5 North 3.71 6.4 6.35
Depth=35 M, = 64 11030 64 N East 373 642 637
5/8/63 My,= 6.1
Tokai KT003 53 63 North 3.64 6.27 6.16
Depth=40 M,= 6.0 East 3.62 6.25 6.14
North 3.34 5.97 5.86
1001 24 &3 East 3.26 5.89 5.78
8/4/63 Mpypa= 5.1 North 3.63 6.14 5.9
Depth=39 M,=538 LD S 32 East 3.39 5.9 5.66
2/5/64 M pga= 6.0
Tokaimura KT001 36 65 North 3.50 6.15 5.78
Depth= 54 M,= 538 East 3.64 6.11 5.74
North 4.02 6.67 6.3
001 36 65 East 3.60 6.25 5.88
North 3.31 6.06 5.59
KTo0L 36 65 East 328 603 556
6/16/64 Mpa= 1.5
Niigata Niigataph 59 57 I};I;Srtth 332 ://‘;‘2 ;ii
Depth=40 M,=173 ’ ’ ’
11/14/64 M= 5.1 North 3.78 6.47 5.45
Depth= 69 M,= 55 ISH00L 8 69 East 3.90 6.59 5.57
4/20/65 Mpa= 6.1 North 4.30 6.72 6.3
Depth=40 M,=63 CB002 21 4 East 4.00 6.42 6.0
CBOST 30 50 S41E 4.19 6.68 6.37

N49E 421 6.7 6.39




68

THOMAS H. HEATON ET AL.

TABLE III (continued)

Distance
Site Center of
Earthquake No. Epicentral energy ~ Component Log 4, M ey Mg
10/26/65 M= 7.1 SISW 375 738 7.06
Depth= 159 M, = 7.1 ~HK004 162 . S75E 374 737 705
4/5/66 M= 54 Transverse 4.12 5.75 5.75
Depth—4 M =60 CBO20 8 8 East 462 625 625
North 467 647 647
2
CRO20 12 12 East 442 622 622
. North 419 576  5.69
HoshiraA =3 > East 447 604 596
North 445 605 598
Walkaho =4 6 East 446 608 599
5/28/66 Moo= 5.3 North 350 53 5.13
Depth= 10 M, = 52 B0 7 2 East 354 534 517
8/3/66 Min= 53 Marsushiro 7 . North 442 609 606
Depth= 3 M,= 6.1 East 4.52 6.19 6.16
1/12/66 M= 5.9 N40E 435 649 63
Depth=20 M,= 62 K500 19 N NSOW 424 638 619
1/19/67  Myy,= 6.0 North 435 704 684
Depth=— 48 M, = 66 1001 30 o East 394 663 643
3/30/68 Mipya= 5.0 SI0E 393 588 549
Depth= 18 M,= 57 KKOI4 5 18 NSOE 426 621 582
4/1/68 Myyp= 7.5
Hyuganada KS003 123 135 Longitude 3.71 6.85 6.82
Depth= 37 M,="173 Transverse 3.77 6.91 6.88
Longitude 4.44 7.32 7.24
SASU06 S0 8 Transverse 4.62  7.50 742
North 436 769  7.69
I 166 East 448 781 7181
S30W 453 728 713
k800260 73 S60E 476 751 136
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Site
Earthquake No.
5/16/68 Mpa= 79
Tokachioki HKO009
Depth= 10 M, =13
HK003
TH020
THO14
HKO013
THO029
5/16/68 Myr= 7.5
Tokachioki HK003
aftershock
Depth=26 M,=17.0 HKO13
THO14
5/23/68 Myp= 6.3
Tokachioki KS003
Depth= 50 M,= 64
7/1/68 Mpya= 6.1
Depth= 68 M, =69 18020
7/5/68 Myys= 6.4
Depth=44 M, = 6.5 00
8/6/68 Myyp= 6.6
Shikoku CGO005
Depth=48 M, = 6.7
SK006
8/7/68 Mpya= 5.7
Hokkaido HK004

