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-Equation Section 8 
Tom Heaton’s Engineering Seismology class notes  10/8/2022 
 
Chapter 8   Earthquake Scaling    
 
Earthquake Intensity  
 
Earthquakes occur in many different places in the Earth, some are shallow in 
the continental crust, others are along the interface between a subducting 
oceanic plate and a continental margin, and yet others are deep within the 
Earth (up to 650 km).  Before the invention and deployment of 
seismographs, these earthquakes were largely described by their perceived 
maximum shaking intensity.  There have been several shaking intensity 
scales developed through the years; the Rossi-Forel was defined in 1883 and 
it was the most common scale until the Mercalli Intensity scale (MI) was 
defined in 1902.  This scale was modified in 1931 (intensities XI and XII 
were added to describe very damaging shaking and the definition of 
Modified Mercalli Intensity scale (MMI) is given in Table 8-1.  
Earthquakes are sometimes characterized by the maximum MMI reported.  
However, since large MMI values are based largely on observed damage to 
structures, maximum MMI is not a consistent way to characterize the size of 
earthquakes.  In particular, the strongest shaking from an earthquake most 
commonly occurs in areas that do not have a sufficient density of buildings 
to characterize the intensity of the shaking.  Furthermore, building 
construction changes dramatically with time and from region to region. 
 

Modified Mercalli Intensity Scale 
 

I. People do not feel any Earth movement. 
  
II. A few people might notice movement if they are at rest and/or on the upper 
floors of tall buildings. 
  
III. Many people indoors feel movement. Hanging objects swing back and forth. 
People outdoors might not realize that an earthquake is occurring. 
  
IV. Most people indoors feel movement. Hanging objects swing. Dishes, windows, 
and doors rattle. The earthquake feels like a heavy truck hitting the walls. A few 
people outdoors may feel movement. Parked cars rock. 
  
V. Almost everyone feels movement. Sleeping people are awakened. Doors swing 
open or close. Dishes are broken. Pictures on the wall move. Small objects move or 
are turned over. Trees might shake. Liquids might spill out of open containers. 
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VI. Everyone feels movement. People have trouble walking. Objects fall from 
shelves. Pictures fall off walls. Furniture moves. Plaster in walls might crack. Trees 
and bushes shake. Damage is slight in poorly built buildings. No structural damage. 
  
VII. People have difficulty standing. Drivers feel their cars shaking. Some furniture 
breaks. Loose bricks fall from buildings. Damage is slight to moderate in well-built 
buildings; considerable in poorly built buildings. 
  
VIII. Drivers have trouble steering. Houses that are not bolted down might shift on 
their foundations. Tall structures such as towers and chimneys might twist and fall. 
Well-built buildings suffer slight damage. Poorly built structures suffer severe 
damage. Tree branches break. Hillsides might crack if the ground is wet. Water 
levels in wells might change. 
  
IX. Well-built buildings suffer considerable damage. Houses that are not bolted down 
move off their foundations. Some underground pipes are broken. The ground cracks. 
Reservoirs suffer serious damage. 
  
X. Most buildings and their foundations are destroyed. Some bridges are destroyed. 
Dams are seriously damaged. Large landslides occur. Water is thrown on the banks 
of canals, rivers, lakes. The ground cracks in large areas. Railroad tracks are bent 
slightly. 
  
XI. Most buildings collapse. Some bridges are destroyed. Large cracks appear in the 
ground. Underground pipelines are destroyed. Railroad tracks are badly bent. 
  
XII. Almost everything is destroyed. Objects are thrown into the air. The ground 
moves in waves or ripples. Large amounts of rock may move.  
 

 
Table 8.1.  Definition of the Modified Mercalli Intensity Scale.  
Full descriptions are from: Richter, C.F., 1958. Elementary 
Seismology. W.H. Freeman and Company, San Francisco, pp. 
135-149; 650-653. 
 

U.S. earthquakes that occurred from the 1920’s into the 1970’s were assigned MMI’s by 
the U.S. Coast and Geodetic Survey (merged with the USGS in 1978).  The USCGS 
conducted routine surveys to prepare MMI intensity maps that were published regularly 
in a series called U.S. Earthquakes.  The practice of compiling these data was largely 
discontinued in the 1980’s (too much manpower), and earthquakes were primarily 
described by other parameters (magnitude, pga, spectral acceleration).  However, the 
widespread use of the Internet has allowed MMI compilations to be automatically 
managed through a USGS project known as “did you feel it?” 
https://earthquake.usgs.gov/data/dyfi/.  In addition to shaking intensity observations, it 
has become common to characterize shaking intensity with observations of pga and pgv 
derived from strong-motion seismic data.  In particular, relationships between reported 
MMI’s and nearby recorded pga’s and pgv’s were used to derive quantitative relations 
that predict MMI from pga and pgv (Wald, D., V. Quitoriano, T. Heaton, and H. 
Kanamori, 1999, Relationships between peak ground acceleration, peak ground velocity, 
and Modified Mercalli Intensity in California, Earthquake Spectra, 15, 557-564 pdf ).  

https://earthquake.usgs.gov/data/dyfi/
http://www.ecf.caltech.edu/heaton/papers/Wald_intensity.pdf
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This is now referred to as Instrumental  Modified Mercalli Intensity (IMM), which is 
given by 

 
( )
( )

3.66 1.66 for V IMM VIII

3.66 1.66 for V IMM

IMM Log PGA

IMM Log PGV IX

= − ≤ ≤

= − ≤ ≤
8.1   

equation reference goes here  
 2.2 log( ) 1IMM pga IMM V= + ≤   8.2 
 
 IMM  uses the principle that smaller intensities are based on human perception of 
shaking.  In these cases, humans seem to be better at discriminating pga than they are 
pgv.  In contrast, higher levels of intensity are based on observations of structural 
damage; this seems to correlate best with pgv. 
 
Japan has a long history of important earthquakes and a Japanese intensity scale has 
evolved through time.  The Japan Meteorological Agency (JMA) intensity scale (aka, 
Shindo scale) is summarized in table 8.2 
 

 
Figure 8.1.  JMA intensity scale 
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Shaking intensity scales measure ground shaking at a point, BUT there must be 
structures to characterize the damage, and locally intense shaking may not reflect the 
overall size of an earthquake.  One method to measure overall size using intensity data 
has been to estimate the area that experienced at least a given level of intensity.  In 
particular, the area that experienced MMI ≥  IV  has been helpful in quantifying the size 
of earthquakes for which only intensity data is available (pre 20th century).  Intensity IV 
is convenient, since it is small enough to occur over a large area while still large enough 
to be reported in newspapers. (Estimating Earthquake Location and Magnitude from 
Seismic Intensity Data, 1997, Bakun W. and C. M. Wentworth, Bulletin of the 
Seismological Society of America, Vol. 87, No. 6, pp. 1502-1521). 
 
Earthquake Magnitude 
 
Charles Richter is usually identified as the designer of the first practical earthquake 
magnitude scale, which is now referred to as ML (or local magnitude).  When a 
seismologist tells you the “Richter magnitude” of an earthquake, he or she often intend 
to mean “local magnitude.”  Unfortunately, the non-seismologists seems to think that 
earthquakes are only assigned Richter magnitudes, which is definitely not true.  Richter’s 
magnitude scale was designed in the 1930’s to assign a relative size to earthquakes that 
were recorded on the seismic network operated by Caltech’s Seismological Laboratory 
in southern California.  This network was comprised of horizontal-component, optical, 
torsion, seismometers designed by Harry Wood (Caltech seismologist) and John 
Anderson (an astronomer with the Hale Observatory).  This instrument has a natural 
period of 0.8 s.; 80% damping, a displacement transducer (it recorded light deflected by 
a mirror onto photographic paper on a rotating drum) with a maximum gain of 2,800 (see 
chapter 2).  The definition of  ML 
is 
  

 0
0

log log logL
AM A A
A

 
≡ = − 

 
  8.3 

  
 Where A is the maximum amplitude (in mm) of a Wood-Anderson seismogram.  The 
original definition only applies for a seismogram recorded at an epicentral distance of 
100 km.  Richter arbitrarily chose M = 3.0 to correspond to a peak seismogram 
amplitude of 1 mm.  That is he defined that ( )0 100 km 3.0A ∆ = =  .  Since earthquakes 
were recorded at a range of distances, Richter derived a distance correction factor , A0

( )∆  , to correct the amplitudes to the standard distance of 100 km (see Fig. 8.2).   
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Fig. 8.2  Distance correction factor for Richter’s local 
magnitude scale, ML.  The solid line shows Richter’s definition, 
while the dotted line is from a later study by Kanamori. H. and 
Jennings, P.C., 1978. Determination of local magnitude, M, 
from strong-motion accelerograms. Bull. Seismol. Sot. Am., 
68: 471-485.  

 
Since a Wood-Anderson seismometer is a linear single-degree-of-freedom oscillator, the 
measured peak amplitude is identical to a 0.8 s, 80 % damped displacement-response 
spectrum.   Since the damping is much larger than is typically used in structural 
engineering, the amplitude used in  ML correlates well with pgv, which also seems to be 
a good measure of shaking intensity; there is a detailed discussion of the relationship 
between pgv and 80% damped response spectra in Chapter 6. .  ML was used from the 
1920’s through the 1980’s as the standard magnitude to prepare catalogs of seismic 
activity in California (it has been adopted in other countries as well).   
 
There were some important limitations to the use of ML; in particular, earthquakes larger 
than ML 5, tended to over-drive Wood Anderson seismometers.  In response, low 
amplification versions of this seismometer were deployed.  However, it was expensive to 
maintain a set of instruments that recorded only during the rare occurrence of  ML > 5.  
An even more serious limitation was that the local magnitude scale was only defined for 
California earthquakes that were recorded in California; it was not possible to compare 
the size of earthquakes worldwide. 
 
In 1945 Beno Gutenberg (Caltech) introduced the Surface Wave Magnitude MS which is 
defined as  
 ( )20LogS RM A A≡ − ∆   8.4 
 

20RA  is the maximum amplitude (in microns) of the 20-s Rayleigh wave (typically on the 
vertical component) recorded at distances exceeding 20o (about 2,200 km).  Table 8.2 
contains the values of A for a variety of distances 
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Table 8.2.  Distance correction factors for determination of MS . 

 
Rayleigh waves are often the largest wave group at these distances. Thus, 20RA  is 
relatively easy to obtain using a photographic paper record, a meter scale and the 
response curve of standard seismographs (see Chapter 2).  In principle, the measurement 
should be made after the record is narrow-band filtered at 20 s.   Filtering these records 
would have been impractical in the 1940’s; but fortunately 20 s Rayleigh waves are 
typically easy to identify on records (this arises from strong velocity dispersion in this 
period band).  It’s important to recognize that MS is a measure of the Fourier amplitude 
spectrum at 20 s, while ML is a maximum of the transient response of a 0.8-s sdof; that is 
these two scales measure different things.  Nevertheless, Gutenberg and Richter adjusted 
A so that the two scales gave similar magnitudes for earthquakes where they could 
estimate both ML and MS.  This meant that the scales converge at about 6S LM M≈ ≈  .  
This can be seen in Figure 8.3, where ML and MS are plotted against each other.  In 
particular, it appears that 2

3L SM M  , or since these magnitude scales are logarithmic, 
2

3
20Wood Anderson RA A−   .  That is, ML and MS are fundamentally different measures of an 

earthquake. 
 

 
Fig. 8.3.  Comparison of ML and MS for earthquakes reported for both 
scales.  MS is defined so that it gives comparable magnitude to ML for 
earthquakes of about 6. From Heaton, T.H., Tajima. F., and Mori, A.W., 
1986, Estimating ground motions using recorded accelerograms, Surveys in 
Geophysics, V. 8, pp 25-83. 
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Surface wave magnitude was a successful and commonly used scale for a large catalog 
of global earthquakes recorded in the 20th century (many older events were assigned 
magnitudes based on historic recordings.  However, since the excitation of surface waves 
decreases exponentially with the depth of an event, MS is not appropriate to characterize 
the size of earthquakes deeper than 20 km.  To deal with this problem, Gutenberg, 
Richter, and Hugo Benioff (yet another famous Caltech seismologist) devised the body 
wave magnitude scale, mB.  This scale is based on teleseismic body waves (especially 
the P-wave between 30o and 90o).  In this case, the maximum amplitude of the P-wave 
AP and the duration of the pulse with the maximum amplitude TP are measured.    

 
( )

log
,

P
B

P

Am
T A z
 

≡   ∆ 
  8.5 

Where  ( ),A z∆  is a complex correction that depends on distance and source depth; it 
was calibrated to give comparable magnitudes to MS  for magnitudes near 7.  Notice that 
the amplitude is normalized by the pulse duration.  Richter says that this is a 
measurement of particle velocity which is used in the computation of kinetic energy.   
 
The short-period body wave magnitude mb is also commonly encountered in catalogs 
of earthquakes.  This magnitude is also logarithmic and it depends on the maximum 
amplitude of teleseismic P-wave amplitudes as  measured in the first 3 seconds of a short-
period standard vertical seismometer (1-s natural period).   mb was designed to help 
discriminate the seismic signals from underground nuclear explosions from seismograms 
of natural earthquakes.  That is, nuclear explosions happen very quickly and they have 
very impulsive P-waves, whereas earthquakes are typically more emergent; they take 

some time to get going; that is events with high b

S

m
M  were marked as possible 

underground nuclear tests. 
 
The development of magnitude scales has a long and complex history.  There have been 
many other magnitude scales that have been devised.  Unfortunately, they all suffer from 
the fact that they are unit less; they measure relative size, but they are not related to 
physical parameters of the earthquake.  Hiroo Kanamori (yet another Caltech 
Seismologist) defined energy magnitude MW to be  

 0Log 4.8
1.5W
WM −

≡   8.6 

Where 0W  is the total radiated energy in joules (the W is for work).  Kanamori defined 
MW in this way so that it would be compatible with the energy-magnitude relation 
developed by Gutenberg and Richter (1956, BSSA, 32, 163-191).  Unfortunately, 
estimation of radiated energy is a difficult problem, which makes the use of MW 
cumbersome in practice.   Kanamori noted that on average 

 0
0 4 42 10 2 10 eff eff

M DSW DS Pµ σ σ≈ = = =
× ×

  8.7 

Where µ  is the average crustal rigidity, about 40 GPa, which means that 2eff MPaσ ≈ .  

effσ  is the effective stress that converts slip per unit rupture area into radiated energy per 
unit rupture area.   By substituting 8.7 into 8.6, Kanamori was able to approximate MW as 
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0log 9.1

1.5
log 1.5 2 log 1

1.5 3

W
MM

P P

−
≈

+
≈ = +

  8.8 

Coincidentally, Thatcher and Hanks (1973, JGR, 78, 8547-8576) derived a general 
relation between 0M  and LM  for southern California earthquakes 

 0log 9
1.5L
MM −

≈   8.9 

Hanks noted that the ML relation (eq.8.9) is very similar to Kanamori’s approximate 
relation for MW (8.8), and he convinced Kanamori to collaborate on a new definition of 
magnitude they called moment magnitude M defined as 

 0log 9.05
1.5

M −
≡M   8.10 

Where the 9.05 was obviously a political compromise (Hanks and Kanamori, 1979, JGR, 
84, 2348-2350).  The choice of the distinctive bold script M meant that it was awkward to 
find the appropriate symbol on word processors and hence many researchers began to call 
MW moment magnitude.  Unfortunately, some have mistakenly confused energy and 
moment (see Chapter 7).  On a personal note, it drives me crazy that one of the most 
referenced papers in geophysics (Hanks and Kanamori, 1979) is just a simple 2-page 
paper to define moment magnitude, but most researchers who cite it use it incorrectly; 

WM  is defined to be Energy Magnitude. WM   is NOT Moment Magnitude.   
 
The easy form for moment magnitude (technically it’s Potency Magnitude) is that given 
in 8.8 

 21 log
3

SD≈ +M   8.11 

Where the units are in meters.  I have assumed that the average crustal rigidity is 35 GPa 
in deriving 8.11.  This can cause some confusion, since some researchers use 40 GPa and 
others use 35 GPA.  However, since the rigidity is not really a source parameter (see 
Chapter 7), this is not a significant issue.  Since it makes the definition of magnitude 
simple, I suggest using 35 GPa.   
 
As a convenient rough rule of thumb, a 30 km by 30 km rupture with a 1-m slip gives a 
potency of about 1 cubic km, which corresponds to a moment magnitude of about 7.   
From now on, I will refer to Potency Magnitude as simply magnitude.  While it is, for all 
intents and purposes, the same as moment magnitude, potency is a much simpler concept 
and its use simplifies the math.  
 
Figure 8.4 is a comparison of a variety of different magnitude scales (Heaton, Tajima, 
Mori, 1986, Surveys in Geophysics, 8, 25-83).  It shows the average relationship between 
these scales and moment magnitude.  This plot clearly shows that most magnitude scales 
saturate with increasing total energy (or potency).  The scales based on shorter-period 
measurements saturate at smaller magnitudes and the scales based on long-period 
measurements saturate at larger magnitudes. 
Unfortunately, magnitude saturation was poorly understood prior to the 1980’s and there 
are important inconsistencies in reporting the sizes of older large earthquakes.  For 
example, the 1906 San Francisco earthquake was assigned a surface wave magnitude, MS, 
of 8.3 based on teleseismic recordings.  In comparison, the 1964 Alaskan earthquake was 
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assigned an MS of 8 ¼ .   However, modeling of geodetic data from these earthquakes has 
indicated that the 1906 earthquake was  M  = 7 ¾, while 1964 was  M = 9 ¼ ; that is the 

Alaskan earthquake was 1.5 units greater, or 
3 1.5210 180=  times larger.  The use of the 

moment magnitude scale revolutionized the understanding of the sizes of the greatest 
earthquakes.  You can find a table listing the largest historic earthquakes sorted according 
to their moment magnitudes at https://en.wikipedia.org/wiki/Lists_of_earthquakes.  
 
 

 
Figure 8.4.  Comparison of a variety of magnitude 
scales (Heaton, Tajima, Mori, 1986, Surveys in Geophysics, 8, 
25-83). 

 
At this point, you should be asking yourself about this factor of 2/3 that shows up in 
definition of moment magnitude; is there some physics behind this factor?  One way to 
think of this problem is to consider a far-field P- or S-wave pulse of duration T and 
amplitude A.  The potency (or moment) of the earthquake is then related to the area of 
the pulse, i.e., P AT  (see Chapter 7).  This implies that PA T  .  The assumption 

that most magnitude scales are logarithmic in amplitude, A, means that the definition of 
potency magnitude is consistent with other scales if 3P T  , in which case 

2
3A P  , 

which implies that  
 2log log3A P M   8.12 

 
As we will see in the following discussion, there are other ways to derive the 2

3  . 

Furthermore, this factor was in the relationship between magnitude and radiated energy 
that was derived by Gutenberg. 
 

https://en.wikipedia.org/wiki/Lists_of_earthquakes
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Gutenberg-Richter Relationship 
 
Since the earliest days of compiling catalogs of earthquake magnitude, it has been noted 
that the number of earthquakes decreases with increasing magnitude and can be 
described as a power law known as the Gutenberg-Richter frequency-magnitude 
relationship (often shortened to just “Gutenberg-Richter”). 
 
 

log( ) or
10 10A bM

N A bM
N −

= −

=
  8.13 

 
This can be rewritten in natural logs as 
 

 
( ) ( ) ( )

( ) ( )
ln log log log log

or exp log exp log

N e N A e b e M

N A e b e M

= = −

=   
  8.14 

 
Where N is the number of earthquakes larger than M, and A and b are constants that are 
typically called “the A value” and the “b value”.  This equation is the first form of 
Gutenberg-Richter and it is called the “cumulative form of Gutenberg-Richter” .  A 
second form of this relationship describes the statistics of the number of events N M′∆  

with magnitudes between M and M M+ ∆  .  In this case, dNN
dM

′ = .  Now 

differentiating 8.13 with respect to M  , ( )logd N
b

dM
= −  . However, we also know that  

( )log 1d N dN N
dM N dM N

′
= =  , so 

log
bNN

e
−′ =   from which it follows that 

log log log 0.362N N b′ = − −  which provides the second form of the Gutenberg-Richter 
relation (called the interval form) that is written 
 
 ( )log N a bM′ = −   8.15 
 
where 0.362 log loga A b M= + + + ∆ .  Notice that the two forms, 8.13 and 8.15, only 
differ by a constant.  If a large data set exactly fits the G-R relation, then the a- and b- 
values can be estimated using a visual inspection of a log-linear plot ( log N  vs M  ).  
However, it is more common to encounter catalogs that do not precisely fit this law, in 
which case it is easier to estimate the constant when plotting the first form.  Most 
commonly, people use the first form.  However, if you wish to visually judge whether a 
data set fits G-R, it is probably best to use the second form; it reveals the details better. 
 
Interpreting the meaning of the G-R relation has been the subject of a huge number of 
papers, but to this day, there still seems to be a wide variety of speculative explanations.  
The a-value is a constant that gives the overall rate of activity.  The b-value describes the 
relative frequency of large and small events.  Later in this chapter, I argue that the b-
value arises from the chaotic dynamics that are caused by the low dissipation energy in 
earthquakes. 
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It is important to understand that, given a suite of earthquakes, the estimates of the a- and 
b- values is dependent on the magnitude scale that was used to parameterize the events.  
For example, I argued that 2

3L SM M  .  This means that using LM  to determine b-

value will give a different estimate than if the catalog uses SM  .  Fortunately, most 
networks that prepare earthquake catalogs attempt to enforce the use of moment 
magnitude.  Unfortunately, many catalogs of historic earthquakes contain a variety of 
different magnitude estimates. 
 
The G-R relation is also referred to as a Pareto Distribution.  This name is common in 
economics, where it has long been observed that personal wealth is described by a Pareto 
distribution; a few people have most of the overall wealth in society.  Pareto distributions 
often arise in self-organizing systems.  I have found a very nice overview lesson on 
power laws by Mark Newman (U. of Mich.) which can be found at  
http://www-personal.umich.edu/~mejn/courses/2006/cmplxsys899/powerlaws.pdf   
 
We can use the Gutenberg Richter relation to investigate the following common 
question.  Which magnitude earthquakes are responsible for most of the motion of the 
Earth’s tectonic plates? Is it the infrequent large events, or the far more numerous 
smaller earthquakes?  To estimate the total inelastic strain integrated over the volume, 
total Potency or totalP  , resulting from suite of earthquakes between magnitudes 

min max and M M  , we perform the following integral 

 ( )
max

min

M

total
M

P N P M dM′= ∫   8.16 

Where ( ) ( )3 1210 MP M −=  (see 8.8) and N ′  is given by 8.15.  Performing the 
integral, we obtain 

 

( )
( )

max

min

max

min

(1.5 )( 1)

1.5

10 10

10 10
1.5 ln10

M
a b M

total
M

a Mb M

M

P dM

b

− −

−

=

 =  −

∫
  8.17 

If minM = −∞  , then 

 
( )

( )
( )

max
max

1.5
1.510 10

1.5 ln10

a b M
b M

totalP C
b

+ −
−=

−
   8.18 

Analysis of the global catalog of earthquakes provides estimates that 1b ≈  , so 
max

1
210 M

totalP C  .  This means that the total slip increases by a factor of 3.16 for every 
1-unit increase in maxM  ; clearly the large earthquakes account for the majority of 
the deformation.  This fact means that it is difficult to use historic seismicity 
catalogs to estimate tectonic deformation rates.  The largest events dominate the 
total deformation estimate, but they are so infrequent that there are too few events 
to do statistics.  Furthermore, Gutenberg Richter converges to a finite tectonic rate 
only in the event that the power law is truncated at the largest events. If there is no 
largest size event, then 8.18 is divergent.  Although attempts have been made to 
estimate the maximum event, there is currently no accepted methodology to 
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truncate the Gutenberg-Richter Relation.  As you read further in this chapter, I think 
that you will see that estimation of a largest event is not a solvable problem. 
 
Notice that if 1.5b >  , then the situation reverses and more of the deformation is caused 
by the small events.  Taken literally, 1.5b > means that there is so much deformation 
from the smallest events that there does not need to be any larger events, that is, the plate 
boundary is creeping. 
 
One notable aspect of the G-R relation is the way it scales rupture area.  In particular, it 
has been observed that seismic moment scales with rupture area as 
 

315 2
0 1.2 10M x S≈   8.19 

Where S  is rupture area in 2km  , and moment is in N-m see Figure 8.5 from Kanamori 
(1980).  Writing this in terms of potency, 

 
34 23 10P x S≈   8.20 

 
Where S is still in km2.  Converting S to m2, we obtain.  
 
 

35 23 10P x S−≈   8.21 
 
This allows us to infer the total rupture area of an ensemble of earthquakes as a function 
of M.  Combining 8.21 and 8.11, we obtain  
 

 ( ) 35 22 21 log 1 log 3 103 3
log 2.02

M P S

S

−≈ + ≈ + ×

= −
  8.22 

Or 
 2.10 10MS ≈   8.23 
 
This means that the sum of the rupture areas of earthquakes with magnitudes between 

 and M+ MM ∆  is 
 ( ) ( )12. 2.10 10 10 10 b Ma bM M aS N MS M −− + +′ ′= ∆ = =   8.24 
 
This means that S ′  is a constant if 1b =  .  That is, the total rupture area is the 
same for all earthquakes in a magnitude interval M∆  .  That is, if the b-value 
is 1, then the total rupture area is the same for integrated area of each magnitude.  
That is the sum of the rupture area of all 2’s is the same as the rupture area of all 
3’s, is the same as all 4’s, etc.  What this means is that given a b-value of 1, and 
given that a point has just experienced slip, then it is equally likely that it could 
have come from any magnitude earthquake.  Given that different magnitude 
earthquakes have different slips, any slip is as likely as any other.  This is only 
true in a logarithmic sense.  That is, a fault is equally likely to experience slip 
between D and C x D, regardless of the value of D and a constant, C (e.g. given, 
slips between 1 and 2 mm are just as common as slips between 4 and 8 m. 
For example, if you sum the rupture areas of 10 M 6 earthquakes, they would equal the 
rupture area of a M 7.   This allows us to answer the following question.  “Given that a 
point on a fault experiences a rupture, what is the most likely magnitude of earthquake 
that caused the rupture?”  Apparently, if 1b =  , then all magnitude earthquakes are 
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equally likely to have been the cause of the rupture.  If 1.0b < , then the given rupture is 
most likely caused by a large event, whereas if 1.0b > , then it’s most likely that the 
event was caused by a small event. 
 
From the previous discussion, we can conclude that if there is a point on a fault that fails 
in an earthquake, then it is equally likely that the causative event was any magnitude.  
Later I show that the average slip in an event increases as 

1
210 M (see 8.78 ), which means 

that, “Given that a point on a fault experiences a rupture, then all values of slip at 
that point are equally likely.”   
 
  
Stress Drop and Strain Change 
 
The term, stress drop, is often used in seismology and unfortunately, it has been defined 
in many ways (often confusing).  In the following discussion, I will define stress drop 
to be the change in shear traction on a fault that is the result of shear displacements 
that occur in an earthquake.  That is, 
 ( ) ( ) ( )0 1, , ,x y x y x yσ σ σ∆ ≡ −   8.25 
Where 0σ  is the initial stress (often called the prestress) and 1σ  is the final stress.  This 
definition of stress drop is often referred to as the static stress drop.  As far as I am 
concerned, this is the only unambiguous definition for stress drop, although it seems that 
many (perhaps most) of my colleagues use other definitions.   
 
The easiest way to think of static stress drop at a point on a fault is that it is the change in 
elastic strain time the rigidity, or ( )0 1σ σ σ µ ε∆ ≡ − = ∆  , where ε∆  is the amplitude of 
the change in shear strain in the volume immediately adjacent to the rupture surface.  
Unfortunately, things are not quite so simple since σ∆  and ε∆  are actually tensors 
that vary over space such that they satisfy the equations of static equilibrium ( , 0ij jσ = ).  
However, in these class notes, I am not very interested in the details and I will use 
appropriately simple definitions.   In particular,  I assume that the average stress drop 
of spatially complex ruptures is approximated by rectangular faults with 
homogeneous stress drop.  The adequacy of this approximation is discussed by Das 
(1988, Relation between average slip and average stress drop for rectangular faults with 
multiple asperities, BSSA, 78, 924-930) and Noda et. al. (2013).   
 
Notice that all stress and strain changes scale linearly with slip.  That is, whatever 
average stress drop corresponds to a particular distribution of slip, the average stress 
drop doubles when we double all of the slips. 
 
I will use the relations between average slip, D  , rupture length, ,L  and rupture width, 
W  , for a rectangular fault in a homogeneous half space as reported by Parsons 
(Parsons, Ian Dennis, 1988,  The Application of the Multigrid Method to the Finite 
Element Solution of Solid Mechanics Problems. Dissertation (Ph.D.), California Institute 
of Technology. doi:10.7907/MVMM-ED69. https://resolver.caltech.edu/CaltechETD:etd-
08102006-090020et. al.  This is actually a difficult solid mechanics problem and there 
are several flawed solutions that are in use.  I believe that the Parsons solution is reliable. 
 

https://thesis.library.caltech.edu/3088/
https://thesis.library.caltech.edu/3088/
https://resolver.caltech.edu/CaltechETD:etd-08102006-090020
https://resolver.caltech.edu/CaltechETD:etd-08102006-090020
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In these discussions I will assume that the rupture surface can be approximated by a 
rectangle with a long dimension of L  and a short dimension of W  .  In many cases, L 
becomes the along-strike dimension, whereas W is the down-dip dimension.  Further, I 
will assume that  

 

2

DC
W

PC
LW

σ µ

µ

 
∆ ≈  

 
 =  
 

  8.26 

Or alternatively, 

 

2

DC
W

PC
LW

ε
 

∆ ≈  
 
 =  
 

  8.27 

 
Where P LWD=  is the Potency (the volume integral of inelastic shear strain in an 
earthquake, see Chapter 7), C  is a dimensionless constant that depends on the aspect 
ratio of the rupture, L

W
 , the  depth of burial of the rupture topz  , and the rupture dip and 

rake angles.  Of course, since I am assuming a homogeneous half-space, it is a trivial 
change to write 8.26 in terms of seismic moment 0M Pµ= .  Parsons (1988) shows that 
for a fault with rupture that reaches the Earth’s surface,  
 ( )11.39 2.3 0.65

L
WC − ≈ +  

  8.28 

And for a deeply buried fault  
 ( )11.27 2.3 1.28

L
WC − ≈ +  

  8.29 

For ruptures with shallow burial depth, C changes quickly as a function of topz
W

 
 
 

 ; C 

is within 95% of its value for deeply buried when 0.16topz
W

  = 
 

.  This rapid change in 

C with burial depth is caused by the fact that, in an elastic model, there are very large 
strains and stresses in the region between the top of the fault and the free surface.  In 
reality, it is highly questionable whether such large stresses develop in the shallow 
region just above a rupture that does not quite reach the surface.  For simplicity, I 
classify events as either “surface rupturing” or “deeply buried”; that is, I assume that C is 
described by 8.29 for any earthquake that did not have surface rupture.  I assume a 
uniform rigidity of 35GPaµ ≈  , which is taken to represent average properties in the 
upper Crust.  
 
Notice that 8.21 can be rewritten as 
 5 53 10 3 10D S LW− −≈ × = ×   8.30 
If I assume that ruptures are geometrically similar, then L aW   , where a   is the aspect 

ratio between rupture length and rupture width.  In this case,  
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 53 10D W a−≈ ×   8.31 

If typical ruptures are as long as they are wide, then 53 10D
W

−≈ ×  .  That is, the typical 

slip to length ratio of earthquakes is about 3 parts in 100,000.  Substituting this into 
8.26 gives 
 53 10Cσ µ −∆ ≈ × ×   8.32 
And  
 57.6 10ε −∆ ≈ ×    8.33 
 
If the rupture is deeply buried and if the aspect ratio is about 1, then 2.55C ≈ .  If 

35GPaµ ≈  , then we conclude that 2.7MPaσ∆ ≈  and  53 10Cε −∆ ≈ × × .  While most 
current analysis uses stress drop as a parameter, I find that it’s easier to use strain drop 
since 1) it’s directly related to the observables (Potency and Rupture area), and 2) it is a 
unitless quantity. 
 
If you inspect Fig. 8.5, you will see diagonal lines with labels of different stress drops 
given in bars.  A bar is defined to be mean atmospheric pressure at sea level, and it is 
approximately equal to 100 kPa.  The use of bars to describe stress was common decades 
ago, but almost all research journals now require the use of Standard International (SI) 
units, where stress has units of Pascals, Pa=N/m2. 
 

 
Figure 8.5.  This is a copy of a Figure in Heaton, Tajima, and Mori,1986,  
Surveys in Geophysics, V. 8, pp 25-83, which is a copy of a very famous 

figure by Kanamori, 1980. 
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Earthquakes modeled as Brittle Cracks 
 
In the discussion in the previous section about stress drop, we approximated an 
earthquake as having a constant change in stress on a planar area.  This problem 
is almost identical to the problem of introducing a frictionless crack into a 
uniformly stressed elastic material.   This allows us to borrow the extensive 
research developed to describe the failure of brittle materials.  Crack-like models 
of dynamic rupture were common in the 1960’s and 70’s (e.g., Kostrov, 1966, 
Self-similar problems of propagation of shear cracks, J. App. Math. Mech., 28, 
1077-1087; Madariaga, 1976,).   
 
In Chapter 3, I described the solution of an instantaneous pressure change in a 
spherical cavity (3.82).  In that solution, the cavity expanded when the pressure 
increased.  In addition, the expansion looked like the solution to an impulse of 
momentum on a 58% damped sdof.  That is the cavity oscillated about its new 
static equilibrium and it radiated wave energy as it oscillated.  In the case of a 
frictionless crack with a step change in shear traction, the crack also oscillates 
about its new equilibrium.  I don’t know any closed form solution to this 
problem, but Brad Aagaard made some finite element simulations of a 
frictionless crack and he found that it had radiation damping of about 20% 
(unpublished research).  Fault friction differs from the frictionless case in that 
once the slip drops to zero, the friction returns and presumably the motion stops.  
Thirty years ago there was discussion about whether the slip would stop at its 
dynamic maximum, or whether it would stop at its static equilibrium.  This was 
referred to as the “overshoot” problem. In the past few decades, researchers 
construct numerical simulations of faults with very specific friction laws that are 
more complex than simple instantaneous change in traction.  
 
True analytic solutions of spontaneously propagating ruptures are rare.  One 
simple approach to the problem of a steadily propagating semi-infinite crack 
(shown in Figure 8.6) is to start with the spatial solution for a static semi-infinite 
crack.  To obtain the solution for a propagating crack, merely move the observer 
at a steady rate opposite to the direction of the crack propagation; the 
transforming velocity is scaled by the shear-wave velocity (similar to a 
relativistic Lorentz transformation).   
 
The static solution for a semi-infinite shear crack with a constant stress drop is  

 ( )xz xz
K f
r

σ ϕ   8.34 

Where K is the stress intensity factor (a measure of the sharpness of the crack 
tip), r  is distance from the crack tip, and ( )xzf ϕ  is a scalar function to account 
for the polar coordinate ϕ  , which is the angular position of the observer as 
measured with respect to the rupture plane.  This solution assumes that 
everything is uniform in the y direction.  That is the crack extends infinitely in y 
direction.  For a mode III crack, 2IIIK Gµ= , where G  is the fracture energy, 
which is the energy per unit length required to extend a semi-infinite crack. If the 
fracture energy becomes small, then the tip of the crack approaches the linearly 
elastic solution, which has infinite stress at the crack tip.  That is, if the crack tip 
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is linearly elastic, then even small applied stresses will cause very large stresses 
at the crack tip.   
 
The work expended on the crack of length L  by slippage D  is just 

1
2fDL σ σ + ∆ 

 
 .  In a true crack, the sliding surface is frictionless ( )0fσ =  

and the total change in potential energy is  
 

 ( ) ( ) 2 21
2 22potential

C CE DL L L Lσ σ σ σµ µ
 ∆ ≈ ∆ ≈ ∆ ∆ = ∆ 
 

  8.35 

 
When a mode III crack is extending in a steady-state way (constant rupture 
velocity), then the rate change of potential energy is balanced by the rate of 
change of fracture energy, or fracture potentialE E=  .  The rate of change of fracture 
energy is just 
 fracture RE GV=   8.36 
where RV  is the rupture velocity. The rate of change of potential energy  is 
calculate by differentiating 8.35 with respect to time, or 
 

 ( ) ( )2 2
potential R

C CE LL LVσ σµ µ∆ ≈ ∆ = ∆    8.37 

 which means that 

 ( ) 2CG L σµ= ∆    8.38 

 
For an equilibrium crack, the shear stress on the fault plane scales as 
 

 xz
L

x
σσ ∆

   8.39 

For a propagating crack, this transforms to 
 

 xz
L

x
σσ ∆
′

   8.40 

 
Where x′  is time-transformed distance given by 
 

 ( )
2

1

1
R

R

x x V t
V
β

′ = −
 

−  
 

  8.41 

 
As the rupture velocity approaches the intrinsic shear wave velocity, the solution 
appears to be compressed in space.  Stress at the equilibrium crack tip is singular.  
When the crack runs at the shear-wave velocity, it becomes very singular. 
 
In crack theory, an expanding crack under uniform load tends to continue to 
expand indefinitely.  That is, once it becomes unstable, the only way to stop it is 
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with high fracture energy.  The longer the crack length, the harder it is to stop, 
since the required fracture energy increases as ( )2L σ∆  .   
 
The laboratory-measured values of fracture energy of materials depend strongly 
on the brittleness of the material. Although mono-crystalline diamond is the 
hardest known material, it is also extremely brittle and only 5.5 J/m2 is required 
to propagate a mode I fracture along a cleavage plane.  This means that diamond 
is very strong at the microscale, but you wouldn’t want to construct anything 
large out of a single diamond crystal; if a crack was initiated, then it would not 
take much average stress to propagate a crack through the rest of the material.  
Glass is another brittle material and its measured fracture energies range from 3.5 
to 5.5 J/m2.   
 
 

 
Figure 8.6.  Simplified view of an earthquake as an 

expanding crack.  This is often called a semi-infinite crack 
since it is uniform in the y coordinate. 

 
Polycrystalline materials tend to have higher fracture energies because the 
fracture surfaces are complex and more molecular bonds must be severed than 
for a similar dimension of single crystalline material.  Concrete has a fracture 
energy of about 190 J/m2, and most polycrystalline rocks (e.g., granite) have 
fracture energies between 100 and 1,000 J/m2.  
 
In contrast, earthquake energies are much, much larger than measured values of 
G.  For example, 8.7 gives estimates of radiated energies of 
 

 22 MJmR
eff

E D D
S

σ −≈ ≈   8.42 
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That is, the radiated energy for a typical 1-m slip is about 2 MJ/m2, which is at 
least 1,000 times larger than measured fracture energies measured in a laboratory.  
Or, alternatively, a 10 km by 10 km rupture with a stress drop of 3 MPa has a 
fracture energy of 30 MJ/m2 (see 8.38). 
 
This is a MAJOR PROBLEM with interpreting earthquakes using simple 
constant-stress-drop cracks.  That is, constant stress drop cracks are NOT 
SCALE FREE since they imply that fracture energies (the work to stop 
ruptures) increases as L  .   The notion that the earthquake dynamics are 
controlled by fracture energy processes at the crack tip that can be 10’s of km 
away seems totally implausible to me.  Unfortunately, this idea is central to many 
popular earthquake physics studies as I will discuss shortly. 
 
 
Earthquake Similarity 
 
Notice that Fig. 8.5 shows that the average stress drop of 2.7 MPa is a kind of universal 
relation that applies over a very wide range of earthquake sizes.  In essence, the 
observation is that average slip correlates with rupture dimension as stated by 8.31.  The 
apparent universality of this relationship was the motivation for a class of earthquake 
scaling relations that are often referred to as “self-similar rupture models.”  The use of the 
term, self-similar, has created significant confusion, and I recommend using it only when 
you mean it.  
 
Self-similar is usually used in physics and mathematics to describe objects that look 
similar, independent of the magnification at which the object is observed.  In particular, 
fractal objects that have similar complexity at all scales are referred to as self-similar.  
That is, they look like themselves independent of the magnification.  In contrast, two 
objects are called similar when they look identical after an appropriate scale change.  
For example, squares are all geometrically similar; all squares are identical if the length of 
a side is normalized to unity (remember similar triangles that you learned in high school). 
   
Another related term that you might encounter is self affine.  Objects that are mapped in 
multiple dimensions are typically called self-affine when linear scale changes in some of 
the dimensions result in objects that are self-similar. Again, this term is common in the 
study of fractals. 
 
Aki (1967, Scaling law of seismic spectrum, JGR, 72, 1217-1231) proposed that all 
earthquakes were similar; he did not call then self-similar.  That is, he suggested that 
different ruptures could be seen to be identical except for the length of the rupture.  Aki’s 
argument was simple and compelling.  He argued that all earthquakes were fundamentally 
controlled by the same 3 MPa sudden drop in shear stress on the fault surface.  That is, he 
argued that the stress drop is a fundamental (and universal) description of the friction on 
the fault.  The initial stress 0σ  is assumed to be the strength of the fault, and the sliding 
friction, fσ  , is assumed to be equal to the final stress 1σ .  Later this general model has 
been called “self-similar” [sic] constant-stress-drop model of earthquake ruptures.  It has 
been the basis of numerous models to explain seismic data (especially the shape of Fourier 
amplitude spectra).  According to Aki’s conjecture, the primary difference between 
different earthquakes is the area and aspect ratio of a rupture.  That is, once the rupture 
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length is chosen, then all other dynamic parameters can be inferred.  That is, all of the 
dynamics are controlled by physics that is independent of the scale length of the 
earthquake.  In this way these models are scale invariant (not really, though, because 
fracture energy increases with rupture dimension).  
 
In the following pages I will describe the standard “self-similar” [sic] source model so that 
you will understand the origin of numerous terms that are commonly used.  However, I 
warn you now that I view that these models are seriously flawed, and their use typically 
decreases real understanding.  Furthermore, I will develop arguments that show that 
earthquakes are not scale invariant. 
 
As we saw in Chapter 7, the displacements ( )u t  from far-field S-waves radiated by a 

sliding fault is proportional to the potency rate, P  .  Now so long as ( )P t  is 

monotonically increasing with time, then ( )P t  is a strictly positive function.  Now we can 
conclude that 

 
0 0

T T

P Pdt udt= ∫ ∫


  8.43 

Where T is the total duration of the earthquake.  While we could evaluate P by a simple 
integration of ( )u t  in time, it has become customary to perform this integration in the 
Fourier transformed domain.  In particular,  

 ( ) ( )
0

lim u u t dt P
ω

ω
∞

→
−∞

= ∫
   8.44 

That is, the earthquake potency is proportional to the zero-frequency-amplitude of the 
Fourier transform of the far-field S-wave.  Of course, one must correct for radiation pattern 
and path effects (e.g., transmission and reflection coefficients and geometric spreading).  
In fact, the seismograms of what we usually call the S-wave are actually comprised of a 
combination of many different rays that sum together to comprise the “S-wave group.”  In 
order to deduce potency, P, from this data, one should really account for all of these 
different rays.  However, it’s far simpler to just take a Fourier transform of the S-wave 
group and to then find the amplitude at zero frequency.  It’s usually assumed that the 
complexities from many rays serves to make the phase spectrum look random while there 
is little systematic effect on the overall amplitude spectrum.  While this assumption is 
pervasive, I am unaware of any study that provides convincing evidence to support it.  For 
the purposes of the following discussion, though, I will assume that the spectra of real 
earthquakes are the same as the spectra of far-field waves radiated from a shear fault 
located in a homogeneous, isotropic whole space (caveat emptor).  
 
Suppose that ( )u t  is a strictly positive function of time and having a duration of cT  , then 

( ) ( )
0

0
cT

cu f f u t dt P≤ ≤ = ∫
  and ( ) ( )c cu f f u f> <   , 

where 1
c

c
f T=  is the “corner frequency.”  As an example, consider a far-field S-wave 

that consists of a simple rectangle, or 
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 ( ) ( )

10
2

1 11
2 2

10
2

t

u t t t

t

 < − 
 
 = Π ≡ − < < 
 
 >
  

  8.45 

(see chapter 1 for discussion of the rectangle function).  Now ( ) ( ) sinsinc fu f f
f

= ≡  . 

( )0 1u f = =  , which is the integral of the rectangle function.  Furthermore, 

( ) 11u f
f

→
  .  The high-frequency asymptote, 1u

f
=   intersects the low-frequency 

asymptote, 1u =  , at the corner frequency, 1cf =  , which is the reciprocal of the duration 
of the rectangle function.  While cf  is well known for a rectangle function, it is something 
that must be determined when it is used to characterize an S-wave group.  It is customary 
to plot the amplitude spectrum of the wave group on a log-log graph and to fit straight 
lines to the low frequencies and the high frequencies.  The intersection of the two lines 
provides a measurement of the corner frequency.  
 
We can use the corner frequency measurement to estimate the rupture dimension, 

 1 1
2 2

R
c R

c

VL T V
f

≈ =   8.46 

 where I have assumed that the earthquake duration is approximately twice the time it 
takes for a rupture front to sweep across the rupture surface.  The factor of two is to 
account for the average duration of the slip.  Assuming that L W≈  , 2.55C ≈ ,  and 
applying 8.26 we obtain 

 
3

20 c

R

fP
V

σ µ
 

∆ ≈  
 

  8.47 

Or alternatively, 

 
3

20 c

R

fP
V

ε
 

∆ ≈  
 

  8.48 

 
Notice that we made a questionable assumption that the rupture velocity is a constant, 
independent of the earthquake size1.  Furthermore, the stress drop is very sensitive to our 
funky measurement of the duration of the S-wave, 1

cf
−  , since the stress drop depends on 

the cube of the corner frequency; if your measurement of corner frequency is off by a 
factor of two, then your stress drop estimate is off by a factor of eight.  Although I don’t 
recommend it, 8.47 can be used to estimate average stress drop (or strain change)  by 
simply measuring the asymptotic behavior of Fourier amplitude spectra.  If you are 
genuinely interested in stress drop, then I strongly recommend that you obtain it from the 
types of finite-fault slip models that were described in Chapter 7.  In particular, finite-

 
1 This is an important assumption of the Brune source model, but the evidence is that the 
duration of slip at any point is small compared to the time it takes a rupture to propagate on a 
rupture surface. 
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element models can be used to calculate the spatial distribution of stress drop (or strain 
change) based on the spatial distribution of slip. 
 
Aki’s conjecture of universal similarity (1967) suggested that all earthquakes were 
identical dynamic processes except for the rupture dimension.  That is, he suggested that 
all events had the same stress drop and that everything else could be deduced from this 
stress drop and the rupture dimension.  In terms of the Fourier amplitude spectrum, this 
means that everything is controlled by the corner frequency, which is a description of the 
rupture dimension.  Now if there is only one variable in our dynamics problem (the rupture 
length), then the shape of the Fourier amplitude spectrum must be described by only one 
variable, cf  .  In this case, length is mapped to corner frequency through the rupture 
velocity.  Aki argued that the spectrum must be of the following form 

 1

1
c

Pu
r f

f

αβ  
+  
 


   8.49 

 
where α  is a constant that is determined by the dynamics of the rupture process.  Note that 
Aki used M0 instead of P, so his equations look a little different. The 1r−  is to account for 
geometric spreading of a far-field body wave, and the 1β −  is an impedance factor that tells 
the size of radiated waves relative to the near-source term (look back at the far-field terms 
in 7.45).  We can now estimate the energy in the radiated wavefield as follows.  The power 

RE  flowing through an increment of area S∆  in the radiated S-wave is (see Chapter 3, eqn 
3.55) 
    

 2RE u u
S

σ ρβ= =
∆



    8.50 

 
Since this energy is traveling radially to great distance, We can calculate the radiated 
energy traveling through an element of surface area dS  by integrating 8.50 with respect to 
time.  That is, 
 

 ( ) ( )2 22 2

0 0 0

2RE u dt u df fu df
S

ρβ ρβ ρβ π
∞ ∞ ∞

= = =
∆ ∫ ∫ ∫

     8.51 

Our integral over time is transformed to an integral over frequency using Parseval’s 
theorem.  The integral over frequency can be broken into two separate integrals, the first 
over the constant amplitude at frequencies less than cf  , and the second over the 
frequencies higher than cf  .  Combining 8.49 and 8.51, we obtain 
 

 ( )
2

2 2
22

0

2

1

R

c

E fP df
S r f

f

α

ρ π
β

∞

=
∆   

 +  
   

∫   8.52 

Unfortunately, the solution to this integral is a hypergeometric function, which is 
not very useful for this discussion.  Fortunately, the integral can be solved in 
closed form if 2α =  (the commonly used 2f −  model).  In this case 
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R
c

E P f
S r

π ρ
β

=
∆

  8.53 

provided that 3
2α ≥  ; the energy at high-frequencies is infinite for any 1

2α <  .  Notice 

that 8.47 can be used to conclude that  

 
1

33

20
R

c
Vf

P
σ

µ
 ∆

≈  
 

  8.54 

Or even more conveniently,  

 
3

3

20
R

c
VPf ε≈ ∆   8.55 

or 
 

 
3

3

20 c

R

Pf
V

ε∆ ≈   8.56 

so 8.53 can be written 
 

 
2

3 R
R R

VE V Pπ ρ σ
β

 
≈ ∆ 

 
  8.57 

 
While the issue of spectral scaling for cf f<  is well studied and non-controversial, the 
spectral characteristics for cf f>  have been the focus of a huge number of studies, and 
unfortunately there is a depressing lack of consensus about spectral scaling for radiated 
high frequencies.  Aki (1967) presented both an 2α =  model and also an 3α =  model.  
He argued that the apparent geometric similarity of ruptures (approximately scale 
independent stress drop) was a sign that models should be appropriately simple, which he 
interpreted to mean that spectral scaling should have power-law scaling with a simple 
integer in the power law.  He said he did not know whether 2f −  or 3f −  was more 
appropriate ( 1f −  leads to infinite energy), but based on sparse data, he had a preference for

2f − (often called the omega squared model) .  Figure 8.7 shows Aki’s two hypothesized 
spectral models. 
 
While Aki’s hypothesized model was scale independent in many ways, it is clearly not 
scale independent when it comes to fracture energy.  That is, Aki’s model is essentially a 
constant stress drop crack model.  This is the class of models that require a fracture energy 
that increases with rupture dimension.  Later I will show that slip-pulse models can be 
constructed in a way that they produce scale-independent stress drop and also scale-
independent fracture energy. 
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Figure 8.7 Aki’s spectral models.  The 2f −  model on the left is 
often referred to as a self-similar (sic.) model. (Aki, K., 1967, J 
Geophys. Res. Scaling law of Seismic Spectrum, v. 72, 1217-
1231) 

 
Brune’s Spectral Scaling Model 
 
Brune’s 1970 paper, Tectonic stress and the spectra of seismic shear waves from 
earthquakes (J. Geophys. Res., v.75, 4997-5009) is one of the most cited papers in all of 
earthquake research (approximately 5,000 citations according to Google Scholar). This 
paper is basically an extension of Aki’s 1967 paper on universal scaling.  In this paper, 
Brune argues that the dynamics of earthquake slips are controlled by an effective shear 
stress, eσ , that accelerates the faces of an earthquake fault.  That is, he argued that the 
fault appears as if it’s a free surface with an instantaneously applied shear traction that is 
equal to eσ .  Brune then introduced the slip history for a fault that experiences an 
instantaneous step in shear traction.  He uses this solution to infer the spectral 
characteristics of radiated far-field waves.  That is, Brune argues that he introduced 
dynamics into the types of spectral models developed by Aki. Brune argues that one can 
derive the effective stress by appropriate modeling of the envelope of the Fourier 
amplitude spectra of seismograms.  Notice that in the previous discussions, I was careful 
to describe the solutions using either change in strain, or in terms of stress drop.  If the 
material is linearly elastic, strain and stress are linked by the shear modulus.  The 
seismograms used to construct spectra only measure lengths and time, so the parameter 
strain change is natural.  In contrast, Brune’s analysis is formulated in terms of stress 
drop.  In Brune’s model, the stress drop is defines the shear tractions that accelerate the 
sides of the fault. 
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I will now try to describe Brune’s 1970 spectral model, although that is a difficult task.  
In particular, what is currently called the Brune model is different from what is presented 
in his 1970 paper.  In addition, Brune’s induction about rupture physics has some rather 
glaring errors that are seldomly acknowledged.   
 
I will begin by saying that the spectral envelopes of a wide range of seismograms can be 
approximately described with the Brune model; this is what makes this model so popular.  
Unfortunately, the glaring physics errors also make this paper confusing; there have been 
countless misuses of this paper (caveat emptor). 
 
Brune relies heavily on a particularly simple solution for the displacements that occur due 
to a step in shear traction on a free surface.  This problem was described back in Chapter 
3 (see 3.58).  In particular, if an instantaneous change in shear traction, ( )x eT H tσ=  
occurs uniformly on the surface of a uniform half space, where the plane is described by 

0z =  , then a uniform shear stress propagates into the medium (in the z direction) at the 

shear-wave velocity.  That is, the solution is just xz e
zH tσ σ
β

 
= − 

 
 .  This means that 

e x
xz

uzH t
z

σε
µ β

  ∂
= − =  ∂ 

.  In equation (3.68), we derived that 1
2

x
xz

uε
β

=


 .  So 

22x xz e
zu H tββε σ

µ β
 

= = − 
 

 .  This can be integrated to give the displacement,   

 2
x e

z zu t H tβ σ
µ β β

   
= − −   

   
  8.58 

This is a simple linear ramp in time that starts at zt
β

=  .  The Fourier amplitude spectrum 

of this displacement can be easily deduced by recognizing that a linear ramp is the second 
time integral of an impulse.  Now recall that integration in the time domain is the same as 
dividing by 2i ifω π=  in the frequency domain.  Now since ( ) 1fδ =  ,

2
2 1

2x eu
f

β σ
µ π

 −
=  

 
  .  That is, a simultaneous step in stress on the fault should 

produce ground displacement with an 2f −  spectrum.  Brune argued that the 
accelerations experienced adjacent to the rupture were a measure of the effective stress 
accelerating the sides of the fault.   
 
The solution that Brune used assumes uniform stress applied instantaneously on an 
infinitely large fault, and the resulting fault slip increases linearly with time indefinitely.  
That is, the slip trends to infinity.  Brune reasoned that the final slip should approach the 
slip expected from fault dimensions and the appropriate stress drop (similar to Aki’s 
argument).  He hypothesized that, in the very near-source region,  

 1
t

e
x

zu e H tτσ βτ
µ β

   
≈ − −   

  
  8.59 

where rτ β=  , and r  is the radius of an approximately circular rupture area.  This leads 

to particle velocities given by 
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te

x
zu e H tτσ β

µ β
−  

= − 
 

   8.60 

The Fourier amplitude spectrum of 8.59 is 

 2
1

1 2

e
x

c

u
fi f

σ β
µ

π
=

 + 
 

   8.61 

 
As before, this spectrum is 2f −  , which is the inevitable result of the discontinuous 
jump in particle velocity at the start of the motion.  Brune argues that this jump is 
fundamental to the dynamics of earthquakes.  Furthermore, he argued that the dynamic 
stress controls the particle accelerations in the very near-source region.  Notice that the 
particle acceleration that is derived by differentiating 8.60 is 
 

 1
zt

e
x

z zu e H t t
β
τσ β δ

µ τ β β

−
−      = − + −      

      
   8.62 

     
The impulse function comes from differentiation of the step function.  This indicates 
infinite accelerations at the arrival time of the shear wave.   Brune argued that 
structural heterogeneity scattered these high-frequency waves and that the result is 
random white noise whose amplitude is determined by the effective stress.   
 
For frequencies between 0f =  and cf f=  , Brune’s spectrum 8.61 is similar to the Aki 
spectral model.  Brune’s argument about instantaneous stress drop led him to conclude 
that the high-frequency decay was naturally 2f −  and that the accelerations had a white-
noise spectrum whose amplitude scaled linearly with the effective stress.  When Brune 
imagined this model, he was aware that earthquake engineers were simulating recorded 
near-source accelerograms as Gaussian white noise modulated by an envelope function in 
time.  Brune then appealed to conservation of radiated energy (through different 
enclosing spheres) to conclude that if the high-frequency S-wave is  2f −  in the near-
source region, then it must also be 2f −  in distances that are large compared to the 
source dimension. 
 
At this point, Brune had used inductive reasoning to describe a Fourier amplitude 
spectrum for a distant observer.  This spectrum had a long-period amplitude that is scaled 
by the potency (he used moment), a corner frequency that described the dimension of the 
rupture (used to determine stress drop), and an  2f −  high-frequency radiation whose 
overall amplitude is controlled by the effective stress.  In his 1968 paper, Brune stitched 
these different features together to hypothesize that the displacements in seismograms 
observed at distances large compared to the rupture dimension should be of the form 

 ( ) ( )expru f t t H t
R

σ β α
µ

 
 
 

   8.63 

and that the distant spectral scaling should be 
 

 ( ) ( ) 2 2 2

1
4

e ru f F
R fθϕ

σ β ε
µ π α

≈
+

 R   8.64 
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where R  is a radiation pattern, r  is the radius of the rupture area, R  is the distance of 

the observer, 2.21
r

βα =  (the corner frequency). and 
e

σε
σ
∆

≡  , which Brune called the 

fraction of the stress drop.  ( ) ( ) ( )
1

2
22.422 2 1 cos fF πεε ε εα

  = − − +    
 ; this factor 

joins the high-frequency levels to the corner with a section of the spectrum that decays as 
1f −  .  The effect of partial stress drop ( 1ε <  ) is shown in figure 8.8.   

 

 
Figure 8.8.  From Brune (1970).  This is the “Brune far-field 

spectral model.”  If the stress drop is the effective stress then it’s 
an 2f −  with a single corner.  If the stress drop is less than the 

effective stress, then there are both 2f −  and 1f −  falloffs with two 
corners. 

 
Although Brune introduced the concept of partial stress drop, it is very rarely used, 
and most researchers use a simpler version of the Brune spectrum as given by 
 

 ( ) 2

1
c

Pu f
f
f

 
+  
 


   8.65 

 
This simplified form assumes that the effective stress (which regulates high-frequency 
radiation) equals the final change in stress (which is controlled by the rupture dimension 
and the Potency).  This simplified form of the model links the high-frequency near-
source radiated energy to the overall size of the earthquake (P) and the stress drop.  This 
can be seen in the following argument, which I developed in 2013. 
 
Alternate Derivation of Brune Spectral Scaling.   
 
Although I read Brune’s paper many times, I find that its logic is difficult to follow.  To 
better understand the “essence” of the Brune model, I devised an alternate derivation of 
his spectral law for waves observed at distances larger than the rupture distance.  My 
goal is to start the derivation with a minimum number of simple assumptions.  The 



8-28 
 

following is my derivation.  It begins with several key assumptions that may be stated 
somewhat differently than Brune did.   
 

1) Assume that the duration of the S-wave group is proportional to the 
dimension of the fault (that is, assume constant rupture velocity), this 

assumption can be restated 
1

c
R

f
V S

 .  Brune also made this assumption. 

2) Assume size similarity of the form  
3

2P SD S σ∆  , or alternatively 
2 2

3 3LW P σ −∆  .  Brune also made this assumption. 
   

3) Assume that the Fourier amplitude spectrum is a constant at low frequencies 
and 2f −  at high frequencies as shown by equation 8.65.   
 

Assumptions 1 and 2 imply that 
1 1

3 3
cf P σ− ∆ .   Substituting into 8.65, we obtain 

   ( ) 2

1 1
3 3

1

Pu f
f

P σ−

 
 +
 ∆ 


     8.66 

Which has asymptotes 
 

  ( ) 1 2 23 3

c

c

P f f
u f

P f f fσ −




∆








  8.67 

 
This is an alternate form of Brune’s spectrum that is written as an explicit function of 
stress drop.  Variations of Equation 8.66 are so often used (aka, assumed) that I will refer 
to this as the Standard Source Model.  Now the radiated energy spectrum scales as the 
square of the Fourier amplitude spectrum, or at high frequencies 
 

 ( ) ( )
2

2 4 3 42 3 23 3 32c cf f f f
R RE U P S Sσ σ σ σ∆ ∆ ∆ = ∆ 



  
 8.68 

 
That is, Brune’s spectral model predicts that high-frequency radiated energy scales 
with the rupture area and the square of the stress drop.  This is consistent with the 
notion that the amplitude of very high frequencies close to the rupture are a constant that 
is related to the effective stress.  This is a key feature of Brune’s spectrum; the near-
source acceleration should scale with stress drop.   That is, at very close distances, pga 
should be independent of the earthquake magnitude, but it should scale linearly with 
stress drop.  As I will shortly show, near-source pga is indeed independent of magnitude 
(M > 6).  However, near-source accelerograms show that near-source pga is also 
independent of stress drop. This turns out to be a fundamental flaw of the Standard 
Source model.  
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Stress Drop and Near-Source Ground Motions  
 
I will now discuss the scaling of near-source ground motions and how they scale with 
magnitude and stress drop.  The work in this section is modified from an unpublished 
manuscript by Tom Heaton and Masumi Yamada.  This is work from 2013. 
 
Brune (1970) hypothesized that near-source pga correlates linearly with effective stress, 

eσ  . Since it’s not currently feasible to measure eσ independently from measures of 
radiated seismic waves, it is not feasible to independently verify Brune’s hypothesis. It 
is, however, possible to investigate the correlation between near-source motions (less 
than 10 km from the surface projection of the fault rupture) and spatially averaged static 
stress drop, σ∆ ; this is a meaningful test since the most common form of Brune’s 
model assumes that eσ σ∆ =  .  In this study, we show that there is no significant 
correlation between near-source peak ground accelerations (pga’s) and spatially 
averaged static stress drop σ∆ .  In contrast, near-source long-period motions do 
correlate with stress drop.    
 
Our current study investigates the relationship between static stress drop and the 
intensity of near-source ground motion as measured by peak ground acceleration (pga), 
peak ground velocity (pgv), and peak ground displacement (pgd).  This work is a 
follow-on to our previous study of the statistical characteristics of near-source motions, 
where we reported that there is no apparent correlation between near-source pga and 
pgd (Yamada, Olsen, and Heaton, 2009, Statistical Features of Short-Period and Long-
Period Near-Source Ground Motions, Bulletin of the Seismological Society of 
America, 99 (6). pp. 3264-3274. ISSN 0037-1106).  In this earlier study, we 
hypothesized that pgd should correlate with stress drop; if all other source parameters 
are equal, then larger slips are associated with both larger near-source pgd’s and also 
with larger stress drops.  However, the lack of correlation between near-source pga and 
pgd seems to imply that pga and stress drop are also uncorrelated.   
 
In this study, we estimate the average static stress drop for 20 earthquakes for which 
there are also near-source strong motion accelerograms.  We then investigate the 
relationship between measures of shaking intensity and earthquake potency and stress 
drop.   
 
We estimate average static stress drop using the relations between average slip, D  , 
rupture length, ,L  and rupture width, W  , for a rectangular fault in a homogeneous half 
space as reported by Parsons et. al. (1988) and presented in equations 8.26 through 8.29.     
In particular, we assume that   

 

2

DC
W

PC
LW

σ µ

µ

 
∆ ≈  

 
 =  
 

  8.69 

Where P LWD=  is the Potency (the volume integral of inelastic shear strain in an 
earthquake), C  is a dimensionless constant that depends on the aspect ratio of the rupture 
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L
W

 , the  depth of burial of the rupture topz  , and rupture dip and rake angle.  

Approximations for C are given in the section on stress drop. 

For ruptures with shallow burial depth, C changes quickly as a function of topz
W

 
 
 

 ; C 

is within 95% of its value for deeply buried when 0.16topz
W

  = 
 

.  This rapid change in 

C with burial depth is caused by the fact that, in an elastic model, there are very large 
strains and stresses in the region between the top of the fault and the free surface.  In 
reality, it is highly questionable whether such large stresses develop in the shallow 
region just above a rupture that does not quite reach the surface.  For simplicity, we 
classified events as either “surface rupturing” or “deeply buried”; that is, we assumed 
that C is described by 8.29 for any earthquake that did not have surface rupture.  We 
assume a uniform rigidity of 35GPaµ =  , which is taken to represent average properties 
in the upper Crust.  
    
Table 8.1 lists the source parameters for the earthquakes in this study.  Most of these 
models are described in the ETH source data base.  For some of the events there are 
multiple source models and, in these cases, we assume that the models are log-normally 
distributed about the geometric mean of the models.  Figure 8.10 shows the relationship 
between average static stress drop and Moment Magnitude, 21 3 LogP≡ +Μ .  In order 

to show the distribution of the different models, each of the earthquakes is assigned a 
single Μ  that is based on the geometric mean of the Potencies of the different models.  
In a similar manner, the static stress drop values for each event are the geometric mean 
of the static stress drops for multiple models for each earthquake.  Of course, it’s 
difficult to estimate the uncertainty in these values (especially stress drop), but we have 
included an error estimate that is based on the standard deviation of all of the models 
about their mean.  We calculate the standard deviation using Bessel’s correction for 
small number statistics.  Earthquakes with only one source model are considered to be 
more uncertain than those that represent the geometric mean of multiple models 
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Table 8.1.  Earthquakes used in this study have finite source 
models tabulated by the SRCMOD project (Mai, ETH). NS is 
the number of stations.  All statistics are computed assuming 
log-normal distributions and Bessel’s correction for small 
samples is assumed to calculate the standard deviation of σ∆ . 

 

 
Figure 8.9.  The values of  σ∆   plotted as a function of Μ .  

Each dot represents a finite-source model compiled in the ETH 
database of finite source models.  The circled points represent 

the mean model for a given earthquake.  The “error bars” are the 
standard deviations for earthquakes that have more than one 

model. 

Earthquake Year Date NS mean(Mw) mean(Δσ) std(Δσ)
Imperial Valley 1979 10/15 12 6.53 1.00 0.33
Loma Prieta 1989 10/17 6 6.99 5.47 1.27
Landers 1992 6/28 1 7.25 2.89 1.00
Northridge 1994 1/17 7 6.79 3.17 1.15
Kobe 1995 1/17 4 6.96 1.25 0.50
Izmit 1999 8/17 3 7.51 2.01 0.88
Chi-Chi 1999 9/20 38 7.68 2.39 0.47
Western Tottori 2000 10/6 5 6.84 2.11 0.42
Denali 2002 11/3 1 7.91 2.97 1.66
Parkfield 2004 9/28 48 6.05 0.15 0.02
Mid Niigata 2004 10/23 6 6.72 0.97 0.00
Noto-Hanto 2007 3/25 1 6.74 1.63 0.00
Niigataken-Chuetsuoki 2007 7/16 2 6.81 2.17 0.00
Wenchuan 2008 5/12 6 8.00 1.67 0.00
Iwate-Miyagi 2008 6/14 6 6.96 2.43 0.00
Surugawan 2009 8/11 1 6.43 1.19 0.00
Darfield 2010 9/4 7 7.00 0.83 0.00
Christchurch 2011 2/22 15 6.36 2.83 0.00
Northern Nagano 2011 3/12 4 6.35 1.92 1.08
Fukushima-Hamadori 2011 4/11 3 6.69 1.13 0.00
Total 176
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We collected strong motion records from twenty earthquakes in table 8.1 from sites in 
the near-source region. We define the near-source region to be within 10 km of the 
surface projection of the fault rupture (often called the Joyner-Boore distance). We 
choose this number because it is small enough to demonstrate the source scaling, but 
large enough to include a sufficient number of records to characterize the statistics. To 
determine the PGA, PGV and PGD of a recorded ground motion, we processed each 
time history.  We first remove the bias from the acceleration record by subtracting the 
mean. Then we integrate once and remove the long-period component with a fourth-
order high-pass Butterworth filter (13.3 sec corner period) to generate the velocity time 
history. The displacement records are obtained from the integration of velocity 
waveforms. Peak values are obtained from the square root of the sum of the squares of 
the north-south, east-west and up-down components at each time step of the record. 
 