Depth= 68 M, = 6.0

Distance

Center of

Epicentral energy

276 (133)*

245(112)
210(107)
173(123)
128( 50)
172( 96)
236
75
226

123

78

62

116

32

210

175

167

190

92

144

115

90

220

135

92

76

106

54

75

TABLE 111 (continued)
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Component Log 4,, M cpr) Mep
Longitude 4.63 8.18 7.79
Transverse 4.68 8.23 7.84
North 4.6 8.0 7.66
East 44 7.8 7.46
North 4.29 8.05 7.31
East 4.67 8.01 7.7
North 3.85 7.3 6.96
East 3.80 7.25 6.91
Longitude 3.91 6.83 6.42
Transverse 3.87 6.79 6.38
North 4.66 7.88 7.62
East 4.74 7.96 7.7
North 3.99 7.07 7.67
East 4.00 7.08 7.68
Longitude 3.63 6.53 6.38
Transverse 3.72 6.62 6.47
North 3.70 7.3 7.33
East 3.60 7.2 7.23
North 3.42 6.59 6.53
East 3.27 6.44 6.38
S3E 4.05 6.96 6.83
N87E 4.20 7.11 6.98
North 3.72 6.48 6.34
East 3.95 6.71 6.57
North 3.77 6.8 6.8
East 3.90 6.93 6.93
Longitude 4.61 7.14 6.46
Transverse 4.66 7.19 6.51
North 3.71 6.46 591
East 395 6.7 6.15

* Numbers in parentheses are closest-to-the-fault distances.



70

THOMAS H. HEATON ET AL.

TABLE III (continued)

Distance
Site Center of
Earthquake No. Epicentral energy ~ Component Log 4,, Mjcgry M, p)
10/8/68 Mpyp= 5.3

South Honshu KT004 38 82 E:srtth g;g 289 §2§
Depth=73 M,=58 ' ’ '
11/14/68 M,y = 6.0 North 333 625 616
Depth=40 M, = 61 1HO4 83 92 East 312 604 595
4/21/69 Mipp= 6.5

Kyushu KS002 43 66 gggg’ ‘3‘8 S gg? 2"3‘5
Depth=39 M, = 6.4 - . .
9/9/69 Mipn= 6.6

South Honshu ACOI7 101 103 E;’Srt‘h o ‘;'(9)1 o8
Depth=29 M,=69 ’ ’ '
12170 Mipa= 6.6 .

o " s e tn es o
Depth=25 M, = 6.4 : : :
4/1/70 My, = 5.8 North 37 647 56
Depth=75 M, = 56 1004 17 . East 364 641 554
7/26/70 Miyp= 6.7 S30W 226 676 626

Kyushu KS002 21 51 S60E 230 68 6.3
Depth=47 M,= 6.3 KS003 70 84 Longitude 3.56 6.4 6.33

Transverse 3.63 6.47 6.33
7)26/70 Myu= 6.1

Kyushu KS002 21 51 S30W 36 6.1 56

aftershock S60E 3.74 6.24 5.74

Depth= 47 M,= 5.
1/5/71 M= 6.1 o North 412 69 6.76
Depth= 44  M,— 68 KK026 64 ® East 415 693 679
2/26/71 Mpyy= 5.5 Longitude 395 64 6.07
Depth=37 M, =61 B0 27 i Transverse 3.95 6.4 6.07
6/13/71 Myya= 5.3 North 394 659 62
Depth= 55 M,= 61 1001 35 09 East 382 647 608
8/2/71 Mipyn= 7.0

Hokkaido HKO004 196 201 g;gg 3'8é ;;1; 8
Depth=45 M,=175 ' ’ '
01171 M= 52

, S2OW 342 58 522

East Honshu KTO050 12 42 S61E 113 651 593

Depth=40 M,= 5.6
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TABLE III (continued)

Distance
Site Center of
Earthquake No. Epicentral energy ~ Component Log A, M cpry M, p,
2/29/72 Mpya= 1.1

South Honshu KT004 259 240 g;z\EV ;% ;iz ;%2
Depth= 50 M,=173 ' ' '
5/11/72 Mua= 58 groos 33 - S15W 3.85 6.56  6.09
Depth= 56 M, = 6.1 S7SE 3.88 6.59 6.12
6/17/73 Mpya= 174 SI5W 4.67 7.84 7.73
Depth= 41 M, = 76 K004 112 134 S75E 441 158 747
11/19/73 Mpya= 6.4 North 387 697 69
Depth= 56 M, = 66 11033 107 21 East 337 647 64
3/3/74 Mpn= 6.1