Figure 8.10 shows a log-log plot of near-source pga as a function of static stress drop.  
Figure 8.10 also shows a linear regression of log pga as a function ofΜ and log σ∆  .  
Compatible with the conjecture of Yamada and others (2009), we do not observe a 
significant correlation between near-source pga and either stress drop or Potency 
(Moment Magnitude).  Notice that there is no magnitude dependence to the near-source 
pga.  This is because we constrained the magnitude dependence to be positive only. 
Allowing decreasing near-source pga with increasing Μ  actually provides a marginally 
better fit to the data, but including this possibility requires us to propose non-intuitive 
models that only fit highly scattered data marginally better. 
 

 
Figure 8.10.  Near-source pga vs stress drop for all records used 
in this study.  The dotted line represents the least-squares linear 

regression, ( )log 0.0 0.07 log 2.63pga M σ= + ∆ +  .  This 
seems to indicate that near-source pga is independent of 

magnitude (as Brune hypothesized) and also independent of 
stress drop (very different from Brune’s hypothesis which is 

represented by the blue diagonal line). 
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Figures 8.11 and 8.12 are similar, but they are for near-source pgv and pgd, 
respectively. 
 

 
Figure 8.11. Near-source pgv vs stress drop for all records used in this study.  
The three dotted lines represent M 6, 7, and 8 in the linear least-squares 
regression ( )log 0.12 0.21log 0.88pgv M σ= + ∆ +   

 
Figure 8.12. Near-source pgd vs stress drop for all records used 
in this study. The pgd is from high-pass filtered records with a 
13 s corner.  The three dotted lines represent M 6, 7, and 8 in 
the linear least-squares regression 

( )log 0.35 0.29log 1.13pgd M σ= + ∆ − . 
 
We can anticipate the following asymptotic behavior for any ground motion 
prediction equations.  When the distance is large compared to the source 
dimension, and when the predominant periods of the ground motion are large 
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compared to the source duration, we expect the ground motion amplitudes to 
scale with the seismic potency, or  
     
 &

3log log 2far lowfreqU P M   8.70 

 
For very near-source long-periods (e.g. displacement), we expect the peak 
amplitude to scale with the size of the slip on the nearby fault segment, or 

 PD
S

=   8.71 

and 

 
2

3PS
σ

 =  ∆ 
  8.72 

So 
 

1 2
3 3D P σ∆   8.73 

So 

 
1 2

3 3
&log log log log

1 2 log2 3

near lowfreqU D P

M

σ

σ

+ ∆

+ ∆

 



  8.74 

 
Relationship 8.74 can be compared with Figure 5 that is derived from the ground 
motions and stress drop models  
 
 log 0.35 0.29lognearpgd M σ+ ∆   8.75 
 
This can be compared with the 10-s response spectral acceleration, 10sa  , scaling 
reported by Campbell and Borzorgnia (2014). 
 
 ( )10 0.333Log sa M   8.76 
 
Cua and Heaton (2009) also produced a gmpe for pgd using data from both 
small- and large-magnitude earthquakes (see Figure 8.18).  Their near-source pgd 
scales as  
 
 ( ) 1log 3pgd M

  8.77 

 
Interestingly, Campbell and Borzorgnia (2007, PEER report) recognized that  

10sa  should approximately mimic the scaling of pgd, and that near-source pgd is 
controlled by average slip, which in turn, scales with  σ∆ .  However, they state 
that “the resulting PGD ground motion model is intended for evaluation purposes 
only at this time and should not be used for engineering design until further 
empirical and theoretical verification becomes available.”  That is, the 
requirement that long-period near-source motions should scale with slip 
somehow seems to have never made it into the NGA2 gmpe’s that were used to 
calculate the National Probabilistic Hazard Models.  It seems quite clear that 
σ∆ has a 1st order effect on near-source long-period motions. σ∆  should be 
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included in the gmpe’s for long-period motions.  The current practice of only 
using magnitude and observer distance to predict long-period motions is 
flawed and is likely to seriously under predict the maximum motions from a 
suite of plausible events. 
 
As an example of how these relations work, consider the implications for pga and 
pgd for a large strike-slip earthquake similar to the 1906 San Francisco 
earthquake.  This event has been assigned a moment magnitude of M=7.8.  If we 
were to assume that the rupture dimensions in a future earthquake were the same, 
but that the slip in the event was doubled, then the Potency and the stress drop 
would both double.  Doubling the potency increases the moment magnitude by 
0.2 units and inserting these values into 8.75 gives a 0.3 unit increase in log u, 
which corresponds to a doubling of u. 
 
Figure 8.13 clearly shows how differently near-source pga scales with size than 
does pgd.  This figure is from Yamada, Heaton, and Olsen (2009) and it shows a 
log-log plot of pga vs. pgd for every strong motion record for earthquakes of 
M>6 that was available at the time of the study.  The light grey points are for 
sites at JB distances > 10 km, whereas the bold circles are for JB distances<10 
km.  Although there is a lot of scatter in in the relationship between pga and pgd, 
it is obvious that pga and pgd have a linear correlation for distances>10 km, 
whereas there is absolutely no correlation for distances < 10 km.  This 
observation is compatible with the hypothesis that near-source pga is unrelated to 
stress drop. 
 
Figure 8.14 is also from Yamada and other (2009) and it shows the frequency 
distribution of near-source pga.  This figure clearly shows that near-source pga 
for M > 6 is approximately log normal with a geometric mean of 4.64 m/s2.  The 
grey line shows the distribution without including a large number of records 
recorded in the 1999 M 7.6 Chi-Chi, Taiwan earthquake, whereas the bold solid 
line includes Chi-Chi data.  Notice that the distribution of near-source pga for 
smaller previous events seems to fit the data that was observed in Chi-Chi.  
Again, this is convincing evidence that near-source pga completely saturates with 
magnitudes greater than 6. 
 
  
 



8-36 
 

 
 

Figure 8.13.  Pga vs. pgd for all strong motion records available 
as of 2008 (from Yamada, Heaton, and Olsen, 2009.   
 

 
Fig. 8.14.  Histogram of the number of near-source records as a 
function of log pga for earthquakes M.6.  The figure is also from 
Yamada, Heaton, and Olsen (2009). 

 
The saturation of near-source pga can also be clearly seen in the ground motion 
prediction equations (gmpe’s) of Cua and Heaton (2009, Characterizing Average 
Properties of Southern California Ground Motion Amplitudes and Envelopes. 
Earthquake Engineering Research Laboratory, Earthquake Engineering Research 
Laboratory , Pasadena, CA.  EERL report 2009-05).  These gmpe’s were created 
for use in earthquake early warning systems that require the ability to predict 
over a very wide range of magnitudes.  Most gmpe’s in engineering seismology 
are intended for use in predicting damaging motions (M > 5).  The Cua and 
Heaton gmpe was created using a large data set recorded by the Southern 
California Seismic Network.  In addition, strong motion data compiled by PEER 

https://authors.library.caltech.edu/58095/
https://authors.library.caltech.edu/58095/
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was also included.  The solid lines are gmpe’s derived using only sites on rock, 
whereas the dotted red line was derived using only data from soil sites. 
 

 
Figure 8.15.  Relationship between pga and magnitude as 
observed at different Joyner-Boore site distances.  From 

Cua and Heaton (2009) 
 
Notice that the 0-distance gmpe seems to indicate that pga saturates for M>5 and 
the saturation level is consistent with Fig. 8.14.  This saturation becomes less 
apparent for larger distances.   This is most likely caused by the fact that near-
source pga is primarily the result of frequencies greater than 3 Hz, whereas the 
important frequencies become lower the further away that you are.  Similar plots 
are shown for pgv and pgd in Figures 8.16 and 8.17, respectively.  Notice that 
log(pgd) scales approximately linearly with magnitude for near-source and M < 

5, whereas it scales as approximately 1
2

M  for M > 5; this is consistent with 8.75

.  The linear scaling of log(pgd) with M seen at either smaller magnitudes or 
larger distances is consistent with  8.12. 
 

 
Figure 8.16  Same as 8.15, except for pgv. 

 



8-38 
 

 
Figure 8.17  Same as 8.15, except for pgd. 

 

 
Fig. 8.18.  Same as Fig. 8.14, except for peak ground 

displacement (from Yamada, Olsen, and Heaton, 2009).  The 
solid lines are the distributions with and without Chi-Chi data.  

The dotted line includes synthetic data at existing strong 
motion stations for a re-enactment of the 1906 San Francisco 
earthquake.  The analysis in equation 8.24  suggest that this 

distribution may be log-uniform. 
 

Figure 8.18 shows the number of strong motion records vs. log (pgd) as of 2009.  
Notice the contrast with log (pga) (see Fig. 8.15).  Whereas the log (pga) data 
appeared to be log normally distributed about ½ g, the log(pgd) data is clearly not 
a normal distribution.  As was argued in eq. 8.24, this distribution may be log 
uniform.  The smaller pdg’s are mostly from relatively frequent earthquakes of 6 
< M < 7. Notice that including the data from just several large earthquakes (i.e., 
Chi-Chi and a re-enactment of 1906 San Francisco) can significantly alter this 
distribution, including the mean.  Figure 8.18 is an example of a heavy-tailed 
power law distribution.  Later I will present a more extensive development of the 
physics associated with probabilities that are defined by a power law.  A common 
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feature of power-law distributed data is that the mean of the data typically 
increases as more data is added; this is certainly the case for the data set shown in 
Figure 8.18. 
 
A log uniform distribution is an example of Benford’s law, which is also 
sometimes referred to as the first-digit law.  Benford’s law was reported in 1938 
and it is based on the observation that the first digit of numbers in tables of 
physical constants are often distributed logarithmically; numbers that start with 
the digit 1 are much more common than numbers that start with a 9.  The formal 
definition of Benford’s law is 
 

 
( ) ( ) ( )

( )
1 log

1 1log log 1

P N Log N N

N
NN

= + −

+ = = + 
 

  8.78 

 
Where N  is the first digit of the numbers in tables of physical measurements.  
To derive that this is, in fact, a power law, we can begin by assuming that 
( ) 1P N N=  , then the probability of digits between N  and 1N +  is 

 ( ) ( )
1 1 1log log

N N

N N

dN NP N d N
N N

+ + + = = =  
 ∫ ∫   8.79 

    
 which is Benford’s law as given by 8.78.  
  
 
It may seem surprising that pga, which is a measure of high-frequency motions, 
is more or less independent of both Μ  and σ∆ .  However, as I will now show, 
saturation of high-frequency near-source motions with Μ is compatible with the 
well-known Brune (1970) spectral scaling model.  Unfortunately, it seems that 
Brune scaling is fundamentally inconsistent with the observation that near-
source pga’s that are independent of  σ∆  . In the next section, I will show that it 
is not possible to formulate a simple spectral scaling law (single power law with 
one corner frequency) that has near-source pga that is independent of magnitude 
and which is also independent of stress drop.   
 
In the variation of the Brune model where the static stress drop is assumed to be 
the effective stress, stress drop becomes the fundamental parameter that links 
statics and dynamics.  However, many of the kinematic rupture models used in 
the Yamada and Heaton study actually reported slip pulse models.  That is, the 
slip is already known at most points long before the rupture has stopped 
propagating.  In slip pulse models, there is no correspondence between effective 
stress and stress drop.  Two ruptures could be identical up to the point that one 
stopped and the other continued.  The radiation from the ruptures would also be 
identical up to that point.  However, since the rupture that continued would have 
a longer rupture length, it would have a different stress drop.  Stress drop is not 
a fundamental parameter in slip pulse models; it’s just a statistical accident 
that some ruptures continue on for long distances and have a lower stress drop. 
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In his 1970 paper, Brune assumed that the slip velocities (and accelerations) scale 
linearly with effective stress.  He also hypothesized that near-source peak 
accelerations (pga) should scale linearly with effective stress.  When using the 
Brune model, it is common to assume that effective stress is equal to stress drop.  
This logical construction is self-consistent only if 1) near-source pga’s saturate 
with magnitude (they do), and 2) near-source pga’s  also scale linearly with stress 
drop (they seem to be independent of stress drop).   
 
The conclusion of this discussion is that 1) the 1970 Brune model 
is incompatible with observed seismograms, and 2) there is no 
scale-free model similar to Aki’s conjecture that fits available 
data.   
 
Although Aki’s conjecture is appealing, the most serious issue is 
that in order to maintain constant stress drop in crack-like 
ruptures, the fracture energy must grow as L (see 8.35).  Clearly 
this violates the basic assumption that material properties are 
independent of scale. 
 
Brune’s spectral model has been an appealing and powerful conceptual framework to 
interpret seismic data.  This framework consists of: 1) fit power-law envelopes to the 
Fourier amplitude spectrum , and 2) then derive the dynamic stresses in an earthquake.  
Unfortunately, there are many major problems with Brune’s approach.  I have 
already mentioned many of these problems in the previous discussion.  I now gather 
these issues together in one list. 
 
Problems with the Brune Spectral Model 
I now list a number of specific objections that I have discovered.  The first 
four objections are mistakes in continuum mechanics that are included in 
Brune’s paper.  The next five objections are descriptions of how earthquake 
observations are inconsistent with the Brune model. 
 

1. Near-field energy vs far-field energy   
Perhaps the most fundamental error in the Brune paper is the use of the solution 
to an instantaneous traction applied to the surface of a half-space (equation 8.58) 
to infer 2f −  spectral amplitudes for the far-field motion (equation 8.62).  It’s true 
that 8.58 is the solution to an instantaneous step in shear traction on the boundary 
of a half-space, but this solution is entirely comprised of near-field terms (see 
Chapter 7).  In fact, the assumption of an infinitely large rupture surface means 
that there is no far-field radiation for this somewhat pathological problem.  While 
it is true that energy is conserved for radiated far-field energy (except for 
anelastic attenuation), there is no such energy conservation between near-source 
ground motions (comprised of both near- and far-field terms) and far-field 
radiation (see Chapter 7).  Also, recall from Chapter 7 that far-field terms are the 
time derivative of the near-field terms.  That is, if the motion is a ramp in the near 
field ( 2f −  ), then it is a step in the far field ( 1f −  ). 
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2. Infinite rupture velocity is impossible 
Brune argued that “the particle velocities are always much smaller than the 
rupture propagation velocity (since the stresses are much less than the shear 
modulus), and thus the interaction of particle motion velocity with the rupture 
velocity will always be small, i.e., the average energy spectrum for instantaneous 
application of stress will be approximately valid.”  Later analysis showed that the 
ratio of the rupture velocity to the shear wave speed is of interest to mode III 
ruptures, and the ratio of the rupture velocity to the Rayleigh wave speed is of 
interest for mode II ruptures.  Since typical observations of rupture velocities are 
in the range of 0.8β  to 0.9β  , the approximation of RV ≈ ∞  is clearly 
inappropriate.  In fact, rupture velocity plays a key role in almost all models of 
dynamic rupture. 
  

3. Ramp-like slip produces 3f −  far-field radiation.   
This objection is related to objection 1.  In Chapter 7, I demonstrated that a line 
source with an instantaneous step in slip produces a rectangular far-field time 
function, which has a 1f −  high-frequency spectrum.  A rectangular source with 
an instantaneous slip has a far-field time function that is the convolution of two 
rectangles, which is a trapezoid that has a high-frequency decay of 2f −  (one for 
timing associated with length and the other with width).  A rectangular source 
with fault slip that is a linear ramp has a far-field time function that is the 
convolution of three rectangles ( 3f −  ).  The third rectangle is associated with 
Brune’s slip function.  The solution describing the displacements from an 
instantaneous change in stress on a circular fault (the problem Brune claimed to 
be solving) is actually a difficult mechanics problem and I am not aware of any 
closed-form solutions.   Madariaga (1976, Dynamics of an Expanding Circular 
Fault, Bull Seisms Soc. Am, 66, 639-667) used finite elements to simulate this 
problem and he concluded that the far-field radiated S-waves have a high-
frequency spectral decay of 2.5f −  .  In Madariaga’s study, most of the high 
frequencies were radiated at the circumference of the rupture. 
 

4. The Brune model is a uniform stress drop crack model.  
I have already mentioned this important issue several times.  Constant stress drop 
cracks produce stress concentrations at the crack tips that grow linearly with the 
rupture dimension.  These models are not scale independent.  
 

5. Slip is not ramp-like.  
Ruptures that propagate at sub-shear rupture velocities produce slip functions that 
are similar to a time-transformed version of slip on a crack.  The slip near the tip 
of a static shear crack increases as K xσ∆  , where x  is the distance from the 
crack tip and K  is a stress intensity factor.  For a steadily propagating crack, x  
transforms to Rx V t−  .  This means that for any fixed point on the rupture, 

D K tσ∆  .  To obtain the far-field time function, you need to differentiate to 
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slip velocity, or KD
t

σ∆

  . Convolving with 1
t

 is equivalent to 

multiplying with 
1

2f −  .  This is sometimes called a fractional integral. 
 

6. Predicted slip durations much longer than observations. 
The Brune model predicts that slip in the near-source region is given by 8.59, 
which predicts that slip continues until shear waves arrive from the outer edge of 
the rupture.  That is, the slip at any point is comparable to the entire duration of 
an earthquake.  As I will describe shortly, there is convincing evidence that the 
duration of slip at a point is short (less than 10%) compared to the overall rupture 
time; this is known as a slip-pulse model. 
 

7. Real earthquake far-field time functions are much more complex than Brune’s 
model. 
Brune’s far-field time function (8.63) predicts a relatively smooth single pulse 
(see Figure 8.19).  In contrast, observed far-field time functions are typically very 
complex.  See the far-field time functions shown in Figure 8.7 as an example. 

 
Figure 8.19 (from Brune, 1970)  This is the time behavior 
of Brune’s far-field time function.  It has the same ramp-
like beginning as his near-source ground motion and it 

has a 2f −  spectral decay. 
 

Hartzell and Heaton (1093, Bull. Seism. Soc. Am. 73, 1553–1583) compiled far-field 
time functions from large earthquakes.  More recently, Meier, Ampuero, and Heaton, 
(2017, The hidden simplicity of subduction megathrust earthquakes. Science, 357 
(6357). pp. 1277-1281. ISSN 0036-8075) investigated characteristics of a compilation 
of time functions for large earthquakes and these are shown in Figure 8.20.  The time 
functions are scaled to have the same total durations.  The red curve at the bottom is the 
median of all of the time functions and it has a simple triangular form.  However, the 
individual time functions are very complex and do not resemble Brune’s time function. 
 

https://authors.library.caltech.edu/81791/
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Figure 8.20. Teleseismic time functions from large 
subduction earthquakes.  Notice the temporal 
complexity which contrasts with Brune’s time function 
shown in Figure 8.7.  The red line at the bottom is the 
median of all of the functions above it. This is an 
unpublished figure from the study of Meier, Ampuero, 
and Heaton (2017). 

 
8. Observed far-field spectral decays of large earthquakes (M > 6) are close to 1.5f −  . 

Although it is widely assumed that far-field radiated energy is characterized by 2f −  
spectral decay, recent studies using far more data than was available in the 1960’s 
indicate that the average spectral decay between cf  and 0.5 Hz (the highest frequency 
observable at Teleseismic distances) is actually 1.5f −  as shown in Figure 8.21 from 
Hartzell and Heaton (1988, Failure of self-similarity for large (Mw > 8 1/4) 

https://authors.library.caltech.edu/35609/
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earthquakes. Bulletin of the Seismological Society of America, 78 (2). pp. 478-488. 
ISSN 0037-1106).  Brune’s conjecture that Fourier amplitude spectra of near-source 
high-frequency motions (frequency band from 2 Hz to 15 Hz) is approximately 2f −  
seems to be consistent with a very large volume of strong motion data.  As I will 
discuss later, the physics of near-source radiation of high frequencies is still an 
unsolved problem and Brune’s model is not a plausible explanation of the observation 
that near-source acceleration look like Gaussian white noise.      
 

  
Figure 8.21.  These are the Fourier amplitude spectra of 
Teleseismic P-waves from large subduction earthquakes.  
The average spectral decay is 1.5f −   for the frequency 
band between 0.5 Hz and 0.08 Hz.  Anelastic attenuation 
prevents study at frequencies higher than 0.5 Hz using 
Teleseismic records.  From Hartzell and Heaton (1988)  

 
9. There is no correlation between stress drop and pga 

Brune hypothesized that the spectral amplitude of near-source accelerations 
should scale linearly with effective stress, eσ , which is equal to stress drop in 
the most commonly used form of Brune’s model .  This is an important issue 
since current predictions of strong shaking often use variations in regional stress 
drops to predict corresponding variations in high-frequency shaking.  More 
fundamentally, I show in Appendix A that there is no possible power law with a 

https://authors.library.caltech.edu/35609/
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single corner frequency that produces bear-source pga’s that both saturate with 
magnitude and which are also independent of stress drop. 

 
 
Simulating ground motions using records from smaller 
earthquakes. 
 
As much as I dislike the Standard Source model, it is simple and easy to use.  For 
example, it allows us to use the record, ( )1u t , from a smaller potency magnitude 1M

earthquake to simulate the motion, ( )2u t , from a larger 2M  earthquake. The expected 
ratio of the amplitude spectra of the two events can be estimated from 8.66 . 
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Assuming stress drop invariance (that is 1 2σ σ∆ ≈ ∆ ), we can use 8.54 to estimate 
the corner frequencies of the two events.  Or, 
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Substituting 8.81  into 8.80 gives 
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Therefore, if we have recorded the motion ( )1u t  for a magnitude 1M , then we 
can obtain an estimate of the motion expected at  the same site from a 2M  event 
at the same source location using the following approximation 
 
  

 ( ) ( ) ( )
1

2 1

2

3.3 21 12
2 1 3.3 2

1010
10
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M
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−
− −

−

  +
≈   +  

  8.83 

 
This approximation assumes that the observing distance is large compared to the 
source dimensions; that is, both events are approximately point sources.  This 
requirement can be relaxed by assuming that a large rupture is approximately 
described by the appropriate sum of smaller ruptures.  The responses of the 
smaller ruptures are assumed to describe the response of different parts of the 
finite fault.  This technique is referred to as the Empirical Green’s Function 
technique.  I will not go through the details here (it’s considerably more complex  
than what I’ve just derived), but it is discussed in detail in Appendix B of Heaton 
and Hartzell, 1989, Estimation of strong ground motions from hypothetical 
earthquakes on the Cascadia subduction zone, Pacific Northwest, Pure and 
Applied Geophysics, 129, 131-201.  
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Self-Healing Slip Pulses 
 
Early in my research career, I investigated the physics of strong ground motions 
from significant earthquakes.  In the 1970’s this was a new field of study.  
Although there had already been strong motion recordings of several 
earthquakes, the 1971 M 6.7 San Fernando earthquake was the first earthquake 
with dozens of near-source strong motion records.  Furthermore, there was an 
extensive project at Caltech to digitize the analog film accelerometer records and 
to integrate these records into ground velocity and displacement.  One of the 
most significant records was from the Pacoima dam site that was directly up-dip 
from the hypocenter.  This record had two key features of great interest to 
earthquake engineering (see Figure 8.22).  The first was a peak acceleration of 
1.15 g that occurred relatively late in the record.  The second key feature was a 
distinct velocity pulse with an amplitude of 1.25 m/s.  The acceleration records 
were too high-frequency to be interpreted using a deterministic model of rupture 
on a finite fault.  However, the ground velocity pulse was very different.  I 
interpreted it as a far-field S-wave that was strongly enhanced by directivity.  
Rather remarkably, the duration of this pulse was less than 1 s.  Since the 
duration of the S-wave from slip on any point on the rupture is the duration of the 
slip at that point, the implication is that the duration of slip would need to be less 
than 1 second as well.  When the rupture is propagating towards the receiver at 
close to the S-wave velocity, then all of the far-field S-waves arrive 
simultaneously, thereby producing this velocity pulse. 
 

 
 

Figure 8.22. North component of ground motion from the Pacoima 
Dam recording of the 1971 San Fernando earthquake.  The strong 
velocity pulse at 3 seconds is interpreted as a directivity enhanced 
far-field S-wave.  Modeling of this pulse indicates that the duration 
of slip was less than 1 second at individual points on the 15-km 
length rupture, which took more than 5 seconds to occur. 

 
One of my colleagues, Steven Hartzell, was also working in this same research 
direction and we collaborated on constructing finite-fault models of the ruptures 
to explain the near-source strong motion data from a number of earthquakes.   All 
of these models shared the common feature that the duration of slip at any point 
was short compared to the time it took for the rupture to propagate over the 
rupture surface.  For example, Figure 8.23 shows our preferred rupture model of 
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the M 6.5 1970 Imperial Valley Earthquake.  The hatched region shows our 
estimate of the part of the fault that was rupturing at a particular instant.  

 
 

 
Fig. 8.23.  Final slip distribution used to match strong 
motion and teleseismic data for the 1979 Imperial Valley 
Earthquake.  The stippled region shows the area inferred to 
be slipping at just one instance in time (from Heaton, 1990). 

 
It was only later in 1988 that I realized that our rupture models were 
fundamentally inconsistent with crack-like models, which were the prevailing 
models for earthquake dynamics.  In crack-like models, slip at a point starts when 
the rupture arrives and then continues until S-waves arrive from the end of the 
rupture.   
 
Fig. 8.24 shows the slip histories for a uniform stress drop on a circular fault 
embedded in a homogeneous whole space (from Madariaga, 1978).  The rupture 
expands radially from the center of the circle with a rupture velocity of 0.9β .  
Notice that the slip at every point continues until a shear wave arrives from the 
circumference of the fault (sometimes referred to as a stopping phase). This shear 
wave contains the information that causes points on the fault to stop slipping.   In 
general, uniform stress drop ruptures in which the slip duration is determined by 

the end of the rupture have slip durations that are on the order of 2
3 R

S
V  .    

These long slip durations contrast sharply with much shorter slip durations used 
to model seismic data from significant earthquakes.   
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Figure 8.23.  Crack-like rupture.  Slip histories for a variety of 
points on a circular fault in a homogeneous whole space. The 
upper diagonal is near the hypocenter (also the center of the 

circle) and the lower right history is near the outer edge of the 
circle.  The stress drop is homogeneous and the rupture 
velocity is 0.9β  .  The arrows represent the time that a 

stopping phase comes from the perimeter of the rupture and 
the dots represent the cessation of rupture.  (from Madariaga, 

1976). 
 
The primary question was to explain why slipping would stop before the rupture 
stopped propagating. This issue was the subject of my 1990 paper, Evidence for 
and implications of self-healing pulses of slip in earthquake rupture (Phys. Of 
Earth and Planet. Int., 64, 1-20).  In addition to the source modeling of seismic 
records, there were also eyewitness reports of relatively short times for surface 
fault scarps to develop.   
 
My paper was extremely controversial.  In fact, I eventually withdrew it from the 
BSSA since the reviewers would not accept it without a wide range of 
fundamental changes.  Since the time of the publication, there have been many 
other well recorded earthquakes and I think it’s safe to say that it is now 
relatively well accepted that earthquake rupture durations at a point are small 
compared to the overall duration of the rupture.   
 
I coined the phrase self-healing pulses of slip.  I suggested that dynamic friction 
was strongly rate weakening.  I argued that, similar to crack models, there is very 
high shear stress at the propagating crack tip and that this led to very high slip 
velocities just behind the propagating tip of the pulse.  I suggested that the slip 
velocity decreased as 1

px
 , where px  is the distance from the leading edge of 

the propagating pulse (see Figure  8.24).  I hypothesized that the shear stresses in 
the vicinity of the crack tip were comparable to Byerlee friction and that the 
dynamic friction was very low in the high-slip velocity region just behind the 
rupture front.  I hypothesized that as the slip velocity decreased with distance 



8-50 
 

from the crack tip, the dynamic friction increased.  I suggested that this increase 
in dynamic friction caused the slip to arrest. 
 
At the time of my paper, one of the most robust observations of earthquake 
scaling was the observation that average slip scales linearly with the rupture 
dimension (e.g., see Figure 8.5).  In the slip-pulse model, slip at most points on 
the fault was already complete long before the final dimension of the rupture was 
determined.  I suggested that there was a causal relationship between the 
amplitude of a slip pulse and the distance that the pulse was likely to propagate.  
That is, large earthquakes with long ruptures should have large slips that show up 
rapidly after the origin of the event.  However, further study has shown that the 
characteristics of the early part of ruptures is not systematically different for 
larger ruptures.   
 
I have now abandoned the hypothesis that larger earthquakes start with 
larger slips, and I now favor the notion that the correlation between slip and 
rupture length comes from the statistical properties of suites of spatially 
complex slip distributions. In order to adequately discuss slip pulses, it is 
necessary to discuss friction and the larger problem of maximum shear stress in 
the Earth’s Crust.  I will get to that shortly, but in the meantime, I have some 
comments about my hypothesis of strong rate weakening friction. 
   

 

 
Fig.8.24. Sketch from Heaton (1990) of a slip-pulse rupture mode.  I proposed 
that fault friction decreased with slip rate.  This implied that dynamic friction is 

low just after the passage of a rupture.  The dotted line is meant to show the 
friction necessary for sliding.  This friction is comparable to standard friction 

(60% of the confining stress) when the fault is not sliding.  This model has 
instantaneous restrengthening. 
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When I first suggested strong rate weakening friction, I discussed the situation 
with SDSU Prof. Steven Day who was a leading expert in finite element 
simulations of dynamic shear rupture simulation.  Steve was intrigued by the 
hypothesis and he attempted to simulate slip=pulse ruptures that arose from 
velocity weakening friction.  He reported to me that he found it difficult to tune 
his friction and prestress in such a way that it would produce stably propagating 
slip pulses.  In particular, they tended to either grow without bound as they 
propagated, or alternatively, they tended to die out fairly rapidly without 
propagating very far. 
 
In retrospect, his finding was prescient, and should have been anticipated.  That 
is, a velocity weakening friction law produces a positive-feedback dynamic 
system.  In particular, the faster the sliding, the lower the friction.  Lower friction 
produces faster sliding which leads to even lower friction. Conversely, slow 
sliding produces high friction, which causes even slower sliding.  In fact, it has 
been shown that while strong velocity weakening can produce slip pulses, the 
pulses are inherently unstable.  That is, there are no steady-state slip pulses 
caused by strong rate weakening friction (Elbanna, Lapusta, Heaton). 
 
Since there are no stable steady-state solutions to strong rate-weakening slip 
pulses, they can only be studied using numerical techniques, such as finite 
elements or boundary-integral-elements.  The fact that there are strong positive 
feedbacks in the dynamics means that the numerical solutions are sensitive to the 
details of the rupture dynamics, which means that high precision is required to 
make reliable numerical simulations. 
 
Before I can discuss the dynamics of slip pulses, it is important to understand the 
characteristics of shear stress in the Earth’s crust.  I will shortly describe how 
understanding the characteristics of chaotic dynamics is key to understanding 
how it’s possible to have 1) a static coefficient of friction of about 0.6, 2) low 
crustal heat flow and a paucity of frictional melts, 3) average static stress drops of 
about 1.5 MPa (1% of the overburden pressure), 4) radiated energy of about  

2
slip

MJ2 m -mD . 

 
 
ESTIMATING SHEAR STRESS IN THE CRUST 
 
An enduring problem in geophysics focuses on estimating the size of shear stress 
that causes earthquakes.  This problem has been approached in several ways.  
One approach is to estimate the stress necessary to cause shear failure.  This 
approach typically leads to the conclusion that the frictional stresses at the depth 
of earthquakes are a substantial fraction of the pressure from the weight of the 
overburden rocks.  As it turns out, these stresses far exceed any of the shear 
stresses that are estimated using seismic shaking data.  This inconsistency has 
been debated for decades.  
 
 I have given numerous lectures about this issue and I often frame the problem as, 
“why are earthquakes so gentle?”  Although this may at first sound like an odd 
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question, it is a rather serious issue when one is asked to estimate the maximum 
shaking that may occur in an earthquake. 
   
In particular, laboratory test equipment that causes frictional sliding of surfaces 
that are forced together with the overburden pressure that occurs 10 km deep in 
the earth (about 200 MPa) are large and powerful machines.  In the laboratory, 
yielding at these stresses can be dangerous even for relatively small samples; for 
safety, operators typically go to the next room to control these experiments.  If 
you scale these experiments up to the size of significant earthquakes, then none 
of us would survive earthquakes, the ground motion would be too violent.   
 
To better describe this problem, I will assume that earthquakes can be understood 
in terms of an expanding frictional crack.  This will allow me to demonstrate 
fundamental inconsistencies that arise from this view.  I will then present an 
alternate view that describes earthquakes as propagating slip pulses.  
Unfortunately, there are no analytic dynamic solutions to the slip pulse problem; 
by its nature, it is fundamentally a chaotic system. 
 
A simple analysis of energy partitioning is appropriate at this point.  Noting that 
an earthquake is the process of removing potential energy, WE  , from the crust 
and converting it into radiated seismic energy, RE  , frictional heat, fE  ,  and 
fracture energy, GE .  Conservation of energy dictates that 
 
 W R f GE E E E∆ = + +   8.84 
 
We can express the change in potential energy by integrating the traction on the 
fault over the slip, or 

 ( )
( ),

0

, ;
D x y

W
S

E x y D dD dxdyσ
 

∆ =   
 

∫∫ ∫   8.85 

Where ( ),D x y  is the final slip as a function of position on the fault plane, and 

( )0 1
1
2

σ σ σ= +  is the average shear stress between the initial state, ( )0 ,x yσ  and 

the final state ( )1 ,x yσ .  Remember that the continuum is considered to be 
linearly elastic except on the slip surface.  Therefore, the introduction of a reverse 
slip from the final state back to the original state would take the final stress back 
to the original stress.  Since the system is linear, the average stress during that 
transition is the traction that the slip works against. 
 
8.85 can be rewritten as 
 

 

( ) ( )
( )

( ) ( )
( )

,

0 1
0

,

0
0

1 , ,
2

1, ,
2

D x y

W
S

D x y

S

E x y x y dD dxdy

x y x y dD dxdy

σ σ

σ σ

 
∆ = +    

 
  = − ∆     

∫∫ ∫

∫∫ ∫
  8.86 
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Where ( ) ( ) ( )0 1, , ,x y x y x yσ σ σ∆ ≡ −  .  At this point, it is tempting to assume 
that the initial stress and the stress drop are approximately constant as a function 
of x and y.  In fact, Kanamori and Heaton (2002) made this assumption.  I will 
make it now because it helps to provide context for many other researcher’s 
work.  However, I warn you strongly that this is a critical assumption that is 
almost certainly very wrong.  Because this is a key assumption (and probably 
wrong), I will introduce a notation for the energy estimated in this way.  I will 
call it crack

WE∆  , which I define as 
 

 
( ),

0
0

1
2

D x y
crack
W

S

E dD dxdyσ σ
  ∆ ≡ − ∆     

∫∫ ∫   8.87 

 
Where the overbars signify spatial average over the rupture surface.  Stress drop 
and slip are both spatially smooth (except at the crack tip) for crack models, so 
the approximation is appropriate for cracks.  In contrast, the slip in actual 
earthquakes is typically heterogeneous.  Heterogeneous slip implies that prestress 
and stress drop are also spatially complex.  Furthermore, the spatial complexity 
correlates between these quantities that specify the net energy change caused by 
an earthquake.    
 
Examination of once-active faults that have been uplifted and exhumed by 
erosion shows that there is a paucity of frictional melting along rupture surfaces.  
This observation allows us to provide upper limits on the energy of frictional 
heating.  In addition, seismic data allows us to estimate the radiated energy in 
earthquakes.  
 
Note that ( ),D x y can be inferred from modeling seismic data.  Knowing the 

spatial distribution of slip allow us to also infer ( ),x yσ∆  .  Now if we assume 
that slip amplitude is spatially smooth for crack-like ruptures, then 

( ),crackD x y D≈ ; note that the averaging in this case is spatial averaging over the 
rupture surface .  Using these assumptions allows us to integrate 8.87 to obtain 
 
  

 
0

0

1
2

1
2

crack
W

S

E D dxdy

DS

σ σ

σ σ

  ∆ ≈ − ∆    

 ≈ − ∆  

∫∫
  8.88 

 
We can now estimate the average prestress as 
 

 0
1
2

crack
crack WE

DS
σ σ ∆

≈ ∆ +   8.89 
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At this point, we can use 8.84 to estimate 
G

crack crack crack
W f RE E E E∆ = + +  .  Although 

we need to assume spatial smoothness of stress and slip to estimate friction and 
fracture energy, radiated seismic energy is directly inferred from seismograms; 
assuming spatial smoothness is not necessary for this calculation.  Although 
friction energy cannot be inferred from seismograms, we can nevertheless put 
upper limits on its size.  The same goes for fracture energy. 
 
FRICTION 
 
Sliding friction during an earthquake is often called dynamic friction, fσ  .  
Friction is a dissipative process; it cannot add energy into the mechanical system. 
In the case of a uniform crack, 0fσ σ σ= −∆ .  Laboratory measurements of 
sliding friction for materials found in fault zones typically indicate that 

f f nσ µ σ≈  , where fµ  is the coefficient of friction and nσ  is the compressive 
stress normal to the fault.  Most fault materials have measured coefficients of 
friction between 0.6 and 0.8.  The normal stress on the fault is typically thought 
to be comparable to the pressure from the weight of the rocks above the 
earthquakes; this is referred to as lithostatic pressure and it is estimated to be 

n gzσ ρ≈ where z  is depth beneath the Earth’s surface.  Assuming, the average 
density of crustal rocks (about 2,700 kg per cubic meter), this can be 

approximated as 30MPa
kmn zσ ≈ ×  .  Lithostatic pressure contrasts with 

hydrostatic pressure (the pressure of water in an open well) which is 
10MPa

kmH zσ ≈ × .  If a material is porous and saturated with water, then the 

effective pressure is eff n Hp σ σ= −  .  The bottom line is that laboratory friction 

measurements indicate that the friction is on the order of 20MPa
kmf zσ ≈ ×  . That 

is, at 10 km, we expect that frictional stress is on the order of 200 MPa.  This 
expected frictional stress is much larger than the average measured stress drop of 
earthquakes (3 MPa).   
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Figure 8.25.  Shear stress of frictional yielding of a large range of 

experiments on different rocks and different normal stresses as 
reported by Byerlee.  Although there are some notable 

exceptions (especially clay materials), most rocks have an 
apparent coefficient of friction of about 0.6.  Note that the stress 

is given in units of kilobars (= 100MPa). 
 

Figure 8.25 is a famous figure that shows the apparent coefficient of friction for a 
wide range of Crustal rocks subjected to a large range of confining stresses.  This 
observation leads to one of the most fundamental unanswered questions in 
geophysics.  What is the average shear stress in the seismogenic crust?  Is it near 
the laboratory observations (  200 MPa), or is it comparable to the stress drop in 
earthquakes (  3 to 10 MPa)?   
 
One clear observation that crustal rocks can sustain high shear stress comes from 
the fact that there are deep mines (up to 3 km in South Africa).  At 3 km, the 
overburden stress is about 100 MPa.  On the other hand, the interior surface of a 
mine is traction free.  The calculation of stress around a mine is a complex 
problem, but it is clear that the shear stresses associated with deep mines are at 
least 50 MPa, which is consistent with Figure 8.21.  Deep mines cannot remain 
open unless there are high shear stresses in the vicinity of the mine faces.  
Tragically, sometimes these faces fail violently in a phenomenon known as rock 
bursts.  Rock bursts kill many miners in the deep gold mines of South Africa. 
 
Figure 8.26 shows a popular view of the strength of the Earth’s crust.  This 
cartoon is often called the “Christmas tree.”  The maximum shear stress before 
frictional sliding is often called the “Byerly limit;” when you hear this, it is 
intended to refer to the Christmas tree strength model.  I have often heard earth 
scientists use the term that the shallow crust is both brittle and strong, but the 
lower crust is ductile and weak.  If you remember our discussions about the 
properties of buildings (Chapter 6), you should be confused that brittle is used 
together with the word strong.  Remember that in structural engineering, the goal 
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is to avoid brittleness since local flaws can cause global collapse.  Most structural 
engineers try to make their buildings ductile. 
 
 

 
Figure 8.26 shows a simplified picture of the “strength” of the 

crust and is often called the “Christmas tree.”  The linear 
increase in the top 10 km assumes a constant coefficient of 

friction taken together with the assumption that pressure 
increases linearly with depth.  The decreased stress in the lower 
crust is assumed to be the result of ductile yielding of rocks at 

high temperatures present in the lower crust. 
 

 
Interestingly, mechanical engineers who work on fracture mechanics often 
describe the strength of brittle materials with either the fracture energy, or 
alternatively the stress intensity factor, 2IIIK Gµ= .   Note that fracture energy 

has units of 
_

force length
rupture area

×  , whereas yield stress has units of 
_

force
rupture area

 .  

That is, these two different descriptions of strength differ in units by a length 
scale.  Interestingly, brittle materials typically fail on thin surfaces (length scale 
of 2L ), whereas failure in ductile materials is typically distributed in a volume 
(length scale of 3L ).  In many real-world cases, faults are complex at all length 
scales (apparently fractal).  That is we can anticipate that the complexity of fault 
surfaces implies that we will have to resort to descriptions of strength that are 
somewhere between brittle and ductile.  These laws will have units of stress 
times length to a fractal power.  If the power is zero, 0L  , then the material will 
have a simple yield stress (like a plastic material).  If the power is 1, 1L  , then the 
material is brittle and its strength is described with a fracture energy.  That is, we 
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can already anticipate that there will be length dependencies to strength  and that 
spatial complexity will be part of the story.  
 
 
Friction Laws 
 
Earthquakes appear to be due to shear sliding along fault planes; that is, inelastic 
strains associated with earthquakes occur in very narrow regions, which are often 
simplified as a planar interface.  Although the inelastic strains almost certainly 
occur over a finite width, this width may be very small compared to other rupture 
dimensions.  In order to construct simple models of fault rupture dynamics,  we 
often assume that there is indeed slipping on a plane and that the shear stress on 
the plane is governed by a friction law.  If the shear traction on a fault plane is 
less than the sliding friction, then the boundary is assumed to be a welded contact 
for which all displacements are assumed to be continuous across the fault plane.  
As long as the amplitude of stress is less than the friction law, the stresses on the 
fault plane are described by the standard laws of continuum mechanics (Chapter 
3).  However, the stresses cannot exceed the friction law; once the deformations 
are large enough, then the displacements on the fault are no longer continuous 
across the fault and the shear tractions on the fault are assumed to be equal to a 
friction law.  These friction traction vectors are always assumed parallel to fault 
slip velocity, but in the opposite direction.  The simplest possible friction law is 
just an instantaneous jump in friction from 1µ  to 0µ  .  In this case, if the shear 
traction rises to 0 nµ σ  , then the shear traction instantaneously drops to 1 nµ σ  and 
there is an instantaneous stress drop of ( )0 1nσ σ µ µ∆ = −  , that is, assuming that 
the normal stress is constant.  This was the assumption that Brune made in his 
1970 paper. 
 
Most observations of friction show a linear increase in frictional traction with 
fault-normal compressive stress.  Examinations of machined surfaces typically 
show that contact surfaces are never truly planar; instead they all have geometric 
roughness (typically fractal).  When two rough surfaces are placed into contact, 
then the actual contacts occur at only a few places (if the material is rigid, then 
only three contact points are enough to form a statically stable configuration).  Of 
course, the normal force on the materials would be concentrated at these contact 
points.  The result is that the contact points elasto-plastically deform into contact 
patches, that are typically called asperities (see Figure 8.23).  The frictional shear 
tractions are also concentrated at these asperities.  One common view is that the 
static coefficient of friction is simply describing how the total area of asperities 
changes as the normal stress is increased. 
 
This view that friction laws are essentially describing the properties of surface 
asperities seems consistent with the observation that fault normal compressive 
stress is best measured by also including the effect of fluid pressures.  That is, 
any interstitial fluids in the rough fault surface serve to push the surfaces apart.  
Obviously, this argument works well if the area of asperities is small compared to 
the overall area of the surface.  If there are almost no void spaces, then the effect 
of fluid pressure is mitigated.    
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Figure 8.27.  The contact area of geometric asperities are 

thought to be the key aspect of standard Byerly friction,  The 
contact area increases with the normal stress 

 

 
Figure 8.28.  Instantaneous stress drop friction law where the 

friction drops instantaneously from a static coefficient of 
friction to a dynamic coefficient of friction.  This law is 
unphysical because the properties of the material change 

without doing any work. 
 

Although this “instantaneous stress drop” friction law is convenient for its 
simplicity, it has a fundamental and fatal flaw.  That is, the material changes its 
physical properties without doing any work to the material.  In the case of an 
instantaneous stress drop law, there is no fracture energy, which means that the 
material is infinitely brittle.  A far more realistic situation is one in which the 
properties of a material change as a result of work that is done on the material.  It 
may be that this work is small compared to other energies, but there must always 
be some work associated with changing the properties of a material.  Realistic 
friction laws always involve parameters that describe the “state” of the material.  
In particular, as inelastic yielding occurs, the material’s yield stress evolves as 
well.  If we assert a simple friction law that changes from an initial friction to a 
final friction, it is necessary that there is some evolution of this change; it cannot 
be instantaneous.   
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Simple Slip-Weakening Friction 
 
Slip-weakening friction as shown in Figure 8.29 is commonly used in 
simulations of earthquake rupture.  It has the advantages that there is work 
associated with change in the frictional state of the material.  That is, the work 
associated with the transition from static friction to sliding friction is just the area 
of the back-hatched region shown in 8.29.  Slip-weakening friction is described 
by 
 

 
( ) 0

0

0

0S S d
f n

d

D D D
D

D D

µ µ µ
τ σ

µ

 − − < <≤ 
 >

  8.90 

 
Where 0D  is the slip-weakening distance.  The fracture energy (per unit of 
rupture area), 0G  , is given by 

 ( )0 0
1
2 n s dG Dσ µ µ= −   8.91 

and the frictional heat energy (per unit of rupture area), FE  , is 
 
 F n dE Dσ µ=   8.92 

 
Figure 8.29.  Slip-weakening friction law is common in rupture 

dynamics.   The lower hashed area represents the total work done 
by frictional heating oDσ  , while the upper back hashed area 
represents the work done to drop the friction and is commonly 

interpreted as fracture energy. 
 

As long as 0D D>  , slip-weakening produces a simple stress drop.  However, this law 
also includes a length scale that is associated with changing the frictional state 
from static to dynamic.  In fact, any friction law that changes the internal energy 
of a material has included (either explicitly or implicitly) a characteristic length in 
the friction model.  Rather interestingly, Aki’s conjecture of scale-free rupture 

Fracture energy 

Frictional heating 
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dynamics is violated by any friction law with a scale-independent fracture 
energy. 
 
Notice that slip-weakening friction specifies the maximum shear that can occur 
before sliding, s nµ σ  .  Sometimes this number is called the strength of the fault 
since it is the maximum shear stress that can be achieved locally.  While this 
parameter is relevant to the conditions of crack nucleation, it turns out that it has 
virtually no effect on the dynamics of propagating failures.  Instead, propagating 
failures are more related to the work necessary to extend a rupture, which is the 
fracture energy.  Fracture energy is the product of peak stress and slip weakening 
distance, and neither quantity can be independently determined from dynamic 
modeling of rupture (Gutierri and Spudich). 
 
A major problem with slip-weakening friction centers on the problem of rupture 
nucleation.  That is, in order to have a seismic instability, the rate at which 
potential strain energy is extracted by the rupture must exceed the rate at which 
energy is dissipated by friction and fracture on the expanding rupture surface.  
We can approximate the change in potential energy due to faulting that is 
available for radiation, ( )W fE t−∆  , as the change in potential energy minus the 
frictional energy as 

 
( ) ( ) ( )

3
2

W f eff

eff

E t S t D t

S
C

σ

σ σ
µ

−∆ ≈

∆
≈

  8.93 

Where S  is the rupture area, D  is the slip averaged over the rupture area (scales 
with L, see 8.69), and effσ  is the difference between the prestress and the 
dynamic friction (see 8.7).  That is, it is the effective stress that is available for 
dynamics. 
 
I have written this as an approximate relationship because I am assuming that the 
effective stress is constant in space.  Later we will see that the prestress, the slip, 
and the dynamic friction are spatially heterogeneous.  8.93 needs to be modified 
if it correctly considers this heterogeneity. 
 
Now the energy that is available for radiation RE  (kinetic energy) is just  
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  8.94 

where 0G  is the fracture energy per unit rupture area.  This means that in order to 
have spontaneous sliding , there must be more change in potential energy than 
is required for fracture and friction, Or, 
 

 0

eff

G CS µ
σσ> ∆   8.95 
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That is, slip weakening friction implies that if the prestress is homogeneous, then 
there is a minimum dimension for earthquakes.  If we use the laboratory 
measures of fracture energy (say 200 J/m2), and effective stress of 2 MPa 
(estimated from seismic energy radiation), a typical stress drop of 2.7 MPa, then 
the minimum rupture length for an earthquake is about a meter, which is very 
small.  However, if we use fracture energies that are required to stop a large-
dimension crack in a uniform stress field (see 8.35) then we end up with fracture 
energies of tens of MJ/m2 .  In this case, it is necessary to use high prestress in 
the nucleation region just to get things started.  Currently, many researchers 
insert patches of high pre-stress in order to nucleate instabilities.  While inserting 
high-stress patches is easy on a computer model, it requires a religious miracle to 
realize in the real world. 
 
Unfortunately, many researchers report the fracture energies that are employed in 
their dynamic modeling and interpret this energy as having physical significance.  
They rarely mention that using small fracture energies causes extreme numerical 
instability in their dynamic calculations.  That is, in many cases the reported 
fracture energy is the energy that is required to produce stable finite-element 
models (a function of the grid spacing and time step).  Small fracture energies 
produce singular stresses at the crack front.  Discrete element codes cannot 
handle these singular stresses, and the modelers increase the fracture energy in 
order to soften the singularity at the crack tip.  In addition, the use of small 
fracture energy means that this parameter has almost no impact on the details of 
the fracture dynamics.  Basically, fracture energy is used to stop fractures.  
However, it is impossible to stop long cracks without very large (stupidly large) 
fracture energies. 
 
Another consequence of using fracture energy together with crack-like dynamics 
is the fact that discrete numerical simulations are not only poorly resolved, they 
also typically jump to super-shear rupture velocities as the rupture dimension 
grows.  In discrete models (e.g. finite elements) with low fracture energy, the 
expanding crack fronts evolves into such large stresses that elements several 
grids in front of the crack can begin to slip even before the crack front arrives.  
That is, the rupture jumps ahead of the crack front.  This is super-shear rupture 
velocity and one it starts, it can propagate stablely.   Although there have been 
reports of evidence for sup-shear rupture velocities in some earthquakes, most 
well recorded earthquakes appear to have sub-shear rupture velocities.   Given 
the behavior I just described, the real mystery is to explain why all significant 
earthquakes don’t have super-shear rupture velocities.  I will shortly show that a 
better way to control the rupture dynamics is with the prestress.  
 
Rate and State Friction 
 
Although instantaneous weakening friction and slip-weakening friction have 
been commonly used in earthquake dynamics because they are so simple, they 
are not actually based on experimental observations of frictional sliding.  
Frictional sliding is actually a specialized type of localized inelastic shear 
straining.  In general, the inelastic shear strain rate depends on the applied shear 
stress and it also depends on the past history of inelastic strain (the “state” of the 
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interface) and it can also depend on the current rate of sliding.  Friction laws that 
have these two dependencies belong to a class of laws called rate and state 
friction laws.  The use of variables that characterize the state of a deforming 
material are quite common in material science; for example, the stress-strain 
relationship for reinforced concrete is very complex.  In particular, it is important 
to know if the concrete has been cracked in previous straining.  In that sense, the 
amount of fracturing is a state variable for reinforced concrete. 
 
In the Earth Sciences, the term, “Rate and State friction” has been used almost 
exclusively to mean a particular friction law that was developed to describe the 
temporal behavior of a number of low-slip-rate (less than 1 mm/s) frictional 
sliding experiments.   I personally prefer to use the term “Dieterich-Ruina 
friction” when referring to friction laws of the type described below.  Since rate 
and state dependent rheologies are common in mechanics, it’s easy to be 
confused when using the phrase rate-state friction. 
 
In a foundational set of friction experiments, James Dieterich (1979, Modeling of 
rock friction 1. Experimental results and constitutive equations, JGR, 84, 2161-
2168) observed the time variation of slip along the interface of machined blocks 
of granite that were subjected to time-dependent shear stress and constant fault-
normal compression.  Dieterich discovered that if a block was forced to slide at a 
steady slip rate, then an instantaneous step in the shear traction caused a change 
in the slip rate and that this change in slip rate was not instantaneous, but instead 
evolved over some time scale (or alternatively a slip scale).  Later, Andrew Ruina 
(1983, Slip instability and state variable friction laws, JGR, 88, 10,359-10370) 
introduced a state variable that could predict this behavior.  
 
The Dieterich-Ruina friction law is briefly summarized in Figures 8.26 and 8.27, 
which I copied from a presentation by Chris Marone at Penn St.  This friction law 
provided a new framework for studying fault dynamics.  Most importantly, the 
definition of several constants ( )0, , , cA B V D accurately mimics the 
experimentally observed slip rate as a function of time for a wide variety of 
materials.   This friction law is often used as the basis of numerical modeling of 
fault slippage in a wide range of problems.    Notice that the Dieterich-Ruina 
friction has a state variable, ( )tΘ  , which is described by a 1st order differential 

equation in either time (or alternatively slip).  ( )tΘ  has units of time and it 
controls how the friction evolves after jumps in slip velocity (or alternatively, 
shear stress).  The evolution after a jump evolves logarithmically (either time or 
slip) towards a new steady state.  Clever experiments that allow one to observe 
the evolution of contact patches during slip have revealed that the fact that the 
asperities are constantly evolving on a slipping surface.  Slow slip velocities 
allow dislocation creep to increase the asperity area (indentation creep), thereby 
increasing the friction.  In this case, the friction decreases with increasing sliding 
velocity (but only after the effect of the state variable has decreased.  On the 
other hand, increasing the slip velocity can cause higher temperatures at the 
asperities, which allows them to relax faster and thereby increasing the friction 
when the sliding rate is increased.  These two effects are included in the Dieterich 
Ruina friction law as the constants, A and B.   If A > B, then the Dieterich Ruina 
law predicts that increasing the sliding rate results in lower friction.  This is 



8-63 
 

called rate-weakening friction and it produces dynamic instabilities in the sliding 
process.  That is, if there is a perturbation that causes the sliding rate to increase, 
then this decreases the friction, which in turn, increases the sliding rate.  This 
dynamic instability naturally results in earthquake nucleation. 
 
On the other hand, if A < B, then faster sliding results in higher friction and is 
referred to as rate-strengthening friction.  Perturbations to the sliding rate tend to 
damp out with time.  I often see that faults that fail in earthquakes are interpreted 
as having A > B,  whereas faults that experience creep are interpreted as having 
B > A. 
 
It is worth noting however, that B  > A  seems to imply that a fault creeps 
steadily.  It is difficult to observe spatial and temporal variations in creep (there 
are no radiated waves and the creep is deep in the Crust).  However, when creep 
has been observed in detail, it’s my experience that it mainly occurs during creep 
events.  These creep events seem to be much like other earthquakes, but with a 
greatly reduced rupture velocity (usually less than 1 km/hr). 
 
There is a very large literature that discusses the attributes of Dieterich-Ruina 
friction and these class notes are far too brief to really do this subject justice.  I 
recommend reading the review paper by Rice, Lapusta, and Ranjith (Rate and 
state dependent friction and the stability of sliding between elastically 
deformable solids, J. of the Mech. And Phys. Of Solids, 2001, 49, 1865-1898). 
 
One important cautionary note concerns the range of laboratory conditions that 
were observed when creating this friction law.  In particular, the experiments 
observed at slip rates of microns per s and observed characteristic slip distances, 
Dc, of microns.  Furthermore, the changes in friction were small changes about 
average frictions of about 0.7.  That is to say, the dynamic friction had similar 
values to traditional Byerlee friction, with the important addition of time 
evolution that provides a natural pathway to event nucleation.  It’s worth noting 
that when these experiments were sped up to earthquake slip velocities (> 1 m/s), 
then frictional melting always occurred.  Once the material surfaces melts, these 
friction laws no longer apply.  That is, while rate-weakening Dieterich-Ruina 
friction appears to be a reasonable model for the nucleation of earthquakes, it is 
inconsistent with observations of large earthquakes.  Furthermore rate-
strengthening friction provides a convenient model for creeping faults, but it fails 
to predict the common observation that creeping faults typically fail in slow 
earthquakes. 
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Figure 8.30  
 
  

 
Figure 8.31 
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Frictional Heating 
 
Assuming either instantaneous weakening friction, slip-weakening friction, or even 
Dieterich-Ruina friction, we can estimate the average long-term rate of frictional heating 
(or power per unit rupture area) on a fault to be 
 
 F n dP Dσ µ=    8.96 

Where D  is the average geologic slip rate of a fault and dµ  is the average dynamic 
coefficient of friction.  It is a simple calculation to estimate the heat production on the San 
Andreas fault assuming that the dynamic coefficient of friction is about 0.6 (i.e., Byerlee 
friction).  Assuming that the average dynamic friction on the San Andreas is about 200 
MPa (see Figure 8.22), and that the slip rate is about 3 cm/yr (or about 10-9 m/s) gives 

2200 mW/mFP ≈  .    This is actually a problematically large power; the average power of 
heat transferred through the Earth’s continental crust (otherwise known as the heat flow) is 
66 mW/m2 (Davies and Davies, 2010).  That is, the assumption of Byerlee friction implies 
that the average rate of frictional heat produced by the San Andreas fault is several times 
the average heat flow in the Crust and thus we would expect to observe elevated heat flow 
in the vicinity (within 10’s of km) of the San Andreas fault.  This elevated heat flow is not 
observed and this fundamental problem is often called the Heat-flow Paradox (see for 
example, Scholz, C. H., The Mechanics of earthquakes and Faulting, Cambridge 
University Press, Cambridge England, 1990). 
 
Actually, the heat flow paradox is far more severe than is indicated by the calculation 
above.  In particular, a variety of observations indicate that average slip rates during 
earthquakes are at least 2 m/s.  This means that, during the slip event, if dynamic friction is 
about 200 MPa, then we expect frictional power of at least 400 MW/m2 during the sliding.   
This is an extraordinarily large number.  In fact, it’s the energy of 200 sticks of dynamite 
per second applied to every square meter of the fault.  Or, for comparison, the power of a 
nuclear power reactor is about 1 GW.  The specific heat of granite is 790 J/oCkg, and the 
density is 2.7x103kg/m3.  Assuming that a temperature change of 1,000oC would cause 
melting (rocks have a very low latent heat of melting), then the heat 1mmmeltE   required to 
raise the temperature of a 1mm thick section of the fault by 1,000o C is   
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Now the total frictional heat energy is  
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Where  duration of slip at a pointST ≡  .  If 1
2ST s=  , then the slip is about 1 m 

and there is enough frictional heat to raise a 2-m thick zone by 1,000o.  Clearly, 
any coefficient of sliding friction larger than 0.05 would cause instantaneous 
melting of the fault-zone materials.  This fact was originally pointed out by 
Harold Jefferies and a more detailed calculation was described by Richards 
(197?). 
 
Although there are geological observations of melts observed in fault zones that 
have been exhumed by tectonic uplift followed by erosion of overburden 
materials (see for example, the Punchbowl Fault described by Chester and 
Chester, 199?), the total volume of melt is very small compared with the amounts 
expected from ordinary Byerlee friction.  In fact, once a melt layer is developed, 
one expects the fault tractions to be controlled by the viscosity of the melt.  
Furthermore, we would expect to see that the final fault shear traction should 
drop to zero, which is often referred to as complete stress drop. A 200 MPa stress 
drop is a factor of one hundred larger than the average observed in major 
earthquakes.  This means that the average slip should be a factor of 100 times 
larger than is typically observed. 
 
Notice that the estimate of 2

kJ200 mm-m  to melt a mm-thick layer is an order of 

magnitude smaller than estimates of the far-field radiated energy from a 
earthquake with a 1-m slip, about 2

slip

MJ2 m -mD   (see 8.42).  That is to say that 

we should expect to find extensive frictional melting in the vicinity of active 
faults.  The big mystery is, why they are not observed.   
 
At this point, I will say that the paucity of melted rocks in exhumed faults implies 
that the total frictional heat per unit rupture is less than about 200 kJ/m2.  This 
implies very low dynamic friction for meter-sized slips.  At this time, such a low 
dynamic friction has not been observed in a laboratory experiment.  Which is to 
say that although it’s clear that dynamic friction in large earthquakes is very low, 
we don’t know why.  
 
Strong Rate-Weakening Friction 
 
In my 1990 slip-pulse paper, I argued that strong rate-weakening friction could 
be the key to understanding the origin of slip pulses.  I argued that it could also 
help to explain the low heat observed from tectonic deformation. 
 
One simple realization of a rate weakening friction is to hypothesize that  
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(see Cochard and Madariaga, 199?).  In this friction law, the friction has a power 
law dependence on slip velocity.  There is no inherent distance in this friction 
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law, and hence this friction law cannot provide any inherent length scale to 
rupture problems that are described by this law.  While none of the friction laws 
discussed to this point are capable of generating slip pulses, this friction law can.  
In order to estimate how much less heat can be produced by this friction law, we 
integrate the frictional force over the slip in a slip pulse, or 
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Now assuming that the slip history of a pulse  can be approximated as a truncated 
growing crack, then  
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Substituting 8.101 and 8.102 into 8.100 gives 
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Or  
 ( )0 0F n rwE D Fσ µ β=   8.104 
Where rwF  is a factor that includes the effect of power-law rate-weakening and  
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Unfortunately, I have not been able to find an analytic solution to this integral.  However, this 
definite integral can be numerically evaluated and the answer is shown in table 8.2. 
 
   



8-68 
 

β FRW 
0.1 0.98 
0.5 0.94 
1 0.88 
2 0.77 
4 0.61 
8 0.43 
16 0.27 
32 0.15 
64 0.081 
128 0.042 
  

Table 8.2 
 
 

Table 8.2 seems to imply that the use of the rate-weakening law still results in 
substantial frictional heating.  That is, unless the law assumes very strong rate 
weakening (i.e., 20β >  ).  The paucity of melt observed in exhumed faults is 
strong evidence that dynamic friction drops very rapidly behind the rupture front.  
Perhaps it is a sudden transition from high static friction ( )0.6staticµ    to very 

low dynamic friction ( )0.05dynamicµ < .  At the time of these notes, I am unaware 
of experimental observations of such low dynamic friction.  
 
Dynamic Friction in Landslides sudden transition to low dynamic friction 
 
One of the most direct ways to observe a rapid transition from high static friction 
to very low dynamic friction is to study the dynamics of landslides.  For example, 
Fig. 8-32 is a photograph of Mt. St. Helens just seconds prior to its eruption in 
1980.  Mt. St. Helens is a typical composite volcano.  These volcanoes are 
conical structures that form by the accumulation of pumice, ash, and volcanic 
bombs that eject from the top of the volcano.  In essence, a composite volcano is 
simply a large pile of unconsolidated material that is sitting at its angle of repose.  
The angle of repose is the steepest slope that a pile of granular material can 
obtain in static equilibrium.  The angle of repose is determined by the coefficient 
of friction between the granular materials.  In the case of Mt. St. Helens, the 
volcanic cone was in static equilibrium with a slope of about 29oθ ≈ .  The inter-
granular coefficient of friction of a marginally stable cone of material is 

tanfµ θ≈  , or in the case of Mt. St. Helens, 0.54fµ ≈  .  Steady inflation of the 
magma beneath the volcano occurred for a period of several months prior to the 
eruption.  This inflation (about a 100-m bulge) over steepened the slope.  About 
10 seconds prior to the eruption, a M 5.1 earthquake shook the over-steepened 
slope and an enormous landslide was triggered.   Figure 8-33 is a photograph 
taken early in the landslide.  A remarkable time lapse of photographs provides 
data to estimate the velocity of the sliding mass .  
https://www.bing.com/videos/search?q=mt+st+helens+time+lapse+video&qpvt=
mt+st+helens+time+lapse+video&view=detail&mid=58ACA9463AB2BDCC74
0F58ACA9463AB2BDCC740F&&FORM=VRDGAR  
 

https://www.bing.com/videos/search?q=mt+st+helens+time+lapse+video&qpvt=mt+st+helens+time+lapse+video&view=detail&mid=58ACA9463AB2BDCC740F58ACA9463AB2BDCC740F&&FORM=VRDGAR
https://www.bing.com/videos/search?q=mt+st+helens+time+lapse+video&qpvt=mt+st+helens+time+lapse+video&view=detail&mid=58ACA9463AB2BDCC740F58ACA9463AB2BDCC740F&&FORM=VRDGAR
https://www.bing.com/videos/search?q=mt+st+helens+time+lapse+video&qpvt=mt+st+helens+time+lapse+video&view=detail&mid=58ACA9463AB2BDCC740F58ACA9463AB2BDCC740F&&FORM=VRDGAR
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In the time lapse, it can be seen that approximately 3 km3 of material slid 
downslope with a velocity of about 200 km/hr.  The base of the slide appears to 
be on a steep slope of about 50oβ ≈ .  The acceleration of the landslip can be 
approximated as ( )1 sindynamicu g µ β≈ −  .  The time lapse indicates that the 
friction dropped almost instantaneously to near zero and that the landslide mass 
accelerated as if frictionless on the steep sliding plane.  As the mass slid 
downslope, the pressure from the weight of the landslide mass was decreased in 
the magma chamber (very high viscosity alkaline magma) beneath the mountain.  
This caused rapid outgassing of volatiles that were dissolved in the previously 
confined magma.  This rapid outgassing caused the lateral blast phase of the 
eruption.   
 

 
Figure 8.32.  Mt. St. Helens volcano prior to its eruption in 1980. 
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Figure 8.33.  Mt. St. Helens during the massive landslide that depressurized the 

magma chamber. 
 

Landslides are very similar to earthquakes; they are dynamic shear sliding on a 
slip plane.  However, in earthquakes, the rupture is confined to a portion of the 
fault plane, while in landslides, there are no ends of the rupture plane.  In 
essence,  landslides are crack-like; the entire fault plane slips simultaneously.  
The downslope slips can become very large since gravity provides the driving 
mechanism.  In an earthquake the fault-plane shear stress decreases as slip 
increases.  In landslides, the stress does not decrease until the mass is at the 
bottom of the hill. 
 
The most important point of Figure 8.33 is that the static friction at Mt. St. 
Helens was at least 0.54 prior to the M 5.1 earthquake.  A failure plane with very 
low dynamic friction (less than 0.1) formed very rapidly during the massive 
landslide.  If the rupture velocity was similar to earthquakes (VR about 2 ½ km/s), 
then this plane formed in less than 1 s.   
 
One simple way to parameterize the dynamic friction in a landslide is to estimate 
the ratio of the vertical displacement, H, to the horizontal displacement, X 
,  of the center of mass.  This is a measure of the average slope of the landslide, 
and the effective coefficient of dynamic friction is just H

X  .  Estimates of 

dynamic friction in landslides vary from almost 1.0 to as low as 0.06.  There 
seems to be a clear indication that landslides with larger total volumes tend to 
have smaller dynamic frictions.  8

1
1dynamic

H
X V

µ ≈ ≈
+

 (where V is landslide 

volume in m3) approximately fits widely scattered observations (Johnson, 
Campbell, and Melosh, 2016, The reduction of friction in long runout landslides 
as an emergent phenomenon, JGR, 121, 881-889, doi/10.1002/2015JF003751).  
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 Force Chain Networks 
 
I will now briefly describe the behavior of granular particle systems.  This will 
help to introduce the concepts of self-organization, emergent systems, and 
fluidization. 
 