East Honshu KT036 39 63 RIS ¢ A A
Depth=49 M,=64 as . . 6.57
7/8/74 Myya= 6.3 North 3.78 6.65 6.51

East  Honshu KT036 73 87
Depth=45 M,=6.5 East 3.72 6.59 6.45
9/4/74 Mya= 5.6 North 376 643 6.15
Depth= 52 M, = 6.1 TH023 e o1 East 3.74 6.45 6.13
11/9/74 Mygp= 6.5

Hokkaido HKO16 15 o A R
Depth= 125 M, = 5.7 ' ' -
11/16/74 Miya= 6.1 ,

East Honshu KT036 38 58 port B
Depth= 44 M,= 6.4 ast . .55 6.29
6/12/78 Mpya= 1.5 N41E 424 725 7.32

Sendai THO19 116 102 S49E 4.23 7.24 7.31
Depth=40 M,="15 North 4.69 7.7 7.79

THO033 120 102 East 4.95 7.96 8.05

magnitudes and source distance, we see that the Japanese and U.S. motions are
remarkably similar (Figure 19 ¢ through h; Figure 20 ¢ through h; Figure 21 ¢ through
h). We see then that the primary reason that the distribution for peak values with
distance for the entire U.S. and Japanese data sets are different is mainly geometry.
That is, there are many near-source recordings of moderate-sized U.S. earthquakes,
but earthquakes of M > 7 have been rare. In contrast, there are numerous recordings of
large Japanese earthquakes, but very near-source records are rare. This is due to the
fact that most large Japanese earthquakes occur offshore along subduction zones.
We have superposed the modified local magnitude distance attenuation law (shown
in Figure 8) on these plots. We see that the distance decay of peak ground motions
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Fig. 19. Comparison of peak ground accelerations recorded in the western U.S. and Japan. Distance is
approximately the closest horizontal distance to the rupture. Dashed line is the modified local magnitude
distance attenuation law (Table I).

recorded in both Japan and the U.S. is compatible with the local magnitude attenuation
law. This is somewhat surprising considering the wide range of earthquake sizes and
tectonic settings being compared. However, if this attenuation law is applied to
earthquakes of M >7, then we obtain very large near-source ground motions (peak
velocities in excess of 500 cm sec ). Since there is really no data taken very close to very
large earthquakes, it is difficult to assess the validity of the local magnitude distance
scaling law for very large earthquakes at small source distances. Nevertheless, we feel
that the distance attenuation law is likely to change as the source dimension becomes
large relative to the recording distance. Furthermore, in such cases, the distance
attenuation is probably a function of the fault length to width ratio and we expect near-
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Fig. 20. Comparison of peak ground velocities recorded in the western U.S. and Japan.

source attenuation from subduction zone earthquakes to be different from attenuation
close to shallow crustal earthquakes.

We have also calculated local magnitudes for 75 Japanese earthquakes using 138
horizontal accelerograph traces given in the catalogue of Mori and Crouse (1981).
Following the method of Kanamori and Jennings (1978), we created Wood-Anderson
seismograms by convolving processed accelerogram data with the theoretical instru-
ment response of a Wood-Anderson seismometer. The modified distance attenuation
was then used to compute the local magnitudes which are given in Table III. Local
magnitudes are given assuming both center of energy distance and closest horizontal
distance to the rupture. In most cases, these translate into hypocentral distance and
epicentral distance, respectively.
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Fig. 21.  Comparison of peak ground displacements recorded in the western U.S. and Japan.

In Figure 22, we have plotted each Japanese earthquake for which we have estimates
of both local magnitude and JMA magnitude. In this figure, local magnitudes were
determined using the closest horizontal distance to the rupture. IMA magnitude has
been determined by the Japan Meteorological Agency using long-period local seismo-
meters (distances of less than 1000 km) and is similar in many respects to surface wave
magnitude. We see that the relationship between M, and M,,,, for Japanese earth-
quakes is similar to that found between M, and M| for earthquakes in the western U.S.
(Figure 4).