Sand is an example of a material that has a rich variety of behaviors.  It is 
comprised of simple grains, each of which is described by the dynamics of a rigid 
body.  However, a collection of interacting sand grains can display behavior that 
is difficult to anticipate based solely on the rigid body dynamics of each particle.  
For example, sand in an hourglass can flow like a viscous liquid.  Sand can also 
interact with wind to form sand dunes that evolve and appear to slowly propagate 
through space.  Sand can also compact into a closely packed material that is well 
suited to form the foundation of structures (condensed matter physicists call this 
a jammed granular material).   
 
In the case of sand foundations, it’s important to understand the conditions that 
cause inelastic yielding of the sand.  One approach to collections of sand is to 
consider that the particles are so small and numerous that they can be simulated 
using a continuum (i.e., there is no smallest scale).  Numerous tests of yielding 
sand has demonstrated that it can be described as an elasto-plastic continuum.  In 
the case of sand, the plastic yield shear stress is dependent on the confining 
pressure of the sand.  This is usually called Drucker-Prager plasticity. In contrast, 
steel is described with Von Mises plasticity, where the yield stress is independent 
of confining pressure.  
 
The idea that there is a maximum shear stress that can be supported by sand 
seems intuitively reasonable, and you might believe that that is all you need to 
understand about the deformation of an assemblage of sand particles.  However, 
there has been new research that is revealing surprising mechanics behind the 
simple statement that a sand is elasto-plastic.  In a sense, it should not be 
unexpected that there is something else at play; sand is not elastoplastic at the 
grain level (it’s elastic-brittle).  It’s only a large assemblage of sand particles that 
behave plastically. 
 
Experiments that reveal the mechanics of interacting sand grains show that most 
of the load carried by sand is actually borne by a relatively small percentage of 
the sand grains.  Furthermore, even if the external tractions may produce bulk 
shear of the sand assemblage, the actual loads are primarily axial stresses directed 
along collections of grains.  These are called force chains.  The details of how 
and when individual chains appear are very sensitive to particular shapes and 
orientations of individual grains.  Although these systems were first studied using 
physical experiments, recent advances in computational dynamics have 
demonstrated that these types of systems can be numerically simulated (for 
example, see https://resolver.caltech.edu/CaltechTHESIS:12042014-104112714).   
 
Fig. 8.34 is copied from the website of Robert Behrenger (Duke Univ. Physics 
Dept., deceased).  The force chains carry axial forces that resist shearing force.  
The axial forces cause shear in the photosensitive beads.  A video from this 

https://resolver.caltech.edu/CaltechTHESIS:12042014-104112714
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experiment shows how finite motions result in eventual failure of individual force 
chains.  After failure, new force chains rapidly develop and the ensemble 
behavior of the system appears as if it’s a plastic material.   
 
The force chains shown in Fig. 8-34 are a complex network that forms almost 
instantaneously.  This network is an example of a self-organizing system.  The 
formation of the force chains is natural and fundamental to understanding the 
mechanics of sand.  Even though prediction of the details of the network of force 
chains is very difficult, you can be certain that appropriate force chains will 
occur. 
 
Although the sand system deforms in a sequence of small jumps, the effect of 
individual chains is small enough that a system of many particles behaves 
similarly to traditional sliding friction.  The system shown in Fig. 8.34 is an 
example of a jammed granular system.  If the confining pressure of the system 
is removed then the particles can move freely and the same sand grains can show 
deformation that is similar to a viscous fluid, which is typically referred to as a 
granular fluid.  Granular fluids are important in many industrial processes since 
this is a way to mix and transport granular materials.  The transition between 
jammed and fluidized states can occur very quickly.   
 
Fig. 8-35 is a photo taken after a massive landslide that was triggered by the M 7 
½ 1959 Hebgen Lake Earthquake.  A substantial fraction of a 2.3 km high 
mountain slid into the Madison River Valley at an estimated speed of 150 km/hr.  
The momentum of the slide was sufficient to cause the slide to climb several 
hundred m above the opposite valley wall.  As soon as the slide’s velocity 
dropped to zero as it climbed the valley wall, it froze into place.  This seems to be 
direct evidence of sudden transitions in the apparent friction when 1) it was 
initially stable on the mountain slope, 2) it suddenly transitioned to very low 
dynamic friction allowing the slide to accelerate downhill at high speed, and 3) 
suddenly transitioned back to high friction when the sliding velocity dropped to 
zero. 
 

 
 

Fig. 8-34.  Photograph of force chains that result from the shearing of an 
assemblage of photo-sensitive plastic beads that are confined to a rectangular 
bucket.  The black wedge above is moving to the left.  The polarized light is 

transmitted by beads experiencing shear strain that is the result of uniaxial stress 
carried by the force chains (from Robert Behrenger’s web site). 
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.    
 

 
Figure 8.35.  Landslide across the Madison River in Montana triggered by the 

1959 M 7 ½ Hebgen Lake earthquake.  Note that the slide had sufficient 
momentum to climb the the opposite valley wall.  I seems that the friction 

transitioned back to high static friction when the sliding velocity dropped to zero. 
 
Some of the most dramatic examples of large landslides are from the Hawaiian 
Islands.  The dotted lines in Figure 8.36 map out the areal extent of landslide 
deposits that originated from the slopes of Hawaiian volcanos (Moore, J., D. 
Clague, R. Holcomb, P. Lipman, W. Normark, and M. Torresan, 1989, 
Prodigious submarine landslides on the Hawaiian Ridge: Journal of Geophysical 
Research, v. 94, p. 17,465–17,484). Several of these enormous landslides appear 
to have run out more than 100 km from their source region.  Furthermore, there is 
evidence that giant tsunamis (run-up heights exceeding several hundred meters) 
carried beach rocks far up the flanks of existing volcanos.  The most recent of 
these events has been dated at about 100,000 ybp (Megatsunami deposits on 
Kohala volcano, Hawaii, from flank collapse of Mauna Loa, McMurty, and 
others, 2004, Geology, 32, 741-744, doi: 10.1130/G20642.1). 
 
 
Figure 8.37 shows a map of the head scarp of one of these landslide structures (P 
Lipman, T. Sisson, and J. Kimura - 2-4. Hilina slump area, 2001, Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=69511814).  This scarp is 
called the Hilina slump (or alternatively, the Hilina fault).  Figure 8.38 is a 
photograph of the Hilina escarpment.  Obviously, the landslide is currently in 
equilibrium, which means that the friction in the landslide exceeds the shear 
forces that result from the gravitational weight of the slide. 
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Fig. 8.36.  Spatial extent of debris fields created during pre-historic collapse of 
the flanks of Hawaiian volcanoes.  These enormous landslides sometimes ran 

more than 100 km along the ocean bottom. (Moore and others, 1989) 
 

 

  
Figure 8.37 Map showing the extent of the Hilina slump which appears to be an 

incipient flank collapse structure. 
 
 

http://hilo.hawaii.edu/%7Ekenhon/GEOL205/Landslides2/lslide1.gif
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Figure 8.38.  Photograph of the escarpment of the Hilina fault (landslide).  

 
Figure 8.39 shows a schematic cross section of the Hilina slump.  The eruption of 
lavas built the broad swell of the Island of Hawaii.  The old ocean floor sits at the 
base of volcanic deposits, which are more than 10 km thick in the center of the 
volcano.  The weight of the volcanics have depressed the ocean floor so that the 
interface between the volcano and the ocean floor dips shallowly towards the 
volcano.  This means that the toe of the landslide actually moves upwards due to 
gravitational collapse of the head of the landslide. 

 
 

 
Figure 8.39. A cross section showing the structure of the Hilina slump.  Notice 
how this cross section resembles cross sections intended to show the shallowest 

section of subduction zones. 
 
 
Landslides vs. Earthquakes or Cracks vs. Slip Pulses 
Although the Hilina slump appears to be an example of an incipient long-run-out 
landslide, it has experienced other modes of failure.  In particular, there have 
been several large earthquakes that seem to have occurred on the basal interface 
between the ocean floor and the volcanic deposits.  The 1975 M  7.4 Kalapana 
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earthquake and the 2018 M 6.9 Leilani Estates earthquake both appear to have 
occurred as shallow-dipping thrust earthquakes along the interface at the base of 
the Hilina slump.  Figure 8.40 shows the surface projection of the contours of slip 
that were used to simulate teleseismic P-waves. 
 

 
Figure 8.40.  Slip model of the 2018 M 6.9 Leilani Estates 
earthquake (Lay, T., Ye, L., Kanamori, H., & Satake, K.(2018). 
Constraining the dip of shallow, shallowly dipping thrust events 
using long-period Love wave radiation patterns: Applications to 
the 25 October 2010 Mentawai, Indonesia, and 4 May 2018 
Hawaii Island earthquakes. Geophysical Research Letters, 45, 
10,342–10,349. https://doi.org/10.1029/ 2018GL080042) 

 
As is the case for almost all shallow crustal earthquakes, these moderate-sized 
earthquakes were probably propagating slip pulses.  Furthermore, the dynamic 
friction during the slip pulses was probably very low (just like most shallow 
crustal earthquakes).  The main difference between these earthquakes and a giant 
long-run-out landslide is that the landslides were certainly expanding cracks.  Of 
course, a standard crack has a crack tip at at least one end (In many cases the 
crack extends to the surface).  In the case of a landslide, both ends extend to the 
surface. 
 
Presumably, there is a critical dimension for slip pulses.  If the slip pulse 
becomes larger than this dimension, then it transitions into an expanding crack.  
At this point, I don’t know what this critical size is, but I can make an educated 
guess.   For example, the M 8.8 2010 Maule earthquake was well recorded by 
high-rate GPS stations located directly above the rupture.  Figure 8.41 shows the 
displacements at several stations located above the rupture.  Clearly this is an 
example of a slip pulse; the slipping had already stopped at stations in the south 
near the epicenter before rupture even began beneath stations in the north. 
Heaton, T., S. Minson, M Simons, 2011, S11A-2201 Characterization of the Slip 
Pulse for the 2010 M 8.8 Maule Earthquake, Fall AGU). 
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Fig. 8.41. GPS displacements recorded during the M 8.8 2010 Maule earthquake.  

This is clear evidence that the rupture consisted of a slip pulse; not all of the 
points on the rupture surface are slipping simultaneously. 

 
While almost every reasonably well recorded earthquake seems to be best 
modeled with slip pulses, there are several examples that suggest that slip pulses 
grew so large that they turned into expanding cracks.  I think that the best 
example of this behavior is from the 2011 M 9.2 Tohoku earthquake.  Figure 8.42 
shows the surface projection of contours of slip on the subduction interface 
(Simons, Minson, Sladen, Ortega, Science, ).  This slip model was constructed to 
simulate co-seismic GPS displacements combined with tsunami waveforms, 
which are primarily determined by the spatial pattern of coseismic uplift.   
Although the inferred slip is large (as much as 40 m in the hypocentral region), 
the inferred rupture history can be interpreted as a very large slip pulse.  The 
Simons and others model appears to show that the rupture did not extend all of 
the way to the ocean floor.  Unfortunately, the model resolution in the shallowest 
region (at the trench) is poor since the displacement data is only available from 
on-shore GPS stations.  Furthermore, in the limiting case of zero depth, there are 
no radiated seismic waves for the case of a horizontal fault.  That is, slip that 
occurs at the upper edge of a subduction earthquake is practically invisible for 
seismic studies. 
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Figure 8.42 

 
 

There was a lucky break for researchers studying the Tohoku earthquake.  Ocean 
bottom observatories TJT1 and TJT2 had been installed just west of where the 
mega-thrust fault intersects the ocean floor (see Figure 8.43).  Sonar positioning 
had been used to calculate the position of these stations on the ocean floor.  
Although the pressure records from the earthquake were of interest, the most 
amazing observation came from relocating the stations after the Tohoku 
earthquake.  In particular, the change in position of TJT1 and TJT2 was 
determined to be 62 ± 20 m and 53 ± 20 m, respectively.  In addition, the 
pressure gauges indicated that the stations had been uplifted by 5 m (Ito and 
others, 2011).  It seems as though there was exceptionally large slip on the very 
shallowest part of the rupture.  Ito and others showed that this large shallow slip 
was consistent with a large pulse in tsunami height that was recorded on two 
ocean bottom pressure sensors, TM1 and TM2 which are located closer to the 
Honshu coast (see Figure 8.43).  Ito and others summarize their findings in 
Figure 8.44; they concluded that the slip in the 50-km wide shallow part of the 
rupture (average depth of 4 km from the ocean bottom) was about 80 m.   
 
Remarkably, there was no evidence for this enormous slip to be found in the 
short-period accelerograms recorded on either Honshu or in the teleseismic body 
waves.  Of course, this is what one would expect from crack-like rupture; the 
high-frequency radiation is only from the propagating crack tip.  Furthermore, in 
the limit of a horizontal fault that becomes very shallow, there are no radiated 
waves of any sort (including surface waves).  That is, very shallow thrusting on 
very low-angle planes is essentially invisible to seismometry.  Unfortunately, this 
faulting geometry can cause static uplift of the ocean bottom, which can cause 
large damaging tsunamis.  Shallow crack-like slumping at an ocean trench seems 
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to be a logical explanation for tsunami earthquakes, which are a class of nearly 
silent earthquakes (or slumps) that generate dangerous tsunamis (see McKenzie 
and Jackson, 2012, Tsunami earthquake generation by the release of gravitational 
potential energy, EPSL, 345-348, 1-8). 

 
Figure 8-43.  Locations of ocean-bottom observatories operating during the 2011 
Tohoku earthquake (Ito, Y, T. Takeshi, Y. Osada, M. Kido, D. Inazu, Y. Hayashi, 

H. Tsushima, R. Hino, and H. Fujimoto, 2011, Frontal wedge deformation near 
the source region of the 2011 Tohoku‐Oki earthquake, Geophys. Res. Lett., 38, 

L00G05, doi:10.1029/2011GL048355). 
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Figure 8-44.  Schematic showing the region of inferred large slip near the Japan 
Trench for the 2011 Tohoku earthquake (Ito and others,  2011).  The dip of the 

megathrust is so shallow that it appears that the shallowest part of the earthquake 
can be interpreted as a gravitational slump.  

 
 

While it is uncommon to find direct evidence for crack-like rupture in 
earthquakes, crack-like rupture might also help to explain puzzling features of the 
enigmatic 1960 M 9.5 Chilean earthquake.  Crack-like rupture produces very 
large slips that are spatially smooth; the ratio of short-period to long-period 
radiated energy is small for crack-like ruptures as compared to pulse-like ruptures 
of comparable potency.   
 
Figure 8.45 shows the peak amplitude of broad-band (1 s to 90 s) teleseismic P-
waves for the largest earthquakes of the 20th Century.  WM  for these events is 
based on the potency (aka seismic moment) which was estimated from a variety 
of long-period measurements that include geodetic positioning, tsunami 
excitation, and excitation of free oscillations.  Notice that, with the exception of 
the 1964 M 9 ¼ Alaskan earthquake, the largest earthquakes have long-period 
body waves that saturate with magnitude.  This behavior is inconsistent with 
standard spectral scaling laws.  It presents us with a mystery.  Why are the 
potency rate functions of the largest earthquakes smoother than other 
earthquakes? Figure 8-46 shows potency-rate functions inferred for these largest 
events.  These time functions were derived from teleseismic P-waves recorded by 
the long-period Benioff seismometer in Pasadena, which has a response that is 
flat to velocity between 1 s and 90 s (see chapter 3).  In the case of the largest 
earthquakes (M > 9), it appears that there is a large portion of the potency rate 
function that is not visible in the 1 to 100 sec teleseismic P-waves. 
 
One plausible explanation is that many of these largest events may have sections 
with crack-like ruptures, which are characterized by large, spatially-smooth slips.  
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Figure 8-45. Maximum distance corrected P-wave amplitude on the Pasadena 
broad-band seismograph (aka, Benioff 1-90) for the largest earthquakes of the 

20th Century.  The triangles are observed data and the circles are predicted from 
standard f-2 spectral scaling.  This scaling seems to match the observations of 
most earthquakes, except those with M > 9.  Hartzell, S., and T. Heaton, 1988, 
Failure of self-similarity of large shallow subduction earthquakes, Bull. Seism. 

Soc. Am., 78, 478-488. http://resolver.caltech.edu/CaltechAUTHORS:20121121-
115204715 

 
Figure 8.46 shows Potency Rate functions that are 1) compatible with the 
observed 1-90 records, 2) have potencies that are compatible with estimates using 
free oscillation data, and 3) that have overall durations that are inferred from the 
source dimensions and typical rupture velocities (Hartzell, S, and T. Heaton, 
1985, Teleseismic time functions for large shallow Subduction zone earthquakes, 
Bulletin of the Seismological Society of America , v. 75, pp. 965-1004. 
http://resolver.caltech.edu/CaltechAUTHORS:20130130-145105862). The 
apparent saturation of intermediate-period body waves is also recently reported 
by Kanamori and Ross (Reviving mB, Geophys. J. Int. ,2018, 216, 1798–1816 doi: 
10.1093/gji/ggy510). 
 
The bottom line seems to be that there is evidence that slip pulses can transition into 
growing cracks if the pulse becomes large enough (perhaps slips > 20 m are 
predominantly crack-like). 

http://resolver.caltech.edu/CaltechAUTHORS:20121121-115204715
http://resolver.caltech.edu/CaltechAUTHORS:20121121-115204715
http://resolver.caltech.edu/CaltechAUTHORS:20130130-145105862
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Figure 8. 46 
 
Initiation of cracks 
 
At the other end of the scale, earthquake nucleation is almost certainly a crack-
like process.  In order to have dynamic instability (an earthquake), it is necessary 
that the rate at which potential energy (usually strain energy) is removed from the 
system must exceed the rate of energy dissipation in inelastic processes (friction).  
For example, see equation 8.95, which estimates the minimum area that a crack-
like rupture can experience dynamic instability.  When Dieterich-Ruina friction is 
assumed for slowly increasing shear stress (e.g., plate motion), then inelastic 
strains tend to concentrate in an area that eventually becomes the hypocenter of 
an expanding crack.  This temporal evolution is a consequence of the evolving 
state variable, and the nucleation process may accelerate over days in a small 
patch.  The important point is that ruptures cannot initiate as slip pulses; the 
rupture area of the slip pulse would be smaller than the critical length for 
instability. 
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Transition from cracks to pulses 
 
Assuming that all earthquakes initiate as growing cracks, and that most 
significant shallow crustal earthquakes appear to be propagating pulses, leads to 
the conclusion that there must be some length where there’s a transition from 
crack-like rupture to pulse-like rupture.  Currently, finite fault modeling of 
seismograms is the methodology that allows us to image slip pulses.  This 
detailed 3-d imaging is more difficult when the distance to the observation is 
large compared with the dimension of the rupture.  That is, it has not been 
feasible to image the ruptures of earthquakes smaller than M 5 ½ with enough 
precision to resolve slip pulses.  
 
Another way to investigate the transition of cracks to pulses is shown 
schematically in Figure 8.47 (from Meier, Heaton, and Clinton, 2016).  This 
schematic shows several circular arcs on a rupture plane.  The arcs are meant to 
show crack (or healing) fronts at different times.  The shaded areas show the 
slipping region for several different times.  For areas near the point marked as 
nucleation, all of the area is slipping in the moments after the rupture front has 
passed; it’s an expanding crack.  At later times, the rupture front has propagated 
further from the hypocenter and the slip is now confined to a pulse.   
 
The schematic shows expected slip profiles at different times.  When the 
earthquake is crack-like, we expect to see spatially smooth slip profiles, whereas 
when it’s a pulse, we expect to see spatially heterogeneous slip; I’ll come back to 
that to explain why pulses are inherently unsteady.  Panel d is a schematic of the 
potency rate function that one would expect from such a conceptual model.  
Remember that the far-field displacement should look like the potency rate 
function. 

 
Fig. 8-47 Cartoon showing concept for transition between crack-like and pulse-

like rupture (see text). 
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Meier, Heaton, and Clinton investigated a large set of near-source displacement 
records (doubly integrated from accelerograms).  The records were all at 
hypocentral distances of less than 25 km and they were all processed in the same 
way.   The records are sorted into magnitude bins and then the log of the median 
peak displacement for each magnitude bin is plotted as a function of log time (see 
Fig. 8-48).   The  use of a log-log plot allow us to look for power-law behavior.  
Time is defined with respect to the first P-wave.  Pay close attention to the 
logarithmic time scale; the first decade is only one tenth of a second and the 
center of the plot is just 1 second.  The S-wave pick times are displayed at the 
bottom of the plot as single points for each record.  Notice that the S-waves do 
not begin to arrive until several seconds after the P-arrival.  Also notice that for 
the first 0.2 s, the median motions are approximately the same, independent of 
the magnitude.  Furthermore, the pgd’s grow quickly and increase as 
approximately 3t .  We interpret this initial rapid growth as crack-like rupture in 
the hypocentral region.  There also appears to be a change in the pgd growth rate 
at about ¼ s.  That is, pgd seems to grow as 3t  until it transitions to a growth 
rate of about 1.3t  for times greater than ¼ s.  Of course, earthquakes smaller than 
M 4.5 seem to be all over by ¼ s, so the transition to 1.3t growth is only observed 
for earthquakes larger than M 4.5.   

 

 
Fig. 8.48 

 
 
I interpret this break in growth at 0.25 s (corresponds to M 4.5) as the transition 
from cracks to pulses.  I admit that this evidence is suggestive and not 
compelling.  If this is the transition from cracks to pulses, then we can estimate 
the rupture length at which the transition occurs.  For crack-like rupture, the total 
event duration is about twice the time required for the rupture to spread, or 
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2event
R

ST V≈  .  ( )1 0.25
2crack pulse RL V s− ≈  .  If we use a typical rupture velocity of 

2.5 km/s, then the transition would occur at a rupture length on the order of 250 
m.  Unfortunately, the assumption of a length-scale independent rupture velocity 
is not at all obvious.  That is, it seems plausible that the rupture velocity increases 
as the crack grows.  That possibility of increasing rupture velocity seems difficult 
to assess and I will ignore it for the present.  Assuming that the dimension of the 
rupture at which this break in scaling is 250 m, then the rupture area would be on 
the order of 46 10×  m2 (assuming that the rupture approximately square).  We 
can use 8.22 to estimate that that corresponds to a magnitude 3.0 earthquake.  
This estimate is similar to the M 4.5 at which the scaling changes in Fig. 8.48.  
Using 8.30, we can estimate the total change in potential energy as 
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the prestress 0σ  is a typical Byerless stress of 200MPa, and if the stress drop is 
the average of 3 MPa. Then the change in potential energy of a M 3.0  is about 5 
MJ/m2.  This enough energy to melt several mm’s of fault material.  This 
potential energy change can be compared with the radiated energy that is 
estimated using 8.57.  The following is from an unpublished note from Hiroo 
Kanamori. I lightly modified his equations which were written in the familiar 
form of seismic moment and assuming a circular rupture. I will assume the 
standard 2f −  model 
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The S-wave energy is large compared to the P-wave, so neglect the P-wave. 
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To compare the radiated energy per unit rupture area with the potential energy 
per unit rupture area, we need to divide 8.112 by the rupture area 
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that is appropriate to simulate static stress drop.  Our current derivation is 
designed to simulate near-source high-frequency motion.  In this case, it seems 
more appropriate to use effective stress instead of static stress drop.  Hanks and 
McGuire used near-source acceleration records to conclude that effective stress is 
about 10 MPa.  Inserting 10 MPa into 8.114 gives an estimated radiated energy 
of 2MJ/m2.  Clearly, there is ambiguity in obtaining the  radiated high-frequency 
energy estimate.  However, I would say that it’s in the range of 1 MJ/m2.  
 
In order to form a slip pulse, there must be enough potential energy change to 
sustain the high-frequency radiated energy in a slip pulse.  If we say that the 
high-frequency energy (f > 2 Hz) radiated by a slip is described by a white noise 
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acceleration spectrum (this is basically Brune’s model), then we can use 8.114 to 
provide a very rough estimate of the radiated high frequency energy.  Since the 
rupture area of a slip pulse is small compared to a crack, the estimate may be 
larger than that just provided (as large as 200 kJ/m2??).  Our earlier estimate of 
potential energy change of 5 MJ/m2 for a M 3 indicates that there is abundant 
available energy to support the radiation of high frequency waves (greater than 2 
Hz) that are observed in the near-source region of slip pulses.  
 
The Sound of Slip Pulses 
 
I have used the phrase, “white noise,” without providing much definition or 
context.  The “colors of noise” is a concept that originates in audio engineering.  
It has been observed that many forms of noise have random phase with a power 
spectrum that is approximately described by a power law 2f α  .  Recall that the 

power spectrum is an energy spectrum.  That is, if the power spectrum is 2f α  , 

then the amplitude spectrum is f α  .  In the case of sound, the amplitude of sound 
is proportional to acoustic pressure, which is proportional to the particle velocity.   
 
In audio engineering, the term, white noise, refers to a sound that has equal 
energy in all frequency bands ( 2 0f α= , just like white light).  In this case, the 
amplitude spectrum is also flat and white.   A good example of the sound of 
white noise is the sound that an old-fashioned AM radio makes when it’s tuned 
between stations (sometimes called shot noise).  If the amplitude spectrum of the 
particle velocity is constant, then the amplitude spectrum of the particle 
displacement is 1f −  , and the spectrum of the particle acceleration is 1f  .  Now 
the observation of the “sound of a slip pulse” is that it has constant particle 
acceleration amplitude, or the velocity amplitude spectrum is 1f −  .   This in turn 

gives a power spectrum that is 2f −  .  Noise of this type is typically called red 
noise.  This form of noise is quite common in physical systems.  For instance, the 
time integral of randomly timed force impacts (e.g, Brownian motion) produces 

1f − red noise. Red noise sounds very much like the roar of a waterfall. 
 
It seems that slip pules are accompanied by white-noise acceleration with a total 
radiated energy on the order of 1 MJ/m2.  It’s as if slip pulses have a distinctive 
sound (the sound of a waterfall).  Furthermore, this noise seems to be consistent 
with the notion that the slip pulse is characterized by Brownian-motion-like 
impacts from a fluidized granular material.     
 
 Modeling Slip Pulses 
 
In my 1990 paper, I presented observational evidence that earthquake rupture is 
pulse-like and I then presented a conceptual model of dynamic friction that I 
claimed would produce slip pulses.  In particular, I hypothesized that dynamic 
friction was inversely proportional to slip speed, which is a particular realization 
of the friction law in equation 8.99.  At the time that I wrote the slip pulse paper, 
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I searched for an analytic solution for a steady slip pulse.  The only solution that I 
found is a solution by Freund (1970).  Fig. 8.50 shows Freund’s solution for a 
mode III slip pulse of length pl   that is propagating at constant velocity RV  .  

The shear stress at infinity is uniformly equal to 0τ and the shear stress on the 

slipping patch is pτ .  The dynamic stress drop of the pulse pσ∆  is given by 
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Figure 8-49. Idealized model of Freund (1970) in which a pulse of slip 
propagates steadily at velocity RV .  A uniform shear stress 0τ is applied at infinity 

and the shear stress on the slipping portion of the fault is assumed to be to fτ  . 
 
This solution is obtained by the appropriate transformation of the static solution 
of a mode III crack of length pl  .  This solution has numerous quirks that limit 
it’s usefulness.  In particular, if the rupture velocity approaches the shear 
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velocity, then, for a given slip, the length of the slip pulse tends to zero.  Or 
alternatively, given the length of the slip pulse and the slip, then the dynamic 
stress drop of the slip pulse tends to zero as the rupture velocity approaches the 
shear wave speed.  These features are the result of singular stress at the crack tip 
that results from instantaneous stress drop (no fracture energy).  Presumably, the 
stress at the leading edge of the slip pulse is approximately the shear stress that is 
required to overcome static friction.   

  
As was mentioned earlier, there is no inelastic work at the crack front (fracture 
energy) and the crack front has singular stresses that cannot be handled 
numerically.  The second issue is that this friction law has no stable steady-state 
solutions.  In particular, a steady-state pulse should propagate at a constant 
velocity and with a slip pulse of constant slip.   
 
Another strange aspect of this solution is that the static stress drop is zero.  That 
is, the pulse propagates indefinitely, so the total rupture length is infinite while 
the slip is a constant.  Finally, since this solution is obtained from a transformed 
static solution, there are no radiated waves generated by this slip pulse.  This 
turns out to be an important feature of a slip pulse that propagates steadily.  It 
is invisible to seismology.  A slip pulse only radiates far-field waves when 1) 
either it changes its amplitude as it propagates, or 2) it changes its rupture 
velocity.  You can obtain further insight in this by reading the analysis associated 
with Figures 7.12 and 7.13.  Interestingly, this invisibility of steady-state slip 
pulses means that we cannot resolve the upper limit of slip velocity from 
seismic data.  That is, you can only observe the details of a slip pulse if you are 
so close to the pulse that you can observe the near-field terms (basically the static 
part of the solution).  Since seismic measurements are only available from the 
Earth’s surface, it is practically impossible to observe the true nature of slip 
pulses that propagate at depth greater than a couple of km. .  However, it is 
possible to put a lower bound on the average slip velocity.  In particular, the 
duration of pulse-like ground velocities in the forward directivity direction 
provides a lower bound on slip velocity.  Since directivity pulses are only 
observed for mode II ruptures (they are on the fault normal component of stations 
located near a fault with the provision that the rupture is is propagating parallel to 
the slip direction (i.e., mode II).  Modeling of records of this type indicates that 
the length of slip pulses is typically less than 10% of total rupture length.   
 
It appears that the average slip velocity in slip pulses is greater than 2 m/s.  Since 
the elastic strain in shear waves is on the order of the particle velocity (1/2 the 
slip velocity) divided by the wave speed (see Chapter 3), we can conclude that a 
particle velocity of 1 m/s in a material with a shear wave speed of 3 km/s implies 
a shear strain of about 43 10−× .  Therefore, a slip velocity of 20 m/s implies a 
shear strain of about 33 10−× , which is about the maximum shear strain that rocks 
can sustain at the confining pressure of earthquakes.  While 20 m/s slip velocities 
(at 10 km depth) is an order of magnitude faster than is typically assumed for 
earthquakes, it is not possible to exclude the possibility of slip velocities as 
high as 20 m/s.  Again, high slip velocity in a slip pulse that is steadily 
propogating at depth does not necessarily produce large high-frequency radiation.    
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It is important to recognize that the solution given by 8.115 is not a “self-healing” 
pulse.  It is only a slip pulse because I constrained the fault rupture to be pulse-
like.  In my 1990 slip-pulse paper, I hypothesized that friction that scales with 
inverse slip velocity should produce slip pulses.  As it turns out, it has not been 
possible to simulate the behavior of two half spaces that are governed by a 
friction law that varies inversely with slip speed.   
 
While a solution like that shown in Fig. 8.24 can match boundary conditions, it is 
not a stable solution.  In order to achieve a stable solution, then it must be that 
slight perturbations from homogeneity in the prestress should have little effect on 
the solution.  Assume that you have found a slip pulse that will propagate steadily 
at a particular homogeneous prestress.  Now assume that some slight perturbation 
occurs as the pulse runs (e.g. a tiny patch with higher prestress).  When the pulse 
hits the perturbation, then the pulse temporarily begins to grow larger, which 
means that it has slightly larger slip speed.  However, larger slip speed means 
that the friction drops, which causes the pulse to grow even larger.  That is, if you 
put a tiny positive perturbation to a steadily running slip pulse, then it grows 
spontaneously without bound.  Similarly, if you perturb the solution such that it 
temporarily becomes smaller, then it quickly shrinks to zero.  
 
Rice and Lapusta recognized this difficulty and they concluded that a friction that 
is purely rate weakening would produce slip pulses with unstable solutions (Rice, 
J. R., Spatio-temporal complexity of slip on a fault, J. Geophys. Res., 98(B6), 
9,885–9,907, 1993).  They concluded that pure rate weakening friction is a 
pathological mechanics problem.  They said that this problem is ill posed.  By 
that they meant that there was insufficient information to construct a solution to 
the problem.  In particular, there is no length scale to rate weakening friction; 
while a stable slip pulse has a length scale associated with it (see Chapter 5 of 
Ahmed Elbanna’s PhD dissertation for further discussion).   
 
Aagaard and Heaton (2008, Constraining fault constitutive behavior with slip and 
stress heterogeneity, J. Geophys. Res., 113, B04301, doi:10.1029/2006JB004793) 
studied this problem using 3-d finite element models of sliding faults with a 
friction law that had both slip weakening (fracture energy) and rate weakening.  
They were unable to simulate rupture using pure rate weakening (i.e. zero 
fracture energy) since the solutions became singular at the crack tips; it was not 
possible to attain numerical stability.  Based on this knowledge, they 
hypothesized that, if there is a solution to pure rate-weakening friction, then the 
solution would have to be described by a fractal, since fractals and homogeneous 
solutions are the only classes of solution that have no inherent scale.     
 
Aagaard and Heaton were searching for ways to produce earthquakes that had 
self-sustaining heterogeneity.  That is, they observed that most finite fault source 
inversions resulted in slip models that 1) were characterized by slip pulses, and 2) 
the slip models were spatially complex.  Aagaard and Heaton attempted to find 
ways to produce self-sustaining spatial heterogeneity that would persist through 
many millennia of earthquakes.  Although they were able to find spatial 
distributions of frictional properties that would produce spatially heterogeneous 
slip in response to plate motions.  They found that the residual stress that was left 
after the heterogeneous event was then spatially correlated with the heterogenous 
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friction. The result was that the next event in the sequence was spatially 
homogeneous.  Aagaard and Heaton wanted to show that strong rate weakening 
could produce earthquakes that were 1) self-sustaining heterogeneous, 2) skip 
pulses, and 3) that required very little inelastic dissipation energy (friction and 
fracture energy).  Unfortunately, achieving numerical convergence with low 
fracture energy and with strong rate weakening was not possible with even the 
largest super computers.  When they recognized that the number of computations 
required for this calculation grows as 4

1
x∆ , they realized that finite element 

simulations could not solve this problem.  Worse, the simulation of strong rate 
weakening and low dissipation requires that the model should evolve into a 
prestress that is spatially complex.  In particular the prestress must be fractal (I’ll 
get back to that later).  This makes the numerical simulation problem even more 
overwhelming.   
 
Aagaard and Heaton found that they could produce more spontaneous slip 
heterogeneity by increasing the strength of the rate-weakening in their friction 
law.  A general observation that comes from numerical finite element modeling 
of rupture dynamics is, if you assume relatively homogeneous prestress, then the 
change in potential energy per unit rupture area grows as the rupture length 
grows.  The only parameter that is available to absorb all the potential energy is 
the fracture energy; the fracture energy must exceed the radiated energy if you 
want to control the dynamics of an earthquake.  I have seen numerous dynamic 
models with enormous fracture energies.  My opinion is that these reported 
fracture energies are simply introduced as a way to avoid numerical instability in 
the calculation of stress at the rupture fronts.  I will shortly argue that prestress is 
extremely heterogeneous and that this prestress heterogeneity serves to limit the 
growth of dynamic ruptures. 
 
Following the realization that there are fundamental difficulties with 3-d finite-
element modeling dynamic ruptures assuming strong rate-weakening friction, 
Ahmed Elbanna and I took a different approach.  We decided to study the impact 
of strong rate weakening friction on a 1-d spring-block-slider model (sbm).  The 
sbm (shown in Fig. 8.50) consists of a number ( )1,...,i m=  of identical point 
masses that are connected with identical leaf springs (stiffness lk ) to rigid blocks 
(above and below) that move with a steady differential velocity v  .  Additionally, 
the blocks are connected to each other by identical coil springs (stiffness ck ).  
Finally, there is uniform rate-weakening friction between the masses and the 

lower rigid block ( 1
1fi

i

F
bu

=
+ 

 ).  Dynamic friction is specified to occur at any 

block that exceeds a specified maximum force.  While you might think of this 
maximum stress in a block is the “strength” of this system, it seems that changing 
the value of this maximum has very little effect on the overall behavior of this 
system.   
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Figure 8.50 
 
The sbm has several tunable parameters that control the system behavior.  In 
particular, if the coil springs are stiff, then there is strong coupling between the 
masses and when failure occurs, it tends to involve all of the blocks.  In fact, 
events tend to be crack-like in the sense that all bocks are moving during an 
event.  As I have already mentioned this friction law provides a positive feedback 
in the dynamics of this problem.  That is, the faster the sliding, the lower the 
friction which produces even faster sliding.  Positive feedback dynamics is often 
a characteristic of chaotic systems.  For example, the stock market is a highly 
complex system.  When stock prices are rising, people want to buy so they can 
get in on the profits.  Conversely, when stock prices are falling, people want to 
sell before they lose their investment.  Wild fires are another example of a 
positive feedback system.  The larger a fire, the faster it spreads.  Epidemics are 
another example of a positive feedback system.  All of these systems have 
complex behavior that is difficult to predict.  In fact, often the behavior is so 
complex that we resort to random variables to describe them.  However, it is 
important to recognize that complexity does not necessarily imply random.  In 
fact, surprising structure can spontaneously appear as the result of chaotic 
dynamics. 
 
Elbanna and I chose to investigate the sbm model since it is simple enough to 
explore with modern computers, while it still has characteristics that are of 
interest for earthquake dynamics.  In particular, it is possible to explore the 
consequences of strong rate weakening friction using an sbm model.  One reason 
that sbm’s are amenable to computer simulations is that they are nearest-neighbor 
models.  That is, motion of a single block only affects the adjacent blocks.  This 
is in contrast to an elastic continuum; slip on a fault segment causes stress 
changes throughout the entire medium.  The fact that the motions at a finite-
element node are affected by the motions of all other nodes is responsible for the 
enormous size of 3-d continuum calculations.  By their very nature, slip pulses 
are short-range phenomena, and it’s critical to have a numerical scheme that 
concentrates on short-range phenomena if there is any hope of studying them.   
 
There are two distinct stiffnesses in the sbm, the coil springs and the leaf springs.  
If the friction is dropped to zero, then the coupled blocks vibrate through 
traveling waves.  These waves are dispersive because of the two stiffnesses.  If 
the system is frictionless and composed of only coil springs, then the system is 

nondispersive and the sound wave velocity is, c
s

kc m= .  If leaf springs are 

added to the frictionless system, and if it is excited by harmonic forcing of 
frequency ω , then the wave speed is dispersive and is given by 
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( )21 l

p s
s

kc c
cω

= −   8.118 

  
Fig. 8.51 shows the spatio-temporal characteristics of a typical slip pule in an 
sbm with velocity weakening friction.  Notice that the pulse is very localized as it 
runs (pulse width is 5% of the rupture length).  Furthermore, the pulse seems to 
be nondispersive and running at the sound velocity (since the springs are linear, 
there is no way for disturbances to jump to supersonic velocities).  The apparent 
constant rupture velocity is typical of most events in this system and it is a key 
feature that allowed us to develop the slip-pulse energy equation that allows us to 
simulate this system with a single equation (more later on the pulse-energy 
equation). 
 
 

 
Figure 8.51 
 
Even though all of the springs, masses, and friction laws are identical for every 
block in our model, the individual events are quite complex.  Typically, we 
initiate the system by assuming a higher pre-stress in some group of blocks.  
Although individual events can become quite large, they do not grow without 
bound since the energy in the leaf springs that drives the system has an upper 
bound.   After a large number of events have occurred, the system attains an 
unusual kind of steady state.  That is, the statistical properties of the events and 
the prestress no longer change as more events occur.  That is, the systems evolve 
towards a strange attractor.   In dynamics, an attractor is a state that a system 
tends to evolve to independent of initial conditions.  An attractor is called strange 
if is described by a fractal.   An example of the nature of the prestress that has 
evolved after tens of thousands of events is shown in fig. 8.52. 
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Figure 8.52 

 
 

The model is unitless and the maximum shear before dynamic failure is 50 units.  
In this example, the next event starts as an expanding crack at the narrow spike at 
block 290 and it then quickly becomes two slip pulses that propagate bilaterally 
until they arrest at block 225 on the left and block 345 on the right.  Notice that 
the pulses propagate at the relatively low prestress of 10 units and that they arrest 
after propagating across regions of negative shear stress.   Many colleagues 
have been surprised that a frictional system that is being forced with right-lateral 
shear can evolve patches of left-lateral shear stress.  In the case of slip pulses in 
an sbm, the answer is quite simple.  As a slip pulse propagates, it can become 
accumulate large kinetic energy (i.e., large slips).  Because of the strong feedback 
in the friction law, slip pulses can also arrest very abruptly.  When this happens, 
there can be a patch of very large slip that is frozen in when the event is over.  
The slip may be locally large enough that it causes shear stress in the opposite 
direction of the motion of the rigid plates driving the system.   
 
Even though there are patches of negative shear in this self-organized prestress, 
there are never any events that have slip in the opposite direction of forcing.  
That is because events only nucleate when the stress exceeds a threshold and this 
only happens when the prestress has the same polarity as the driving stress.  This 
same principle applies to the Earth.  If there are patches of negative prestress 
(e.g., left-lateral stress on the San Andreas fault), then they are mostly invisible to 
seismology since such patches will not nucleate future events.  For more 
discussion on this subject, see Smith and Heaton. 
 
Figures 8.53 shows an example of the types of events that occur after the system 
has evolved into a strange attractor.  We call this example Case A.  In each of 
these plots, a sequence of thousands of consecutive events are plotted.  Each 
event (event index is the horizontal axis) shows the blocks that moved during that 
event.  Fig. 8.53 shows events number 62,000 through number 66,000.  Most of 
these 4,000 events involve only short ruptures, although there are many long 
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ruptures as well.  If you stare at this sequence, it would be easy to convince 
yourself that there are likely to be some blocks with different properties that 
control the locations of events.  Of course, this is not the case; everything is 
uniform in the model.   
 
There are also persistent local knots that experience a large number of mostly 
short ruptures.  These knots sometimes persist even after a long rupture extends 
through the knot.  Inevitably, though, these knots are transitory, and some future 
large event erases them and causes new knots to appear.  It’s important to 
remember that sbm’s only have nearest neighbor interactions.  This means that 
once a knot forms, conditions at the knot are totally independent of what is 
happening at more distant nodes in the system. 
 

 
Figure 8.53 

 
Although I claim that this system is chaotic, there is actually quite a bit of 
structure in the spatio-temporal sequence of the larger events.  Complex does not 
mean that it’s random.  In nonlinear dynamics, a system is called chaotic if its 
long-term solution is sensitive to perturbations in initial conditions.  If a small 
change in the prestress at some time causes the future events to diverge from the 
unperturbed system, then the system is chaotic, which is the case for this system. 
 

 
Figure 8.54 

 
Fig. 8.54 shows a snapshot of the shear stress that is associated with Figure 8.53 
(case A).  Only 1,400 of the 10,000 total blocks are shown to better display the 
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spatial complexity. Areas where the prestress is negative (opposite to the driving 
stress) are shown in red.  Even though the next event on this system is entirely 
controlled by this prestress distribution, it is virtually impossible to guess what 
the next event will look like.  You’ve got to run the computer to calculate the 
complex evolution of the next slip pulse as it propagates through the system. 
Later, I will show an equation that does in fact do this calculation. An important 
feature of the system is that two events with virtually identical prestresses can be 
very different if the events nucleate at different places. 
 
Figure 8.55 shows the relationship between average slip in an event and the 
rupture length of the event for Case A.  Although there is large scatter, there is a 
clear trend that shows that events with larger rupture lengths have larger average 
slips.  In fact, the ratio of the average slip divided by the rupture length is 
approximately independent of the overall size of the event (as measured by the 
rupture length).  Figure 8.48b shows the same events, but in this case, the vertical 
axis is the average change in stress (stress drop) and the horizontal axis is rupture 
length.  This implies that the average stress drop in this system is independent of 
the event size.  This is very similar to the observations of natural earthquakes. In 
the case of chaotic slip pulses, the scale invariance of stress drop is a 
consequence of self-organization of the prestress; it’s not caused by details of 
the friction law.  
 
Although the stress drop is scale invariant in this model, there is still a scatter of 
about a factor of 100 between individual events.  Similar scatter is seen in natural 
earthquakes.  I have the impression that many researchers believe that the scatter 
in observed stress drops is primarily caused by erroneous measurements.  
Personally, I believe that most of this scatter is real and that it comes from the 
natural variation arising from rupture complexity of slip pulses.  In fact, the 
average stress drop of earthquakes is almost certainly a measure of the 
heterogeneity of the spatial distribution of slip.  That is, if the amplitude of a slip 
pulse changes slowly as it propagates, then the probability that the pulse will 
drop to zero is small compared to a similar sized pulse whose amplitude changes 
rapidly as it propagates.  This topic is discussed in a paper by Liu-Zeng, Heaton, 
and DiCaprio, 2005, The effect of slip variability on earthquake slip-length 
scaling, Geophys. J. Intl., 162 (3), 841-849. 
http://resolver.caltech.edu/CaltechAUTHORS:20130305-102043001.  It seems 
that the more heterogeneous the slip, the higher the average stress drop.   
 
 

http://resolver.caltech.edu/CaltechAUTHORS:20130305-102043001
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Figure 8.55. CaseA 
 
There are several parameters to play with in the sbm models.  The first and most 
important is the ratio between the coil spring stiffness and the leaf spring 
stiffness.  If the coil springs are very stiff, then the blocks tend to move in unison 
and then there are more large events and fewer small events (Case A, Fig. 8.53).  
That is, stiffer coil springs produces events with less spatial heterogeneity and it 
also results in suites of events that have lower b-values (Gutenberg-Richter). 
 
Figure 8.56 shows the events produced by a system with more compliant coil 
springs (Case  B).  Notice that there are more moderate sized events than Case A 
with stiffer coil springs.  That is, this system has a lower b-value.  Although the 
average stress drops for this system are higher than for case A, they are still scale 
invariant.  The scale invariance seems to come from the fractal nature of the 
prestress.  Figure 8.57 shows that the prestress for case B is more heterogeneous 
than for case A. 
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Figure 8.56. CaseB 
 
 

 
Fig. 8.57. Case B 
 
How to interpret the chaotic sbm 
 
The sbm system has the advantage that slip-pulse dynamics can be studied with 
modern computers, whereas 3-d elastic systems cannot, even if the events are 
confined to a single planar fault.  Nevertheless, it’s important to acknowledge 
that there are important differences between the Earth and an sbm.  For example, 
we can tune an sbm to produce power-law frequency-magnitude statistics 
(similar to the Gutenberg-Richter law).  But the sbm confines all of the events to 
a single line (it's a 1-d model).  In contrast, it seems clear that real earthquakes 
are distributed within a volume.  As modern seismology is providing ever greater 
fidelity to resolve spatial patterns in seismicity, we are seeing ever more complex 
structures. That is, seismicity seems to not be amorphous clouds of events.  
Instead, seismicity seems to occur on complex assemblages of planar faults.  The 
implication is that earthquakes occur on fractal networks, while at the same time, 
the dynamics of the failure is fundamentally chaotic and described by fractals. 
 
At this point, it seems hopeless to attempt to model all this geometric and 
dynamic fractal complexity.  Perhaps a more constructive question is to ask what 
we would do with our models if we were capable of realistically simulating 
earthquake phenomena.  My opinion is that these new dynamic models provide 
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us with a deeper understanding of failure processes, and they hint at new 
frameworks for characterizing mechanical properties.  
 
The Earthquake Cycle 
 
Several decades ago, Keitti Aki proposed that all earthquakes shared simple 
common characteristics (i.e., stress drop, rupture velocity, geometric aspect 
ratios).  Even though I have argued that his insight was fundamentally flawed, 
Aki’s conjecture has been a useful framework to understand the characteristics of 
earthquakes.  Actually, Aki recognized that spatio-temporal complexity was 
missing from his conjecture and he later proposed models such as the barrier 
model (patches of high mechanical strength) to introduce complexity.  Kanamori 
and Anderson’s seminal paper on earthquake scaling was an extension of Aki’s 
conjecture.  Kanamori later introduced the asperity model (patches of high 
prestress) to add spatio-temporal complexity into the model.  Although barriers 
and asperities are fundamentally different, they serve the same purpose of adding 
complexity. 
Whether it’s barriers or asperities, both of these models lead to crack-like 
dynamics; neither of these models are chaotic.  Their behavior may be complex, 
but it is fundamentally predictable; it’s ultimately controlled by spatial variations 
in earth materials that define friction.  Based on the behavior of these crack-like  
models, researchers have proposed that earthquakes are fundamentally dominated 
by repeating large earthquakes.  A cartoon of this view of earthquakes as large 
events that repeat regularly (controlled by the average slip per event and the fault 
loading rate) is often referred to as the seismic cycle (see Fig. 8.58).   
 
Geologic evidence of slip in past earthquakes has suggested that complex slip 
patterns repeat from one slip event to the next one.  This has motivated the notion 
that the large earthquakes are characteristic earthquakes.  I often observe 
colleagues who opine about where we are in the seismic cycle.  For example, 
“the big one is overdue.”  While this type of earthquake cycle logic is natural if 
earthquakes are crack-like ruptures, it seems nonsensical from the viewpoint of 
chaotic slip pulses.  Slip pulses arise from extreme spatio-temporal variations in 
dynamic friction.  Dramatically low dynamic friction only occurs in the core of a 
propagating slip pulse. 
 
   

 
Figure 8.58 
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One way to get a feel for importance of  the crustal strength is to estimate  the 
total strain energy in the Crust of southern California and to then estimate how 
many earthquakes  would be required to remove all of this energy.  This is kind 
of a whimsical calculation, but it can help to build intuition. 
 
I begin by assuming that the shear stress in rocks is close to the limit of Byerly 
friction (I have heard several colleagues make this claim).  That is, I will assume 
a coefficient of friction of 0.6 and that between the free surface and a depth of 15 
km, the shear stress is approximately increasing linearly at a rate of 20 MPa/km.  

Now the strain energy density is given by 21 1
2 2
σε σ

µ
= .  Therefore, 
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Now let’s take the approximate area of southern California to be 300 km by 300 
km or 11 210 m . Then 
 205 10E J≈ ×  (8.120) 
Now the conversion to energy magnitude is  

 log 4.8
1.5W
EM −

=  (8.121) 

So there is enough energy for a M= 10.6.  Or alternatively, if the crust is 
uniformly at the Byerly limit, then there is enough strain energy for 7,500 M 8 
earthquakes. In this whimsical world, the next earthquake nucleation could set off 
a chain reaction of 7,500 M 8 earthquakes.  Clearly the assumption that the stress 
is near the Byerly limit is incorrect.   
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Strength of the chaotic spring-block slider model 
 
While figures similar to 8.58 are common in earthquake studies, they typically 
avoid putting numbers on the vertical axis to describe shear stress.  Nevertheless, 
there is an implied maximum shear stress that many researchers describe as the 
strength of the system.  As I have discussed earlier, there are long-standing 
debates about what is the appropriate strength of the crust.  Before, I discuss the 
strength of the crust, I want to discuss the strength of the sbm just presented.  
This system provides some important insight into how to view the strength of the 
crust. 
 
Strength based on average stress 
 
If the prestress in the sbm was uniform, then defining the strength of the system 
would simply be the stress at which failures occurred.  However, the prestress is 
very complex.  Given this complexity, there are several different ways that we 
could think of to measure the strength of the system. 
 
Let’s begin by looking at the prestress in the event shown in Fig. 8.52.  We could 
define the strength to be the maximum shear force that can occur on a block, 
which in this case, is 50. However, the choice of maximum force of 50 has little 
effect on the overall behavior of this system.   A more meaningful choice for 
strength would be to measure the total shear force on all the blocks that moved in 
the event that occurred as a result of the force distribution in Fig. 8.52.  In a 
laboratory experiment to measure strength, we typically measure a load that 
results in failure, and then we divide by the cross-sectional area of the sample to 
obtain the strength of the material (described as a stress, or force per area).  I will 
define this to be the average stress-based strength, or  
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In the case of the event for fig. 8.52, the average stress is less than 10, which is 
much less than the maximum shear stress of 50. 
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Fig. 8.59.   Case A  0.232 RLσ

−Γ ≈   
 
We can immediately see that if the Earth experiences slip-pulse failure, then the 
strength of the Crust is significantly lower than the maximum shear stress in the 
system (presumably the shear stress at the hypocenter).   That is, laboratory 
experiments on the frictional strength of materials may not tell us much about the 
strength of the crust.  My opinion is that the “Christmas tree” model (see Fig. 
8.26) does not represent the strength of the crust.  Instead, it provides an estimate 
of the maximum localized stress. 
 
In the rate-weakening sbm, faster sliding is associated with lower friction.  Faster 
sliding is more common in longer ruptures that have larger slip pulses.  These 
physics are behind the correlation between strength of the sbm and the length of 
the ruptures.  That is, the average stress decreases with the rupture length as is 
shown in Fig. 8.59.  The heavy line is a log-log fit that indicates that average 
stress based strength scales with rupture length as, 0.2

RLσ
−Γ   .  Obviously, larger 

dimension solids (e.g., the Crust) support larger events; the larger the event, the 
lower the strength. 

 
This may, at first, seem counter-intuitive.  Perhaps it’s easier to see if you realize 
that the definition of strength that I am using involves finding the average of the 
self-organized prestress at different lengths.  It seems that the longer the 
averaging length of prestress, the lower the average.  I will get back to that 
shortly when I discuss power laws.  
 
Strength based on work 
 
In the laboratory, it is straightforward to calculate the average stress in a sample.  
However, this is not a feasible measurement in the Earth since we don’t know the 
total load on the failure surface.  In principle, we could measure the stress tensor 
at enough locations that we could obtain a realistic average.  In fact, that is what 
would be required if we want to take a spatial integral to estimate total load.  If 
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stress is heterogeneous, then it is not feasible to measure it at enough points to 
spatially integrate it. 
 
Perhaps you have already observed that I have previously discussed the strength 
of the crust using arguments about heat energy, fracture energy, and radiated 
energy (see eq. 8.89).  In the sbm, there is no radiated energy or fracture energy, 
frictional heating is the only dissipation to absorb the potential energy released 
by the springs. Accordingly, I define strength based on work as  
 

 dissipation
W

E
LD

∆
Γ ≡  8.123 

 
You can think of WΓ  as being analogous to a plastic yield stress.  It provides an 
estimate of how much work is required to change the material from an initial 
configuration to a final configuration.  Since energy is an integrated quantity, it is 
not necessary to worry about the spatial irregularities associated with fractal 
stress.  
 
Figure 8.60 shows the length scale dependence of WΓ , and it should be compared 
with Fig. 8.59.  There is a considerably stronger weakening of this strength with 
increasing length scale.  In this example 0.4663W RL−Γ ≈  (it’s case A, see Figures 
8.54 and 8.55).  The fact that longer ruptures are associated with higher slip 
velocities is the reason for this stronger length dependence of the energy based 
strength.   
 

 
Figure 8.60.  log-log Plot of energy-based strength,  WΓ , vs rupture length for 
events from case A of the sbm.  Notice that there is a stronger dependence of 
energy-based strength on rupture length than there is for stress-based strength 
(see Fig. 8.59). 
 
This is an important lesson from the sbm.  That is, when considering materials 
that experience slip pulses, determining the strength of the system using 
analyses based on energy considerations is likely to provide smaller 
estimates than is obtained by estimating the total load on the region that 
fails. 
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Figure 8.61. Case B 

0.1910W RL−Γ ≈   
 
 
Power-Law Scaling 
 
While crack-like rupture dynamics can be quite complex, the far-field radiation 
from these models can be described by some scaling relations about amplitude 
and duration.  Fundamental theorems concerning the principle of “equivalent 
width” can be used to infer the shape of Fourier amplitude spectra for crack-like 
models.  Crack-like models with constant stress drop typically produce amplitude 
spectra that can be characterized with simple power laws.  In particular, these 
power laws have simple exponents (e.g., 

32 2,f f −−  ).  These laws have exponents 
that are rational numbers because of some simple geometries (e.g., rupture area 
scales with 2L , stress drop scales with /D L ,  derivatives and integrals are 
equivalent to multiplying or dividing f or 1f − , etc.). 
 
However, in chaotic self-organized systems, there are also typically power laws, 
but in this case, the exponents can be any real number (Although this is a 
speculation, I suspect that these exponents are typically an irrational number).   
The power law behavior is the result of self-organization of the system into a 
self-similar fractal.  By definition, fractals are scale free. 
 
I believe that self-organization of chaotic dynamics that is the key to 
understanding Aki’s observation that earthquakes seem similar over a wide band 
of length scales.  Ironically, it became popular to erroneously use the term self-
similar for Aki’s conjecture (his model is similar, but not self similar).  But in the 
end, the more appropriate model of earthquakes as scale free self-organization of 
chaotic dynamics produces true self-similarity. 
 
It may seem that we are at an impasse.  Models like the sbm provide the insight 
that we are dealing with a chaotic self-organizing system, but computational 
limitations prevent us from meaningful simulations of 3-d solids that yield during 
strong rate-weakening friction. 
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One approach to this impasse is to develop new equations that provide us with 
meaningful calculations, while at the same time requiring fewer calculations.  
The need to allow the system to self-organize while simultaneously honoring the 
complexity that comes from positive feedback dynamics is why this is so 
difficult.  It’s important to recognize that if the solution is described by a fractal, 
then there is little hope of using conventional continuum mechanics (Navier’s 
equation).  That is, Navier’s equation is a 2nd order partial differential equation, 
whereas our solutions likely look like fractals.  A fundamental difficulty with 
fractals is that the conventional definition of a derivative doesn’t make sense for 
fractals.  That is, derivatives are defined to be the change in a function’s value as 
the step size shrinks to zero.  Fractals are irregular at all scales, even when the 
step size shrinks to zero.  This means that this class of problem can only be 
investigated with discrete models.  In effect, we anticipate that we will be 
unable to derive exact solutions to problems. 
 
It is important to recognize that the Fourier spectra of parameters describing 
individual events that occur as a result of self-organized chaotic dynamics do not 
necessarily follow a strict power law.  Instead, it is the expected value of these 
parameters that obeys a power law. 
 
Although I have argued that the amplitude spectrum has a power-law expected 
value, I have avoided discussion of the phase spectrum.  This is a tricky issue, 
since chaotic behavior is definitely not the same as random phenomena.  That is, 
there is structure (often hidden) that results from these systems.  This structure is 
fundamental to the identification of strange attractors.   In the case of our 
problem, we can anticipate that the phenomena are statistically stationary.   
That is, the expected values of our parameters are independent of the origin 
system. 
 
Slip v Length (stress drop) scaling 
 
One example of a stochastic power-law model comes from a study of slip vs 
length scaling by Liu-Zheng, Heaton, and DiCaprio. We considered a simple 1-d 
model of slip as a function of linear distance x.  In particular, we assumed that 
slip is a stochastic function of x. We hypothesized that the amplitude of a slip 
pulse as it propagates along the fault is described as a random walk.  Consider 
that I have discretized distance along the rupture as ix . I will assume that 
 
 ( ) ( )1i i iD x D x R+ = +  8.124 
 
Where iR  is a number chosen from a bin of random numbers.  This is known as a 
1-d random walk and this process has been used to simulate the Brownian 
motion of particles that are randomly impacted with fluid molecules.  1-d 
Brownian motion is the same as taking the integral of random white noise over 
all past steps.  The random sequence ( )R x has a Fourier transform that is also 
composed of random numbers.  That is, the spectrum looks like random numbers 
that do not change their expected values as a function of wavenumber.  
Therefore, the amplitude spectrum is flat and this is called white noise.  In 
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contrast, the stochastic slip is the spatial integral of this random function and thus 
it has a 1

k  spectrum. 

 
I can generalize this model by assuming that the slip is a fractal function of 
space, or 
 

 ( ) ( )
0

R k
D k D

kα=   8.125 

 
In standard Brownian motion, 1.α =   However, since we are dealing with self-
organizing fractals, we anticipate that α may be an irrational number; in this case  
the process is called a fractional random walk.  Unfortunately, current 
measurements of slip variations are inadequate to obtain a stable estimate for the 
amplitude spectrum of slip of real earthquakes.   
 
Liu-Zheng, Heaton, and DiCaprio (2005, GJI,  doi:10.1111/j.1365-
246X.2005.02679.x) used this fractional random walk model to reproduce 
measured values of the ratio of average slip divided by the rupture length. In 
particular, measurement of Potency and rupture length are available from many 
earthquakes.  As I will now show, the ratio of Potency to rupture length depends 
on the value of α .   
 
We considered this to be an example of a class of problems known as gambler’s 
ruin.  The focus of this problem is to estimate how many games a gambler can 
play before he loses all of his money.  That is, slip as a function of space is 
transformed into a sequence of games of chance.  Once the slip crosses the x-
axis, the earthquake is considered to be over.  That is, the rule of this game is that 
earthquakes are comprised of spatially continuous regions of slip.  Figure 8.62 
shows examples of spatially contiguous slip profiles for different values of α .  
All of the walks start at zero slip and end at zero slip; most of the examples 
involve only several steps until the slip returns to zero.   The three examples in 
Fig. 8-62 are chosen to show the spatial characteristics of the larger events in this 
numerical experiment.  The spatially averaged slip for each event is shown as D1, 
D2, and D3. Notice that the red curve ( )1.0α = is quite rough.  This is true 
Brownian motion.  The length of this red rupture is 72 km and the average slip is 
4.5 m, which gives a slip to length ratio of 56 10−× , which is comparable to the 
average value of earthquakes (see 8.33). 
 
The next thing to notice in Figure 8-62 is although the different events have  
comparable rupture lengths, the average slip decreases as the roughness is filtered 
out.  This trait is clearly displayed in Figure 8-63, which shows how increasing 
smoothness, α , results in systematically longer rupture for a given average slip.  
That is, the rougher the fractional random walk, the better the chance that the slip 
will cross the x-axis (termination of the event).   
 
You should recognize that the ratio of average slip to rupture length is a measure 
of the average stress drop for these events.  Thus, this model predicts that 
rougher slip distributions produce higher average stress drops.  Also notice 
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that, although the red curve ( )1.0α =  has a rupture length of 73 km, it very 
nearly terminated at the 67-km mark, which would have been a 44-km rupture. 
That is, it was mere chance that the red event did not have a significantly higher 
stress drop.  In this model, two events could have identical slip distributions up 
until one of them stopped rupturing.  If the second event continued to rupture it, 
might end up with a much lower stress drop, even though the radiation from the 
first part of the ruptures was identical.  This example shows that average stress 
drop may not tell us much about the dynamics of a rupture.       

 
Figure 8-62 
 

 
Figure 8-63. 
 
Now the observation that average stress drop is approximately independent of 
scale is direct evidence that average slip scales linearly with rupture dimension. 
Notice that in standard 1-d random walk (aka, Brownian motion 1.0α = ), the 
expected rupture length scales as the square root of the average slip.  However, 
when the smoothness increases to 1.5α =  (one and one half integrals of random 
white noise), then the expected rupture length scales linearly with average slip.  
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Curiously, 1.5α =  seems to be some type of critical point.  That is, if  1.5α > , 
then the random walks tend to diverge with distance (the gambler always wins).  
 
While a 1-d fractional random walk model can adequately explain stress drop 
scale invariance, it does a poor job of simulating the Gutenberg-Richter 
relationship.   Figure 8-64 shows the slip/length ratios of many simulated events 
And for several values of σ .  It appears that a smooth distribution , 1.5α = , 
produces just as many long ruptures as it does short ones.  That is the b-value is 
approaching 0.  In contrast, a standard random walk ( 1.0α = ) produces many 
more short ruptures than long ones. 
 

 
Figure 8-64 

 
This observation raises some interesting questions. Are large strike-slip ruptures 
with very long ruptures (340 km for 1857 Ft Tejon, or 450 km for 1906 San 
Francisco) compatible with the Gutenberg-Richter law?  If they are to be 
explained by a fractional random walk, then the slip must vary slowly along the 
rupture.  I admit that I don’t know how to explain these very long ruptures.  
However, if you examine the slip to length ratio of major historic crustal 
earthquakes (see Wells and Coppersmith, BSSA, 84, 974-1002), you will see the 
distribution shown in Fig. 8-65a.  In comparison, Fig. 8-65b shows the result of a 
combination of numerical simulations of fractional random walks with 1.25α =
and 1.5α =  .   This particular combination matches the observation that the 
variation in the slip to length ratio is larger for shorter ruptures than it is for 
longer ones (notice the trend in the upper limit in both plots).  
 
The observed similarity between measure slip/length ratios  and fractional  1-d  
random walks is evidence  that the observed scale  invariance of stress drop may 
be closely related to the heterogeneity of ruptures, and not a simple characteristic 
of friction.  The fact that, for a given magnitude, stress drops can vary by more 
than two orders of magnitude has often been attributed to modeling error.  
Personally, I prefer to interpret this large range of reported stress drops as being a 
real phenomenon that just reflects variations in random walks. 
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Figure 8-65 
 
 
It is important to recognize that the models of spatial complexity that I have just 
described all come from 1-d models; there are no complicated fault systems 
similar to what is observed in the real earth.  In fact, there is great variety in the 
geometric complexity of fault systems.  Some faults are remarkably simple 
planar unconformities.  In fact, it is possible to view the Punchbowl fault in great 
detail by a pleasant trip to Punchbowl Regional Park.  The Punchbowl fault is a 
major right-lateral strike-slip fault that runs sub-parallel to the San Andreas fault 
just north of the San Gabriel Mtns.  This fault is interpreted to be an early version 
of the San Andreas and it appears that the total offset on this fault is about 45 km.  
Luckily, erosion over millions of years has exposed extensive sections of the 
fault for detailed investigation.  There is a very good field guide by Fred and 
Judy Chester (they have many excellent publications describing many aspects of 
this fault).  A visit to the Punchbowl allows you to view the fault along its strike 
and it’s plain to see that it is geometrically flat (despite the large total offset).  It’s 
even more amazing to view the fault up close.  In most areas, the total thickness 
of the fault zone is less than a meter and there is evidence that most of the sliding 
was confined to a zone only several mm wide. 
 
The San Gabriel Fault is another early version of the San Andreas that has been 
exposed by erosion (again studied by Chester and Chester).  If you hike along 
this fault zone, you will find some places where the fault is a simple thin zone 
(like the Punchbowl fault), but you will also find other places where the fault 
becomes very complex (a complex zone of pulverized rock more than several 
hundred meters wide (for example, visit Red Box Gap just north of Mt. Wilson). 
 
Recent advances in remote imaging have provided a new perspective on the 
complexity of individual earthquake ruptures.  For example, comparison of 
before and after satellite-based photographs of the desert floor show that the 2019 
Ridgecrest rupture occurred on a complex network of fault structures (Figure 8-
66).  Given the observed geometric complexity of observed faults, it’s easy to 
think that the dynamic complexity of earthquakes is entirely due to this geometric 
complexity.  This is an important unsolved problem in earthquake physics.  That 
is, we suspect that 3-d complexity of faults is important, but we can’t even 
numerically simulate the dynamic complexity that occurs on simple planar faults 
that experience pulse-like ruptures. 
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Figure  8-66.  Deformation of the ground surface in the vicinity of the 2019 
Ridgecrest earthquake sequence. (Chen, Avouac, Aati, Milliner, Sheng, and Shi, 
https://doi.org/10.1038/s41467-019-13750-w). 
 
The type of complexity shown in Fig. 8-66 is typical of other well-observed 
crustal ruptures (e.g., 1991 Landers, 2001 Hector, 2011 Cucapah-El Major, 2017 
Kumamoto, 2018, and 2016 Kaikoura).  In contrast, there are long sections of the 
San Andreas fault that appear to be relatively simple and planar (especially the 
Carizzo Plain).  The very long ruptures in 1857 and 1906 appear to have been on 
relatively straight sections of the San Andreas. 
 
Although we observe geometric complexity in fault systems, it is difficult to 
simulate and interpret.  In particular, any kind steadily rupturing fault that has 
localized jumps in fault orientation (e.g., a kink) will produce singular stress 
changes at geometric corners.  Some modelers have argued that geometric 
corners are the likely places to initiate and terminate rupture (often referred to as 
fault segmentation).   Although this seems like a plausible assumption, there are 
clear examples where fault ruptures seem to ignore these segment boundaries.   
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Figure 8-67.  Geometric complexity of the 1991 Landers earthquake.  
 
The 1991 Landers rupture is an example that shows a failure of the fault 
segmentation hypothesis.  That is the rupture progressed northward along the 
Johnson Valley Fault, and then it continued to rupture when it intersected the 
Homestead Valley Fault.  It then ruptured right through another  segment boundary 
between the Homestead Valley Fault and Emerson/Camp Rock fault.  The rupture 
finally terminated in the middle of a fault segment (perhaps the straightest fault 
segment in the whole complex).  While it may be that fault complexity and 
segmentation has a first-order effect on rupture dynamics, the Landers earthquake 
clearly shows that simple models do a poor job of predicting reality. 
 
 
Heterogeneous Stress in the shallow Crust 
 
There are numerous places in this chapter that I have argued  that stress is likely to 
be spatially complex  (look at the discussion of chaotic slip pules).  In the 
following, I discuss the statistical characteristics of this heterogeneous stress.   
Unfortunately, this discussion may be difficult to follow.  Furthermore, the 
hypothesized model is very different from conventional models of crustal stress 
(for example, see Zoback and Zoback, or Scholz).   The  model was developed by 
Deborah Smith and me and it is designed to show that the effect of heterogeneous 
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stress depends strongly on the length scale that is appropriate for different 
problems.

 
Figure 8-68.  Map of Southern California with velocity arrows used in this study 
in a fixed North America reference frame. Red arrows: velocity provided by the 
Scripps Orbit and Permanent Array Center (SOPAC); blue arrows: data from the 
University of Miami; green arrows: data from the crustal motion map (version 3) 
by the Southern California Earthquake Center (SCEC).   Hackl, M. & Malservisi, 
Rocco & Wdowinski, Shimon. 2009, Strain patterns from dense GPS networks, 

Natural Hazards and Earth System Sciences, 9. 10.5194/nhess-9-1177-2009. 
 
The measurement of stress in the Crust  is actually very difficult.  Testing in deep 
boreholes is probably the most direct approach to this problem.  Unfortunately, 
deep boreholes are extraordinarily expensive and they are typically limited to the 
upper 5 km of the Crust.  Since  direct measurements are so sparse, many earth 
scientists use simple models to infer  the stress in the crust.  One of the most 
successful methodologies to inform these models comes from observations of the 
spatio-temporal distribution of the changes in positions of geodetic monuments 
over time.   The introduction of satellite-based surveying (Global Positioning 
Satellite system, GPS) in the 1990’s has provided the data to track the steady 
deformation that drives plate tectonics.  Figure 8-68 shows the velocities of 
stations in southern California relative to the average velocity of North America.  
These velocity vectors are very coherent; they all point to the northwest and their 
amplitudes steadily increase as for stations located further from stable North 
America. 
 
The impressively coherent, long-term, point velocities in Fig. 8-68 might mislead 
you into the impression that the crustal stress in comparably coherent.  In 
contrast, Fig. 8-69 shows the orientation of the principal compression  axes 
measured in a number of boreholes in southern California.  These orientations are 
primarily obtained by observing the orientation of borehole breakouts, which  
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are spontaneous fractures in  the walls of boreholes (primarily from the oil 
industry).  Borehole breakouts typically occur in the faces of the borehole that are 
perpendicular to the least compressive principle stress axis (aka, the  Sh axis). SH 
is the direction of the largest compressive principal stress axis. B 
because the Earth’s surface is traction free, Sh and SH are generally horizontal 
and therefore, they are perpendicular.   
 

 
Figure 8-69. Wilde and Stock [1997, J.Geophys. Res., 102, 4969-4983] plotted 
inferred maximum horizontal compressive  stress, SH , orientations from 
borehole breakouts in Southern California. There are a variety of orientations for 
borehole breakouts from the same borehole or from boreholesspatially close to 
one another. This suggests short-wavelength spatial stress heterogeneity. In this 
modified plot, we have used circles to point out a few of the locations studied by 
Wilde and Stock that show evidence for SH orientation heterogeneity.  Modified 
by Smith and Heaton, 2011,  Bull.  Seism. Soc. Am., 101, 1396–1421, doi: 
10.1785/0120100058 
 
 
Notice that there is considerable scatter in the SH orientations.  Although this 
scatter is sometimes described as “noise,” observation of breakouts is relatively 
straightforward.  That is, direct measurements of stress orientation provide 
evidence that the actual stress field may be far more complex than you might 
imagine from inspection of particle velocity field shown in Fig. 8-68.  It’s not 
noise. 
 
The statistical analysis of the orientations of focal mechanisms is currently the 
most popular method to determine the spatial orientation of stress in the crust 
(see foundational papers by Angelier, J., 1984, J. Geophys. Res., 89, 5835–5848, 
and by Michael, A., ,1984, J. Geophys. Res., 89, 11517–11526 and also Michael, 
A., 1987, J. Geophys. Res., 92, 357–368.  These studies make the following key 
assumptions: 1) stress is approximately uniform in space, 2) the crust has a large 
suite of pre-existing fault planes with a large variety of orientations,  3) these 
faults  have a large variety of yield stresses, 4) seismicity in a region occurs on a 
diverse suit of planes with many orientations 5)  (most importantly) the slip 
vectors of all of the earthquakes are aligned with the direction of maximum shear 



8-114 
 

stress in the region.   According to this technique, the orientation  of the principle 
stresses in a region is that orientation that minimizes the misfit of one of two 
plausible slip vectors (there are two conjugate planes for every focal mechanism) 
for the suite of focal mechanisms. 
 
Focal-mechanism-based stress inversions are widely used as the basis to describe 
the stress distribution in the Earth’s Crust.  Unfortunately, there is a 
fundamental inconsistency in the underlying assumptions.  Specifically, it 
seems impossible to have spatially uniform stress (assumption 1) if there is an 
assortment of randomly oriented fault planes with a very wide range of yield 
strengths (see Rivera and Kanamori, 2002, Geophys. Res. Lett. 29, art. no. 1088). 
 
A particularly egregious violation of the assumption of homogeneous stress 
comes from a study of the aftershocks of the 1989 M 6.9 Loma Prieto earthquake 
by Zoback and Beroza (1993, Evidence for near-frictionless faulting in the 
1989 M 6.9 Loma Prieta, California, earthquake and its aftershocks, Geology, 21, 
181-185.  Figure 8-70 shows the focal mechanisms of aftershocks of the 1989 
Loma Prieta earthquake projected onto the main fault plane.  Slip in this 
earthquake was oblique (a steeply dipping plane with a slip vector that was 
primarily right-lateral strike slip with some thrusting).   Rather mysteriously, a 
significant percentage of the aftershocks had slip vectors in the opposite direction 
to the mainshock.  That is, there were left-lateral aftershocks on the obviously 
right-lateral San Andreas fault.  Zoback and Beroza explained this by 
hypothesizing that the static coefficient of friction was nearly zero on the San 
Andreas.  This would have made the maximum principal stress axis nearly 
perpendicular to the San Andreas.  Zoback and Beroza argued that there were 
small variations in fault strike and that the shear stress resolved to different 
polarities as the strike varied. 
 
I find this explanation to be implausible for several reasons.  1) the amplitude of 
the slip (see the shaded contours) varies by more than a meter within several km.  
This implies large local strain changes, which implies large local stress changes.  
This observation seems incompatible with an assumption of uniformly low static 
stress on the mainshock fault plane.  2)  Such a small static friction (less than 0.1) 
has never been observed in testing and it seems incompatible with the shear 
stresses that are necessary to support the gravitational load of the Santa Cruz 
mountains (directly above the rupture). 
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Figure 8-70.  Map view of the aftershocks of the 1989 Loma Prieta earthquake 
(from Beroza and Zoback).  The slip distribution derived from a finite-fault slip 
inversion is also shown as the shaded contours.  The vertical axis is depth.  (+) 
represents right-lateral focal mechanisms, (x) represents left-lateral, (Δ) reverse 

thrusting, and (◊) is normal.  Each focal mechanism has two conjugate 
(perpendicular) planes and the plane that is most parallel with the mainshock is 

displayed.  The Red Arrows (x) highlight aftershocks with slip vectors that are in 
the opposite direction from the mainshock. 

 
Another explanation is that the stress is highly heterogeneous (similar to the 
stress in Fig. 8-52) and that there are actually patches of large left-lateral stress 
that exist on the San Andreas fault.   These patches of negative shear stress would 
be the remnant of previous chaotic ruptures; the dynamic shear stress in the 
vicinity of a slip pulse are more than an order of magnitude greater than the 
average stress change.   Since steadily increasing tectonic shear stress is in the 
direction of plate motions, regions of negative shear stress will not nucleate 
earthquakes.  That is, only regions in which the local shear stress is large and also 
aligned with tectonic stress rates will have future hypocenters.  The only time 
that we expect earthquakes in the opposite direction from plate motion is during 
an aftershock sequence.  That is, the spatially complex slip in the mainshock 
means that the stress changes from the mainshock are even more complex than 
slip pattern.  This interpretation seems to explain seismicity near the Loma Prieta 
earthquake; events with negative slips have not been observed in the background 
seismicity, they are only observed in the aftershocks. 
 
Another curious feature of seismicity (either background or aftershocks) is that it 
ends to be clustered in space; I sometimes call it clumpy.  That is, there are 
typically spatial knots of persistently high seismicity (just look at any high-
resolution seismicity map).  Although it may be tempting to assign different 
material properties to these spatial knots, I suspect that these high-seismicity 
knots are ephemeral (perhaps on the time scale of decades to centuries).  In 
particular, I suspect that patches of high seismicity are patches of high stress 
 
Deborah Smith and I created a stochastic model of the stress tensor in an attempt 
to simulate patchy seismicity that has the statistical characteristics of observed 
focal mechanism catalogs.  We hypothesized that, within some region, the 
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deviatoric stress tensor, ( ), t′σ x , can be approximately separated into tectonic 

term that is steadily increasing and approximately spatially uniform, ( )0
T t t′ −σ , 

and  a term that is spatially heterogeneous and independent of time, ( )H′σ x .  
This model assumes that at the time of the last nearby earthquake, 0t , the 
heterogeneous stress and the average background stress, B′σ , were reset to new 
values by the heterogeneous stress changes caused by chaotic rupture.  The 
deviatoric stress in a region is written as 
 
 ( ) ( ) ( )0, B T Ht t t′ ′ ′ ′= + − +σ x σ σ σ x  8.126 
 
We next hypothesize that events nucleate in the region whenever the shear stress 
exceeds some pre-determined value, 2

YI ′  , where 2I ′  is the 2nd deviatoric stress 
invariant.  This failure criterion is referred to as Henky-Mises plastic yield 
criterion and it is commonly used in the ductile yielding of steel.  That is, we 
assume that the shear stress in the crust cannot exceed this limit; once the yield 
stress is achieved, the material experiences inelastic shearing along conjugate 
planes of maximum shear stress. 
 
To construct this model, we begin with a 3-d Cartesian grid of discrete points,

, ,i j kx .  At each grid point, we use a Gaussian, mean-zero, random number 
generator to select the values of the components of the stress tensor.  We assume 
that the stress tensor is symmetric, ij jiσ σ= , which ensures that angular 
momentum is conserved (see Chapter 3).  The standard deviation of the diagonal 
components is chosen to be 1.0, while the off diagonal terms have a standard 
deviation of 1 2 .  This choice ensures that the random stress is isotropic; this 
is the only ratio that provides stresses that are uniformly distributed in orientation 
space. 
 
Once we have assigned random numbers to each of the six independent stress 
components, we apply a power-law spatial filter to each stress component.  
Because our model is isotropic, we can uniquely specify this filter by defining the 
spectral properties along any line, i ir = x , passing through the grid.  In order to 
construct the heterogeneous stress, we take the 3-d Fourier transform of each 
tensor component.  We then multiply these spectra by  
 
 ( ) ( )1r rF k k

α−
= +  8.127 

    
After which, we take the inverse 2-d transform to obtain the stochastic, power-
law, stress tensor in the spatial domain. This process creates a fractal-like 
distribution.  While the expected value of the average components is zero, the 
mean of a finite number of random numbers is not zero.  We remove the mean of 
our random numbers and then we reintroduce finite mean to our stress through 
the specification of B′σ . That is, the stress is the sum of a zero-mean stochastic 
part with a specified “background” stress. 
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Figure 8-71 shows the stochastic model of heterogeneous stresses projected onto 
a plane that intersects the 3-d grid (100x100x100 points).   
  
 

 
Figure 8-71.  Examples of one component of the stochastic power-law 

heterogeneous stress for different powers, 1
1 rk

α
  + 

, of wavenumber. 

 
 

In order to have a 3-d model with realistic values of stress, it is necessary to find 
a meaningful scale.  In particular, we chose to relate the variance of the 
heterogeneous stress to the size of the uniform background stress B′σ .  In 
particular, we define the Heterogeneity Ratio, HR, as 
 

 2

2

H

B

IHR
I
′

≡
′

 8.128 

Where 2
HI ′ is the spatial average of the 2nd invariant of the heterogeneous 

deviatoric stress.   2
HI ′  is also a measure of the shear-strain energy density (see 

Housner and Vreeland, 1965).  As it turns out, 2
HI ′  is also the sum of the 

variances of the components of ( )0, t t′ =σ x  (see Smith and Heaton). 
 
For this parameterization of the relative size of the uniform background stress 
and the stochastic heterogeneous stress, we want to ensure that the modeled stress 
is independent of the number of grid points used to describe a region.  To 
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accomplish this, we use the same outer scale for different grids, independent of 
the number of grid points.   Fig. 8-72 shows examples of the amplitudes of 
maximum shear stress (heterogeneous plus background) at  points along a line 
intersecting the grid.  Random white Gaussian noise is used for the left column 
and the preferred power-law, 0.8α = , is used in the right column.  The 
heterogeneity ratio, HR, increases from top to bottom; the model in the lower 
right (HR=2.375 and 0.8)α =  best fits southern California focal mechanism 
data.       
 

 
Figure 8.72. Maximum shear stress (aka, Von Mises stress) plotted along lines 

that intersect the 3-d spatial grid of fractal stress.  The horizontal dotted lines are 
taken to be the local yield stress of the material (200 MPa).  The overall 

heterogeneity increases from top to bottom.  The heterogeneous stress is white-
noise random in the left column, whereas the smoother preferred model is shown 

in the right column. 
 
Notice that there is a horizontal dotted line at a shear stress of 200 MPa.  This 
signifies the yield stress at about 8.0 km (assumes Byerly-like friction).  Grid 
points at which the shear stress already exceeds the yield stress are removed from 
the model.  After that, time increases and the spatially uniform tectonic stress,

( )0
T t t′ −σ , steadily increases at a rate of 10 kPa/yr.  This stress rate is consistent 

with the strain rate inferred for the high-strain rate regions of Figure 8-68.   
 
The amplitude of stress grows with time at most of the grid points in Fig.8-71.  
The rate at which this stress amplitude grows is determined by the relative 
orientation of the tectonic stress and the initial stress.   If these two stresses 
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are aligned, then the growth rate of the amplitude is large.  If, on the other hand 
the initial stress is opposite to the direction of the tectonic stress rate, then that 
point evolves ever further from the yield stress.  Only grid points at which the 
stress amplitude exceeds the yield stress experience hypocenters.  Once a grid 
point is declared to be a hypocenter, its location, origin time, and focal  
mechanism (orientation of maximum shear stress) are included in a synthetic 
catalog.  Furthermore, once an event is generated, the location of that grid point 
is removed from the model.  There is no concept of magnitude in this simulation; 
all events are simple grid points and there is no stress transfer to adjacent grid 
points when an event occurs.  This means that there are no aftershocks in this 
model. 
 

 
Figure 8-73.  Simulated seismicity maps based on the fractal stress model of 

Smith and Heaton.  Models increase in overall heterogeneity from left to right.  
Models increase in spatial roughness from bottom to top.  Notice that spatial 

clustering increases as the models become smoother; the top row is random white 
noise plus a spatially uniform stress. 

 
 
 
The most important concept in this model is that locations of hypocenters are 
spatially biased; the seismicity is highest in places where the stochastic 
heterogeneous stress is aligned with the tectonic stress rate.  That is, one 
cannot use focal mechanism catalogs to infer the average stress orientation. Since 
focal mechanisms that are aligned with the stress rate tensor are favored, the 
inversion procedure tens to derive the orientation of the stress rate tensor.  More 
importantly, the strong spatial heterogeneity in the stress is invisible to focal 
mechanism catalogs (except for aftershocks).  Figure 8-73 shows examples of 
focal mechanism catalogs that are generated by the procedure just described.  
Maps of the seismicity produced by different roughnesses, α , and heterogeneity 
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ratios, HR, are shown.  Notice that as α increases (i.e., the stochastic variation 
becomes smoother) the seismicity becomes more spatially clustered.   
 
Figure 8-74 shows a comparison of the spatial coherence of focal mechanisms as 
measured by Hardebeck (2006) and a prediction of this value using the Smith and 
Heaton stochastic model.  The horizontal axis is the distance between pairs of 
events, and the vertical axis is the average angular difference between the focal 
mechanisms of the pair.  0.75 and 2.38HRα = =  produced simulations that were 
most similar to Hardebeck’s data analysis.  The Smith and Heaton study is 
difficult to describe in the simplified context of class notes.  This is an important 
topic and I suggest that you attempt to read the entire manuscript (including 
Hardebeck’s published comment and our reply). 
 

 
Figure 8-74.  Comparison of the Smith and Heaton model for focal 
mechanisms in a stochastic stress field compared with the observation 
of Jeanne Hardebeck of a catalog of focal mechanisms in southern 
California (J. Hardebeck, 2006, Homogeneity of small-scale 
earthquake faulting, stress and fault strength, Bulletin of the 
Seismological Society of America, 96, 1675-1688).  The best fit to 
Hardebeck’s analysis is with 0.8 and 2.4HRα = = . 

 
In order to get a better intuitive understanding of our best fit stochastic model, we 
generated an example of one component of the shear stress on a 100-km grid and 
at a spacing of 1 cm.  Since there are too many grid points to observe on a single 
plot, we plotted a line through the grid at a variety of scales in Figure 8-75.  In 
particular, panel (a) shows 10,000 points on a line through the entire 100-km 
volume, panel (b) shows the same stress on a 10-km length that run from 15 km 
to 25 km, which is a region of higher stochastic stress.  Panel (c) focuses in on 
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17.5 km to 18.5 km, which is the largest stress patch in the previous panel.  
Finally, panel (d) focuses in on a 100-m patch of the highest stress in panel (c).  
The high shear stress at 18.01 km will cause an earthquake nucleation at that 
point at some time in the future. 
 
 
Average shear stress at Different Lengths 
 
We can use Figure 8-75 to investigate the stress-based strength of the crust based 
on this model (see Figure 8-52 and equation 8.122).  In particular, the spatially 
averaged shear stress is shown for each panel in Fig. 8-75.  This average shear 
stress is about 190 MPa at 1 m, 174 MPa at 100m, 155 MPa at 1 km, 104 MPa at 
10 km, and 60 MPa at 100 km.    It is clear that, for this stress distribution, the 
average stress near potential nucleation points decreases with the length over 
which the stress is averaged.   

 

 
Figure 8-75 shows how the stress near a nucleation point (200 MPa yield) 

looks depending on the length scale.  Clearly, the average stress in the 
longest length scale (panel a) in the 3-d fractal grid is lower than the 

average stress viewed at the shortest length scale (panel d). 
 
 

Deborah Smith and I explored how this length scale dependence of average stress 
varies with the power-law smoothing parameter,α , using our stochastic stress 
model.  The results of these numerical simulations are displayed in Figure 8-76.  
In this case, we assumed that 

 1
1L L

γ

σ  ≈  + 
 8.129 
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where L is the scale length of the averaging and γ is a number determined from 
the stress generated in the model.  Assuming that 0.8α ≈  then indicates that the 
average shear stress decreases as about the inverse fourth root of averaging 
length.  That is, changing from a length scale of 1 meter to a length scale of 10 
km would decrease the average stress by a factor of ten. 
  

 

 
Figure 8-76.  Based on simulations like that shown in Fig. 8-75, the 
dependence on stress-based strength on the length scale LγσΓ   is 

shown for different values of fractal roughness.  
 
There are numerous bold assumptions underlying this calculation and, 
unfortunately, it’s almost impossible to directly test this model since the 
measurement of true stress is exceedingly difficult (i.e., expensive).  The Cajon 
Pass Borehole experiment is one example of such a measurement.  This was 
“the” major earthquake experiment of the late 1980’s.  It consisted of a 3.5 km 
deep borehole that was drilled about 3 km north of the San Andreas fault in 
Cajon Pass.  With the view that rocks would be too damaged to measure if they 
were in the fault zone, the scientists managing the project chose to drill adjacent 
to the fault.  A 300-m section of the downhole log of the orientation of borehole 
breakouts is shown in Figure 8-77.  Panel (a) shows the observations.  Note that 
at any given depth, there are two data points that are 180o different (breakouts on 
opposite sides of the borehole).  Panel (b) shows the orientation of the principal 
compression axis along a 300-m line intersecting  our preferred southern 
California stochastic stress model.  Although the model and the observation are 
different, they do have similar variations over this length scale. 
 
One of the most embarrassing observations of this expensive experiment was the 
fact that the spatial average of the orientation of the principal compression axis 
for the Cajon Pass borehole indicated that the San Andreas has an average shear 
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stress that is left lateral (at least in the Cajon Pass).  This is embarrassing since 
the San Andreas fault is obviously a right-lateral fault.  Furthermore, the 
geodetically measure strain rates are also right-lateral (see Figure 8-68).  Barton 
and Zoback interpreted this observation to mean that the principal compression 
axis is almost perpendicular to the fault, which implies a very small shear stress 
on the fault.  In our stochastic stress model, most regions are right-lateral.  
However, there are also significant regions of left-lateral stress. 

 
 

 
 

Figure 8-77. (a) orientation of borehole breakouts observed in a 300-m 
stretch of the Cajon Pass Borehole located 4 km from the San Andreas 
fault.  Tensile stresses are maximum at opposite sides of a borehole and 
they are aligned with the maximum principal stress.  (b) orientation of 
the maximum principal stress along a 300-m linew transecting the 
preferred fractal model of Smith and Heaton 

 
 
The stochastic stress model of Smith and Heaton is radically different from other 
models of stress that are derived from assumptions that the stress variations are 
small compared to the average.  Most researchers that I have encountered do not 
seriously entertain the possibility that shear stress could actually be opposite to 
the direction of tectonic strain accumulation.  I must admit that the stochastic 
power-law model we proposed only makes sense if rupture dynamics are truly 
chaotic.  While I personally believe that the evidence points us in that direction, 
the reader of these notes should always be cautious when discussing these issues 
(caveat emptor). 
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Failure Model that has low frictional heat, low fracture energy, and low 
radiated  energy 
 
Based on the insight obtained from the chaotic spring-block-slider model, the 
stochastic stress model of Smith and Heaton, and the gambler’s ruin analysis of 
fault slip, I am now able to re-examine the stress paradox.  That is, is there a 
model of dynamic rupture that has the following critical features? 1) high 
nucleation shear stress of about 0.6 nσ ,  2) small frictional heating (less than 2 
MJ/m2),  3) small fracture energy (less than 500 kJ/m2, and 4) radiated far-field 
seismic energy of about 22.0 /D MJ m× .   

The key to satisfying these elements is to recognize that 1) friction depends very 
strongly on slip speed; low-speed sliding (mm/s) produces friction similar to the 
Byerly estimate, while high-speed sliding (> m/s) is almost frictionless.  The 
transition between these two types of friction seems to occur when about 500 
kJ/m2 of energy is available on the sliding surface.  2) this low dynamic friction 
produces unsteady slip pulses that can propagate through regions of much lower 
average stress (even localized patches of negative stress).  3) the chaotic system 
evolves its own fractal-like prestress that is large enough to allow ruptures of any 
length (that is, the system is in a critical state).   

 

The average stress drop of events depends on the distance that slip pulses 
propagate (heterogeneous slip is more likely to have smaller rupture lengths, and 
highly heterogeneous ruptures have average higher stress drops).  Slip pulses 
propagate until they encounter low-stress regions.  The Gutenberg-Richter 
relation is controlled by the spatial properties of the prestress. The prestress is the 
result of self-organization of a dynamic system that does not have inherent length 
scales. 

One useful measure of this system is seismic efficiency, Rη , which is defined as 
the fraction of total energy that ends up as radiated seismic energy, or  

 1R D D
R

E W E E
W W W

η ∆ −
≡ = = −
∆ ∆ ∆

  8.130 

where  and R DE E are radiated and dissipated energy, respectively.  The observed 
low dissipation for large earthquakes implies that the seismic efficiency is high 
(approaching 1) for large earthquakes.  That is, for large earthquakes, 

 2Radiation effW E P MPa Pσ∆ ⇒ = ≈ ×  8.131 
We know that the change in potential energy is given by 



8-125 
 

 

( ) ( )( ) ( )

( ) ( ) ( ) ( )

2 2

0 1

22

22 2 2

0

2 22 2

1 , , ,
2

1, , , ,
2

W L

W L

W L LW

W L W L

W x y x y D x y dxdy

x y D x y dxdy x y D x y dxdy

σ σ

σ σ

− −

− − −−

∆ = +

= − ∆

∫ ∫

∫ ∫ ∫ ∫

 

 8.132 

To get some idea of how things work, I will simplify things by assuming that the 
rupture is approximately a line source.  That is, ( ) ( ) ( ),D x y D x yδ≈ . Note that 
if the rupture physics is isotropic, then x can be in any direction. I can now 
evaluate the change in potential energy as 

 ( ) ( ) ( ) ( )
2 2

0

2 2

1
2

L L

L L

W x D x dx x D x dxσ σ
− −

∆ = − ∆∫ ∫  8.133 

The first integral is a difficult problem since ( )D x  is a highly nonlinear function 

of ( )0 xσ .  In contrast, the second integral is entirely determined by ( )D x  since

( )xσ∆  is a linear function of ( ).D x  In particular, it is convenient to write this in 
terms of a Green’s function. 

 ( ) ( ) ( )x D x G xσσ ∆∆ = ∗  8.134 

Where  ( )G xσ∆ is a Green’s function  for a spatial impulse of slip.  Uenishi and 
Rice  (2003, JGR, doi:10.1029/2001JB001681)  say that 
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( )

( )

( )

( )

2

2
2

2

1
2

2

L

L
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D

x d
x

D

d
x

D x
x x

D x
F

x

ξ
µ ξσ ξ
π ξ

ξ
µ ξ ξ
π ξ

µ
π
µ

∗

−

∞∗

−∞

∗

∗

∂
∂∆ = −
−

∂
∂=
−

∂
= ∗

∂
∂ 

= −  ∂ 

∫

∫  8.135 

Where µ µ∗ =  for mode III and ( )1µ µ ν∗ = − for modes I and II.  HiF  signifies a 

Hilbert transform.  This can also be written 

 ( ) ( )( )
2 Hix F D x

x
µσ

∗ ∂
∆ =

∂
 (8.136) 

 

Therefore, 
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 ( ) ( )( )
2 HiD D x F D xµσ
π

∗

′∆ = −  8.137 

 
I can take the Fourier transform of 8.137 to obtain 
 

 

( ) ( ) ( )

( ) ( )

( )

( )( )

2

2

sgn
2

sgn
2

Hi

FT D k D k

D k F ikD

D i k k D

k k D D

σ σ

µ
π
µ
π

µ
π

∗

∗

∗

∆ = ∆ ∗

= − ∗

 = − ∗ − 

= ∗





 

 

 

 8.138 

And then, using Parsevals’ theorem 

 

( ) ( )( )

( )

2

2

? 2

2

sgn
2

2

L
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L

Ddx D x F D x dx

k k D D dk

kD dk

µσ
π

µ
π

µ
π

∞

− −∞

∞

−∞

∞

−∞

′∆ =

 = ∗ 

 =  

∫ ∫

∫

∫

 



 8.139 

I now need to estimate ( )2D k .  I begin with a statistical description of ( )D x . 
   
I will assume that at each point along the rupture, the slip is chosen from a 
random number generator with a pdf described by a mean-zero Normal 
distribution with a variance of 2σ .  Meier, Ampuero and Heaton investigated the 
Potency rate functions that resulted from finite source inversions of large 
earthquakes.  They found that 

 ( ) ( )( )12 2
R R

t tP t R xL L
V V

    
    ≈ Π ∗Π −            

  8.140 

Where ( ), 0.38R x σ = is a number chosen from a group of random numbers 
whose frequency (probability density function, or pdf) is described by a Gaussian 

function, 

2
22

2

R
eP

σ

σ π

−

= .  That is, the random numbers are from a Normal 

distribution with a standard deviation 0.38σ ≈ .  8.140 is an isosceles triangle (the 
expected value) multiplied by a random number that has a normal pdf with a 
mean of 1.  Almost all of the random numbers are less than 1, so this 
multiplicative factor is almost entirely positive).  It’s important to realize that this 
functional description of spatially varying slip is based on fitting observed data (a 
rather complex observation); it’s not clear that this functional form is derivable 
from physics.   
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Now recall  (from Chapter 7) that, for a slip pulse propagating along a long 
narrow rupture (i.e., a line source), the Potency rate maps directly into the slip 
distribution.  That is, ( ) ( )RD x P V t≈  . From this, I infer that 

 ( ) ( )( )56 10 1
2 2
x xD x L R x
L L

−     ≈ × Π ∗Π −        
 8.141 

The scaling factor, 56 10 L−× , is from the observed ratios of average slip to 
rupture length (see 8.31).  I can now attempt  to calculate the Fourier transform of 
8.141, which gives 
  8.142 
Unfortunately, I am unable to take the Fourier Transform of 1.  I note that I can 
write that  

 ( ) ( )( )
2

2 2 56 10
2 2
x xD x E R x L
L L

−     ≈ × Π ∗Π          
 8.143 

Now the power  of the random variable term is just the energy density of the 
spatially filtered random numbers.  The  final density is modulated in space by 
the triangle function.  I think I can do my integral in the space domain by 
integrating the modulated  power as a function of x. 
 
 
 
  

 ( ) ( ) ( ) ( ) ( )0
1, , ,
2x y x y x y x y x yW k k k k D k k Lk Wk dk dkσ σ

∞ ∞
∗

−∞ −∞

 ∆ ≈ − ∆ ∗ ∗Π ∗Π 
 ∫ ∫ 

  

 

 8.144 
 

 ( ) ( ) ( ) ( ) ( )0
1
2x x x x x xW k D k G k D k Lk dkσσ

∞
∗

∆
−∞

 ∆ = − ∗ ∗Π 
 ∫  

  8.145 

 

Now the stress drop is a linear function of the slip distribution.  That is, it can be 
calculated using a linear Green’s function, ( )G xσ∆  or 

 ( ) ( ) ( )x D x G xσσ ∆∆ = ∗  8.146 
This convolution can also be defined in the frequency domain as 

 ( ) ( ) ( )x x xk D k G kσσ ∆∆ = 

  8.147 

Unfortunately, I do not know what ( )G xσ∆  is, but for now,  

The convolution with a rectangle is identical to performing a running-mean lo-
pass  filter (width  1

L ) on the integrand.  Unfortunately, 8.145 is a rather 

cumbersome expression.   
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∫

∫

 


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

 8.148 
I can now take the Fourier transform of Error! Reference source not found.. 

 ( ) ( )1x x xG k i k kσ µ∆ = +  8.149 

Where I used the fact that ( ) xFT x k= .  I am tired of explicitly writing 

everything as a function of xk .  I  can now rewrite 8.148 as 

 
( ) ( ) ( )

( ) ( ) ( )

0

2
0

1 1
2

1 1
2

x x x x x

x x x x x

W Lk D ik k D D Lk dk
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∗ ∗
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∫

∫

  



 


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At this point, I need to emphasize that we have little hope of obtaining accurate 
measurements of the prestress or the slip distribution, especially since we 
strongly expect that these are complicated functions of space.  To deal with this, I 
will assume that these parameters can by described by their probability density 
functions.  For the following section, you should understand that when I write 
prestress and slip, I actually mean that there are pdf’s that describes the 
parameters for each value of x. I will then describe the distribution with an 
expected value and some pdf about the expected value.  Now I will make the 
critical assumption that prestress and slip are random stationary functions of 
space.  That is, I assume that statistical properties are invariant with respect to 
position.  Furthermore, when I say the “change in potential energy,” I really 
mean the expected value of the change in potential energy.   

 

I need to be careful with 8.150, since it has terms that are the product of 
stochastic variables, that is, ( ) ( )0 x xk D kσ ∗∗  and also ( ) ( )x xD k D k∗ ∗

  .  These 
products are also stochastic variables, with the following properties 

 ( ) ( ) ( ) ( ) ( ) ( )0 0 0cov ,x x x x x xE k D k E k E D k k D kσ σ σ     = +       
  

  

 8.151 
And 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )2

cov ,

var

x x x x x x

x x

E D k D k E D k E D k D k D k

E D k D k

∗ ∗ ∗

∗

       = +       
   = +   

     

 

 8.152 
Where cov is the covariance function, which is defined as 
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 ( ) ( ) ( ) ( )( ) ( ) ( )( )0 0 0cov ,x x x x x xk D k E k E k D k E D kσ σ σ    ≡ − −      
  

  

 8.153 
Covariance is a measure of the correlation between random variables;  when the 
covariance is positive, then two variables tend to vary together (positive 
variations in one variable tend to occur when there are positive variations in the 
other variable.  When the variables are statistically independent, then their 
covariance is zero.  I am getting tired of explicitly writing that my random 
variables are a function of xk , so I will drop that formality.  I can obtain the 
expected change in strain energy by substituting 8.151 and 8.152 into 8.150. 

[ ] [ ] ( ) ( ){ } ( )2
0 0

1

2 2cov , var 1x x x

L

E W E E D D E D D ik k dkσ σ µ
∞

∗ ∗ ∗    ∆ ≈ + − + +    ∫    

 

8.154 
 

At this point, I will assume that my random variables, 0σ  and D , are a  zero-
mean, Gaussian,  stationary process.  That  is,  at  each value of x, I assign a 
value by picking a random number, where the probability of the number is given 
by the Gaussian function.  Basically, I start with Gaussian white noise and I then 
apply a spatial filter power-law that is a power law in wavenumber space (I 
spatially smooth the random white noise).   I now note that the Fourier transform 
of Gaussian white noise is Gausian white noise.  Furthermore, it is easy to show 
that 

 ( ) ( ) ( )2 2varE D D E D= +    8.155 

Since I assumed that ( )D x and ( )0 xσ are mean zero, then it follows that ( )D k  

and ( )0 xkσ  are also mean zero.  Therefore 8.154 becomes   

 [ ] ( ) ( ) ( )0
1

2 cov , var 1x x x

L

E W D D ik k dkσ µ
∞

∗ ∗ ∆ ≈ − + ∫  

  8.156 

Now the covariance term can be written as 

 ( ) ( ) ( ) ( )0 0 0cov , corr , var varD D Dσ σ σ=  

    8.157 

Where corr is the correlation coefficient between prestess and the slip.  A 
correlation of +1 means that variables are perfectly correlated, -1 if they are 
oppositely correlated, and 0 if they are statistically independent.  So 8.156 can be 
written 

 [ ] ( ) ( ) ( ) ( ) ( )0 0
1

2 corr , var var var 1x x x

L

E W D D D ik k dkσ σ µ
∞

∗ ∆ ≈ − +  ∫   

 

 8.158 
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At this point, I will assume that my variables are wave-number filtered versions 
of Gaussian white noise with a variance of 1.  That is, I assume that  

 ( )
( )

2

0
1var

1 xk βσ
 

≈  
 + 

  8.159 

And 

 ( )
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2

1var
1 x

D
k α

 
≈  
 + 

  8.160 

Substituting these into 8.158 
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+ − − −

∫

∫ ∫
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






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 8.161 
 

 

 

 

 can simplify it by assuming that the prestress, slip, and stress drop are isotropic 
on the fault plane.  That is,  I will assume that 

 ( ) ( ), rD x y D r≈  8.162 

Where 2 2r x y= + .  At this point, I need to modify my 2-d Fourier transform 
such that it only depends on r .  In particular, 
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D r e d rdr

D r J rk rdr

D k

π

π
π θ θ

π π

∞ ∞
− +

−∞ −∞

∞
−

∞

≡

 
=  

 

=

≡
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

 8.163 

That is, I will greatly simplify the problem by assuming that the Fourier spectrum 
of slip is approximately given by  
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 ( ) ( )ˆ,x y r rD k k D k≈

  8.164 

Where the hat connotes Hankel transform of zero order,  0J  is a Bessel 
function of the first kind, and 2 2

r x yk k k≡ + .  A Hankel transform is very similar 
to our familiar Fourier transform, except that the kernel function is a Bessel 
function instead of a sinusoid.  Similar to a sinusoid, ( )0J r  oscillates with 
increasing r.  However a Bessel function’s amplitude decays with distance and 
the asymptotic expansion is 

 ( )0
2 cos

4
J r r

r
π

π
 ≈ − 
 

 8.165 

 
The Hankel transform has the following properties 
 

 ( ) ( ) ( )0
0

ˆ 2 2r r rD k D r J rk drπ π
∞

≡ ∫  8.166 

 ( ) ( ) ( )0
0

ˆ2 2r r r r r rD r D k J rk k dkπ π
∞

= ∫  8.167 

This is an unrealistic assumption that allows me to simplify the math.  In 
particular, 8.145 becomes 
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

 8.168 
Now I will note that a sinc function with scale width of R can be crudely 
approximated by a Rectangle function with a scale width of R.  8.168 can be 
approximated as 
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 

 

 8.169 

  
At this point, I will assume that the prestress and the slip are both random 
variables with pdf’s given by 

 ( )
00 rk C k α

σσ −≈  8.170 
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 ( )r DD k C k β−≈  8.171 
 

 

 

I can now approximate the change in potential energy  8.132 as 
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 8.172 
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0

2 2
0

1,
2

1,
4

S

S

W x y f y D x D x f y dxdy
x

x y f y D x f y D x dxdy
x

σ µ

σ µ

∂ ∆ = − ∂ 

∂ = − ∂ 

∫∫

∫∫
 8.173 

  

For the moment, I will greatly simplify things by assuming that ( ) ( )f y y≈ Π .  I 
can now rewrite 8.173 as 

 ( ) ( ) ( )2
0

0

1
4

L

W W x D x D x dx
x

σ µ ∂ ∆ ≈ − ∂ ∫  8.174 

The observation that the  ratio of 510D
L

−≈  can be produced by a random-phase 

slip that has an amplitude  spectrum of ( )D k k α−= , where 1.2α ≈  (see Zheng-
Liu and others).  From 8.130, 

 

 REW
η

∆ =  8.175 

So 8.175 is rewritten as 

 ( ) ( ) ( )2
0

0

1
4

L

RE W x D x D x dx
x

η σ µ ∂ ≈ − ∂ ∫  8.176 

Now radiated energy is estimated to be R effE Pσ≈  (see 8.7), so 8.176 becomes   

 ( ) ( ) ( )2
0

0

1
4

L

R effE P W x D x D x dx
x

σ η σ µ ∂ ≈ ≈ − ∂ ∫  8.177 

Or 
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 ( ) ( ) ( ) ( )2
0

0 0

1
4

L L

effW D x dx W x D x D x dx
x

σ η σ µ ∂ ≈ − ∂ ∫ ∫  8.178 

 

 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( )

2
0

0 0

0
0 0

0
0 0

0

0

1
4

1
2

11
2

11
2

11
2

L L

eff

L L

eff

L L

eff

eff

eff

D x D x dx x D x dx
x

D x D x D x dx x D x dx
x

D x D x dx x D x dx
x

D x D x x D x
x

D x x
x

σ µ η σ

σ µ η σ

σ µ η σ

σ µ ησ

σ µ ησ

∂ + ≈ ∂ 

∂ + ≈ ∂ 

∂ + ≈ ∂ 

∂ ⇒ + = ∂ 
∂ + = ∂ 

∫ ∫

∫ ∫

∫ ∫  8.179 

  

 

( ) ( ), ; , ,D F
S

E x y D D D x y dxdyσ= ∫∫    8.180 

IF we assume that the prestress and final stress are uniform in x and y, then 8.132 
becomes 

 ( )0 1
1
2uniformW DSσ σ∆ = +   8.181 

Of course the prestress and final stress can only be uniform for one unique 
distribution of slip which depends on the geometry of the rupture surface.  If we 
make the very restrictive assumption that the friction is uniform and equal to the 
final stress, then  

 1D GE DS Eσ= +   8.182 

Where GE  is fracture energy.  If we assume that the radiated energy is the change 
in potential energy minus the dissipation energy, then in the case of uniform 
stress and friction, 

 

( ) ( )

( )

0 1 1 0 1

0

1 1
2 2

1
2

R G G

G

G

E DS DS E DS E

DS E

W E

σ σ σ σ σ

σ

= + − − = − −

= ∆ −

≡ ∆ −

 

 8.183 

Where GE  is the fracture energy, which is meant to signify the transition from 
static to dynamic friction (sometimes called the breakdown energy).  In the case 
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of slip weakening friction, ( )1 0
1
2G yieldE D Sσ σ= −  .  Assuming slip weakening 

friction, the potential energy change available for seismic radiation  is 

0
1
2 GW DS Eσ∆ ≡ ∆ −  .   Unfortunately, it is not possible for seismologists to 

determine absolute stress, we can only infer stress changes.  In response, many 
seismologists have substituted 0W∆  for W∆   in their definition of seismic 

efficiency.  I will call this “crack seismic efficiency” ( crackη  ).  In this case 

 

 
0

2observed observed
observed R R
crack

E E
W DS

η
σ

≡ =
∆ ∆

  8.184 

We also know that 

 
( )

0

1 0

1

1

G
crack

yield

E
W

D
D

η

σ σ

σ

= −
∆

−
= −

∆

  8.185 

Or  

 ( )
0

1

1 crack

yield

D
D

η σ
σ σ
− ∆

=
−

  8.186 

In principle, seismologically observed quantities can be used to determine 
everything in 8.184.  Then assuming that the Byerly friction is the yield stress, 
then the slip weakening distance can be determined, that is provided that 1σ  is 

known (which it is not).  However, in this case, ( )1crack
G crackE DSη σ= − ∆  .   

Equations 8.181 through8.186 all assume that the frictional sliding stress is the 
final stress after all rupture has ceased. The resulting definition of the change in 
potential energy is very, very restrictive. It assumes constant friction and it thus 
excludes slip pulses.  Furthermore, all of these definitions assume that the 
prestress and stress drop are spatially uniform.  This is clearly not the case.  In 
particular, the slip and the stress drop are both complex functions of space that 
are correlated.  Multiplying their average values is clearly inappropriate.  The 
best description of the radiated energy is to subtract 8.180 from 8.132, or   

 ( ) ( ) ( ) ( )0
1, , , ,
2R F

S

E x y x y D D D x y dxdyσ σ σ = − ∆ −  ∫∫   

 8.187 

As you are aware, I believe that the prestress and stress drop is very 
heterogeneous.  Unfortunately,  I don’t know any simple average relations 
between radiated energy, slip and stress drop. 
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With regards to the fracture energy, I like the definition that 
( )minG fE E D dSσ≡ −  .  This is rather arbitrary.  However, the key issue about 

dynamics is whether or not the energy available to radiate increases with 

additional rupture.  That is, if 0RdE
dt

=  , then the event has ended.  This can be 

accomplished solely with the distribution of prestress, which then determines the 
distributions of friction and slip.  One does not need large fracture energies to 
stop an event.  If the friction is strongly rate weakening, it produces slip pulses 
and the relationship between slip and dynamic friction and stress drop becomes 
very complex (see Elbanna and Heaton). 

 

One potential research direction is to use seismological evidence to determine 
observed
RE  , ( ),D x y  , and ( ),x yσ∆  .  We could then assume a friction law 

together with the assumption that slip is a Joffe  slip pulse to determine  
( ) ( )( ), ,F JoffeE x y F D x y= .   This is similar to the approach taken in Elbanna and 

Heaton.  In this case we can anticipate that FE CDν≈  , where  and C ν  are 
constants obtained from numerical simulations of pulses.  Then 8.187 could be 
written 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

1, , , , ,
2

1, , , ,
2

observed
R

S S

S

E x y D x y dxdy CD x y x y D x y dxdy

x y x y D x y CD x y dxdy

ν

ν

σ σ

σ σ

 = − + ∆ 
 

  = − ∆ −    

∫∫ ∫∫

∫∫
 

 8.188 

Finally, we can constrain put a constraint on the prestress. 

 ( ) ( ) ( ) ( ) ( )0
1, , , , ,
2

observed
R

S S

x y D x y dxdy E x y D x y CD x y dxdyνσ σ = + ∆ + 
 ∫∫ ∫∫  

 8.189 

The system could work consistently even with no friction or fracture energy as 
long as 

  ( ) ( ) ( )0
1, , ,
2

observed
R

S

E x y x y D x y dxdyσ σ  = − ∆    
∫∫   8.190 

As an example we use the relationship between radiated energy and seismic 
moment of Kanamori.  We recall  that, on average, 

 0
4 42 10 2 10R e e

M DSE DS Pµ σ σ≈ = = =
× ×

  8.191 

Where effective energy 2e MPaσ ≈  .   Substituting this into 8.188, we obtain 
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 ( ) ( ) ( ) ( )0
1, , , ,
2e

S

SD x y x y D x y CD x y dxdyνσ σ σ  ≈= − ∆ −    
∫∫  

 8.192 

If we assume that ( ) ( )0
1, , 0
2

x y x y
D

σ σ∂  − ∆ = ∂  
 , or that the final slip at a 

point is independent from the difference between the initial stress and the stress 
drop at the point (implausible assumption), then 8.192 becomes, 

 ( ) ( )0
1, ,
2

F
e

Ex y x y
P

σ σ σ ≈ − ∆ −  
  8.193 

If 3MPaσ∆ ≈  ,  then ( )0 , 1.5 3.5F F
e

E Ex y MPa MPa
P P

σ σ≈ + + ≈ +  .  The fact 

that there is minimal melting implies that 2FE Mpa
P

<  . then ( )0 , 5.5x y MPaσ < .  

This is a restatement of the stress paradox.  Stresses inferred from seismology are 
far smaller than stresses measured in the laboratory, and they are small compared 
to the stresses required to resist gravity in mountain ranges.  I am convinced that 
the key to resolving these problems is to establish the detailed connection 
between prestress and stress drop.  In dynamic models that produce slip pulses 
(strong rate weakening friction), the amplitude of the slip pulse varies in a 
complex way that is mostly determined by the prestress and the hypocentral 
location (see the pulse energy equation by Elbanna and Heaton). 

 

 Thank you to Hiroo Kanamori, Valere Lambert, and Victor Tsai for the 
comments. 

 
 
 
Strength-length scaling 
b-value and prestress 
b-value and brittleness 
creeping fault 
discrete vs continuum 
far from equilibrium Reynolds number 
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Derivation of Brune spectrum from the observation of near-
source high-frequency magnitude saturation 
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We observe that very near-source accelerations (high-frequencies) appear to be 
incoherent noise with a peak acceleration that is independent of magnitude.  This 
leads us to the following hypothesis. 
 
Hypothesis: Radiated high-frequency energy c

REω ω scales with the rupture 
area S , independent of the average slip on that rupture surface, or 
  
 c

RE Sω ω
  8.2 

This hypothesis means that if we double the rupture area, then we double the 
radiated high-frequency energy. 
What does this mean for the scaling of radiated seismic waves? 
Let us assume that the seismic wave is approximately a non-negative function 
of duration cT , whose integrated area scales with seismic moment, and 
which has a power-law high-frequency spectral decay.  Then, 
 

0sincR
c

U M α ω
ω

  
 





 8.3 

Where 2
c

cT
πω = .  Equation Error! Reference source not found. has 

asymptotes 

 
0

0

c

R
c

c

M
U

M
α

ω ω

ω ω ωω

−



     









 8.194 

Now let us assume that the duration of the signal is proportional to the 
dimension of the fault, or that c Sω  .  In addition, we will assume that 

3
2

0M SD S 
.  Therefore, 

1
3

0c Mω −


, and 8.194 becomes 

 
0

1 3
0

c

R

c

M
U

M
α α

ω ω

ω ω ω− −













 8.195 

Now the radiated energy spectrum scales as the square of the Fourier amplitude 
spectrum, or 

 ( ) ( )2 2 1 23
0

c c
R RE U M

αω ω ω ω αω
− − 



   8.196 
Now our original hypothesis was that 
 

2
3

0
c

RE S Mω ω
 

 8.197 
Relations 8.196 and 8.197 can only be simultaneously true if 2α = .  Therefore 
our hypothesis that the high-frequency very near-source ground motion is 
incoherent noise of constant amplitude that is independent of the size of the slip 
implies that 

 
02
10 23

0

sinc
c

R
c

c

M
U M

M

ω ω
ω
ω ω ω ω−

     





 



 8.198 

Relationship 8.198 is identical to the Brune spectrum (1970), but without the 
stress drop scaling.  That is, the high-frequency radiation is independent of the 
stress drop.  Therefore our hypothesis is identical to assuming Brune’s spectral 
scaling for seismic moment (but not for stress drop). 
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We can also anticipate the following asymptotic behavior for any ground motion 
prediction equations.  When the distance is large compared to the source 
dimension, and when the predominant periods of the ground motion are large 
compared to the source duration, we expect the ground motion amplitudes to 
scale with the seismic moment, or  
 & 0

3log log 2far lowfreqU M M 

 8.199 

For very near-source long-periods (e.g. displacement), we expect the peak 
amplitude to scale with the size of the slip on the nearby fault segment, or 

 
1

3
& 0

1log log log 2near lowfreqU D M M    8.200 

   
Gutenberg-Richter Frequency Magnitude Relation 
 
 ( )log N M a bm> = −  8.201 
 

 
( ) ( ) ( )10 ln 10 10a bM a bMd N M d b

dM dM
− −>

= = −  8.202 

 
 ( )( ) ln 10 10

2 2
a bMM MN M M M b M−∆ ∆′ − < < + = − ∆  8.203 

 

 ( )log ( ) log ln 10
2 2

bM MN M M M M a bM−∆ ∆   ′ − < < + = ∆ + −    
 8.204 
 
 ( )log ln 10

( ) 10 10
2 2

b M a bM bMM MN M M M C
− ∆ + − −  ∆ ∆′ ′′− < < + = =  8.205 

 
 ( )

2
2 3

0
2 log log
3

M C M C L D
−

′= − = +  8.206 

 
If L D , then 
 2logM C L−′′= +  8.207 
 
 ( )2log 2( ) 10 `

2 2
b C L bM MN M M M C CL

′′′− + −∆ ∆′ ′′− < < + = =  8.208 

 
Now the total rupture area ( ),totalA M M∆ for all earthquakes with 

2 2
M MM M M∆ ∆

− < < +  is 

 ( ) ( )2 12, ` b
totalA M M N L CL −′∆ = =  8.209 

 
That is, if the b-value is 1, then the total rupture area is the same for integrated 
area of each magnitude.  That is the sum of the rupture area of all 2’s is the same 
as the rupture area of all 3’s, is the same as all 4’s, etc.  What this means is that 
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given a b-value of 1, and given that a point has just experienced slip, then it is 
equally likely that it could have come from any magnitude earthquake.  Given 
that different magnitude earthquakes have different slips, any slip is as likely as 
any other.  This is only true in a logarithmic sense.  That is, a fault is equally 
likely to experience slip between D and C x D, regardless of the value of D and a 
constant, C (e.g. given, slips between 1 and 2 mm are just as common as slips 
between 4 and 8 m. 
  
 
 
 
but with a mirror image fault  
with plan view of displacement amplitude vs. distance from fault. 
cross section of static motion of a dip-slip fault.     
Static offsets in a half-space 
near-fault particle motions  
Aagaard’s figures of different rupture velocities 
Spectral representations 
Stress drop 
Steady-state ruptures do not radiate 
Stress in cylindrical hole. 
Fracture energy vs yield stress 
Residual stress 
Energy of a slip pulse. 
Frictional energy 
Chaotic ruptures 
Self-organization 
Random walks 
 
 
Appendix A 
 
A Generalized power-law spectral scaling law   
 
The fact that very near-source accelerations (high-frequencies) appear to be 
incoherent noise with a peak acceleration that is independent of magnitude 
motivates the following hypothesis. 
 
Assumption 1: Radiated high-frequency energy cf f

RE  scales with the rupture 
area, S LW= , some unknown power of the stress drop, γ  , and is 
independent of the average slip on that rupture surface, or 
 
 cf f

RE S γσ∆

   8.210 
 
 
This  assumes that high-frequency motions are characterized by random phase, 
which means that if we sum two motions, then the energies sum linearly.  This 
means that if we double the rupture area, then we double the radiated high-
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frequency energy.  I have also included a yet unknown static stress drop 
dependence.   
 
My hypothesis of near-source energies (equation 8.210) and Brune’s assumptions 
are identical if 2γ =  , and if effσ σ= ∆  .  In essence, Brune (1970) also assumed 
that the near-source high-frequency radiated energy scales linearly with the 
rupture area (see 8.68).  
  
Assumption 2:  Assume that the far-field seismic wave is approximately a 
non-negative function of duration cT .   This is equivalent to saying that the 
motions are approximately the solutions for the far-field S-waves in an elastic 
whole space.  A non-negative function of duration cT  has a flat amplitude 
spectrum between zero frequency (value is proportional to the integrated area of 
the function, which is proportional to the Potency) and the corner frequency,

1
c

c
f T=  .  If the S-wave is non negative then its spectrum at periods shorter than 

cT  is less than the amplitude spectrum for periods longer than cT  .  Brune also 
explicitly made this assumption. 
 
Assumption 3: For simplicity, assume that the high-frequency spectrum has a 
power-law high-frequency spectral decay f α−  .  That is, assume that 

 
1

R

c

PU
f
f

α
 

+  
 



  8.211 

 
Where RU  is the Fourier amplitude spectrum of the radiated (far-field terms) S-

wave, potency P SD=  , and corner frequency, 1
c

c
f T= .  Equation 8.211 has 

asymptotes 
 

 
c

R
c

c

P f f
U fP f ff

α−



     









 8.212 

 
Brune also used this assumption, but he assumed that 2α =  (based on the 
analytic solution of an instantaneous shear on a half space). 
 
Assumption 4: Now assume that the duration of the signal is proportional to 
the dimension of the fault (that is, assume constant rupture velocity), or that 

1
cf S
 .  Again, Brune used this assumption. 
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Assuption 5: Assume size similarity of the form  
3

2P SD S σ∆  , or 

alternatively 
2 2

3 3LW P σ −∆  . Brune also made this assumption.  Therefore, 
1 1

3 3
cf P σ− ∆

, and 8.211 becomes 
 

 ( )

3 3
1

R
PU f
f

P

α

α α
σ−

+
∆



   8.213 

Which has asymptotes 
 

 1 3 3

c

R

c

P f f
U

P f f f
α α ασ− −




∆









 8.214 

 
Now the radiated energy spectrum scales as the square of the Fourier amplitude 
spectrum, or at high frequencies 
 

 ( ) ( ) 22 2 1 3 3c cf f f f
R RE U P

α α
σ

−
∆ 



 

 8.215 
   
Now my original hypothesis 8.210 was that 
 
 

2 2
3 3cf f

RE S P γγσ σ −∆ ∆

 
 8.216 

 

The 
2

3σ −∆  in 8.216 comes from the hypothesis that the radiated high 
frequencies scale with the rupture area. This hypothesis implies that for the same
P  , a higher static stress drop has a smaller rupture area and therefore a smaller 
radiated high-frequency energy.  
 
The scaling of high-frequency radiated energies with P  and σ∆  given in the 
two independent relations 8.215 and 8.216 can be simultaneously true only if 

2α = and also if 2γ =  .  Assuming 2γ =   is the same as saying that radiation of 
high frequency energy per unit of rupture area of scales with the square of the 
static stress drop.  Since energy scales as the square of the wave amplitude, 2β =  
is the same as saying near-source peak acceleration scales linearly with stress 
drop (this is Brune’s assumption).  This assumption is essentially the Brune 
spectral model (with effσ σ∆ =  ). Notice that in this case 
 

 1 22 23 3

2 2
3 3

1

c

R

c

P f fPU
f P f f f

P
σ

σ

−

−




∆+
∆





 



 8.217 

 
This relation could have been derived from either one of two sets of assumptions. 
Assumption set 1: the spectrum is an 2f −   power law with a maximum 
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amplitude proportional to P  and a spectral corner that is inversely proportional 
to the rupture dimension. Alternatively, assumption set 2: the spectrum is an 
unknown power law, the high-frequency near-source motions scale linearly with 
stress drop, and for equal stress drop, the high-frequency radiated energy scales 
with rupture area (random phase).   These two sets of assumptions are equivalent 
and either set independently leads to the 2nd form of Brune’s spectral model.   
  

 

3
2

2 2
3 3

2

2 2
3 3

1

1

1

RU r
f

P
P

f

P

σ

σ

σ

−

−

∆
+

∆

+
∆







  8.218 

 
Which is identical to my earlier statement of Brune’s spectral law. 
 
Inconveniently, near-source high-frequencies (pga) seem to be independent 
of both slip amplitude (see Figure 8.14) and stress drop σ∆ (see Figure 
8.11). That is, Figure 8.11 shows that near source pga’s are approximately 
independent of P  (for M>6) and σ∆ .  That is, 0γ ≈  , or rewriting 8.216, 

 
2 2

3 3cf f
RE S P σ −∆

 
  8.219 

Which means that the high-frequency spectral amplitude scales as 
 

1 1
3 3cf fU S P σ −∆



 
  8.220 

The lack of correlation between near-source pga and stress drop seen if Fig. 8.11 
seems to suggest that the spectral asymptotes are given by   

 1 123 3

c

R

c

P f f
U

P f f fσ −−




∆









  8.221 

Unlike the Brune relationship, we cannot assume a single power law with a 
single corner to fit the spectrum.  
 
 

Scale Dependence of the Strength of the Earth’s Crust 
Thomas H Heaton 

Introduction 
What is it that earth scientists mean when they speak of the strength of the 
Earth’s crust?  Although the concept of strength is well defined for materials that 
yield uniformly with spatially homogeneous stress, there is little doubt that 
deformations and stresses are highly heterogeneous in the Earth’s crust.  I discuss 
more general definitions of strength that are applicable for materials that have 
spatially heterogeneous stress when they yield.  These new definitions of strength 
are based on spatial averages of stress, and while they are compatible with a 
simple intuitive understanding of strength, they lead to the conclusion that 
materials that are deforming at multiple length scales have strengths that depend 
on the length scale of the observation.  In particular, the strength decreases with 
increasing length scale. 
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Strength of a Material  
It is natural to think of the strength of a material as the amplitude of stress at 
which a material begins to yield2.  In practice, it is common to measure the 
strength of a material using some test apparatus that applies an increasing 
external load to a sample until it begins to yield, EXT

YF . Figure 1 shows a 
schematic of a hypothetical test apparatus to measure the strength of a cubic 
sample of dimension 0L .   The strength is determined by calculating a yield 

stress from the yield force and the appropriate cross sectional area 2
0L .   For 

reasons that will become apparent shortly, I will consider the strength to depend 
on the scale of the sample and I will define it as 

 ( ) ( )0
20
0

.
EXT

YF LL LΣ ≡  (8.222) 

While this is the traditional way that strength is measured for materials, it is not 
really possible to make this measurement in the Earth’s crust; there is no test 
apparatus large enough to cause the yielding of a sample that is ten’s of 
kilometers in dimension.  Of course, one can measure the yield stress of small 
samples of the crust, but we should be cautious since there may be mechanisms 
whose deformation physics depend on the scale of the material.  Later I will 
discuss two other definitions of strength, one which is based on root-mean-square 
statistics, and the other is based on inelastic work. 

 

Figure 1.  Hypothetical cubic test sample of dimension 0L  that is subjected 
to a uniform stress.  The “strength” of this sample can be viewed as the 
size of the externally applied stress Ext

Yσ that causes the sample to yield. 

Since it is not possible to test the Earth’s crust in an apparatus, it is common for 
earth scientists to estimate the strength of the crust by obtaining estimates of 
stress amplitudes for a section of the crust that is experiencing inelastic yielding 

 
2 Since stress is a tensor quantity, it is usually necessary to define strength as an imaginary 
surface in 6-dimensional stress space that separates elastic stress states from yielding stress 
states.  If the material is isotropic, then this yield surface can be defined in the 3-dimensional 
space of the amplitudes of the principal stresses. 
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(e.g., earthquakes; see Kanamori and Heaton, 2000).  However it is important to 
recognize that this is a different measurement from the one that is made using a 
test apparatus in the laboratory.  That is, if we return to our conceptual test 
apparatus of Figure 1, instead of measuring the external yield force EXT

YF , we 

would directly measure stress Yσ  inside of our yielding sample.  To keep the 
discussion relatively simple, let’s choose to look at only one component of the 
shear stress in our medium.  That is, I could alternatively define the strength of 
the sample to be the amplitude of internally measured stress within the yielding 
sample.  Although the discussion up to this point may appear to be trivial, the 
fundamental issue is how to measure this internal yield stress.  That is, stress is 
always spatially variable inside of any solid material.  For example, any poly-
crystalline material has enormous stresses at grain boundaries; these stresses are 
on the order of GPa’s. Thermal stresses and dislocations are other sources of 
spatial variations in stress.  Therefore, a more complete description of the stress 
in our medium would be  

 ( ) ( ) ( ) [ )0 0, , , , , , , 0,Ext Intx y z L x y z x y z Lσ σ σ= + ∈
 (8.223) 

where ( )0
Ext Lσ is the spatially uniform stress from the externally applied force 

and ( ), ,Int x y zσ  is the spatial distribution of internal shear stress.3  By definition, 

the spatial average of  ( )Intσ x  over the entire sample is zero.  However, the 
condition is stronger than that, the average internal stress over any cross section 
intersecting the x-axis must also be zero, or 

 ( ) ( )
0 00

2
0 0 0

1 , , 0,
L LL

Int Int x y z dydz
L

σ σ≡ =∫ ∫x  (8.224) 

where I use the double bar notation to signify the average over a 2-dimensional 
surface that is perpendicular to the x-axis.  Therefore, by using this 
decomposition, I can alternatively define the strength as  

 ( ) ( ) ( ) ( )
0 00

0 02
0 0 0

1 , , .
L LL

Ext
YL x y z dydz L

L
σ σ σΣ ≡ ≡ =∫ ∫x  (8.225) 

Now suppose that at a given external load, then the sample could yield at either 
the scale length of the sample, or it could also yield only in some smaller section 
of our sample with the dimension, 1L .  Therefore, we would conclude that the 
strength of the smaller cube is 

 ( ) ( ) ( ) ( ) ( )
1 1 1 11

1 02 2
1 10 0 0 0

1 1, , , ,
L L L LL

IntL x y z dydz L x y z dydz
L L

σ σ σΣ ≡ ≡ = Σ +∫ ∫ ∫ ∫x

 (8.226) 

 
3 Internal stresses are sometimes called “residual stress”, although we will use a more general 
description of these stresses than is usually considered. 
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Therefore, ( ) ( )1 0L LΣ ≠ Σ  unless ( )
1

, , 0
L

Int x y zσ = .  Importantly, earthquakes 

seem to happen at multiple length scales , 1...iL i n= , which implies that the stress 
in the crust is such that the crust is at its yield strength at multiple length scales.  
That is, the strength of the crust is independent of the length scale if, and only if, 

( ), , 0
iL

Int x y zσ =  for all length scales iL .  If i →∞ , then for the strength to be 

independent of scale length, then ( ) 0Intσ =x , which would imply homogeneous 
stress in the crust, which is inconsistent with the occurrence of earthquakes at 
multiple length scales.  Therefore, if the crust is failing at all length scales, then 
the strength of the crust, as defined by (8.225), must depend on the scale length.   
More generally, since the definitions of strength given by (8.225) and (8.222) are 
equivalent, this implies that if our laboratory apparatus recreates the same 
physics as earthquake failures in the crust, then we would also measure changes 
in the strength of samples as a function of the size of the sample.  As we will see, 
the key to a deeper understanding of this problem is to characterize the internal 
stress distribution in the crust. 
A Statistical Description of Stress in the Crust 
In the previous section I defined the strength of a yielding volume as the 
amplitude of the average stress on a plane that cuts through the volume, that is, 
equation(8.225).  I am particularly interested in how strength Σ  varies as a 
function of the length scale L  of the yielding volume.  In the case of the Earth’s 
crust, I make the following key assumption.  The crust has evolved into such 
a state of stress that it can fail at any length scale.  That is, I assume that 
earthquakes of any size are possible within our hypothetical crust (Bak and 
others, 1987).   In this case the distribution of stress ( ), ,x y zσ tells us the length 
scale dependence of the strength in the crust.  All we need to do is to estimate the 
amplitude of the spatial average of ( ), ,x y zσ  as a function of the length scale.   

At this point, it is convenient to assume that ( ), ,x y zσ is a random stationary 
function of y and z.  The assumption of stationarity means the statistical 
properties of the stress are invariant with respect to position within the medium.  
That is, the joint statistical distribution of ( ) ( )1 1 1, , ,..., , ,Int Int

n n nx y z x y zσ σ is the 

same as that of ( ) ( )1 1 1, , ,..., , ,Int Int
n n nx x y y z z x x y y z zσ σ+ + + + + + .  Assuming 

stationarity means that the process Intσ  is entirely determined by its covariance 
function 

 
( ) ( ) ( )

( ) ( )( ) ( ) ( )( ){ }
, , , , , cov , , , , ,

, , , , , , , ,

Int Int

Int Int Int Int

x y z x y z x y z x y z

E x y z E x y z x y z E x y z

σ σ

σ σ σ σ

′ ′ ′ ′ ′ ′ Γ ≡  

   ′ ′ ′ ′ ′ ′≡ − −   
 (8.227) 
which is also known under the names of the autocorrelation function or the power 
spectrum, and where E is taken to mean expected value.  Note that the 
stationarity assumption implies that the covariance between two points depends 
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only on the distance between those points.  Therefore, we can define
 ( ) ( ),γ ξ ξ ξ ξ′ ′− ≡ Γ   

I recognize that stress in the Earth’s crust is clearly not stationary with respect to 
position; for example, there are systematic variations in crustal thickness, 
material properties, total deformation, and deformation rate. Nevertheless, this 
assumption is necessary for later analysis in this paper and it may be 
approximately valid within regions of the crust.  Furthermore, if I choose an x-
axis that is perpendicular to a fault plane, then I am essentially assuming that the 
statistical properties of stress on the fault plane are independent of the position on 
the fault plane. 
I can now restate my definition of strength in (8.225) as 

 ( ) ( ), ,
L

L E x y zσ
 

Σ ≡  
 

 (8.228) 

Where E is the expected value of the amplitude of the stress averaged over the 
volume of length scale L.  As an alternative, it can make the mathematics simpler 
if I introduce an alternative definition of strength that I will call the root-mean-
square strength ( )rms LΣ  and which I define as 

 ( ) ( )
2

2 , ,
L

rms L E x y zσ
  Σ ≡   
   

 (8.229) 

Using rms in the definition ensures that strength is always a positive amplitude, 
but it has the advantage that it allows me to relate strength to the statistical 
variance of stress.  In particular, I show in Appendix I (see page 316 of Dwass) 
that  

 
( ) ( ) ( )

( )( ) ( )

2
2

2

0

, , , ,

, ,

L L

rms

L
Ext Int
Y

L E x y z Var x y z

L Var x y z

σ σ

σ σ

    Σ ≡ +        
 

= +  
 

 (8.230) 

This means that I can find the length scale dependence of rms strength by finding 
the dependence of the variance of the spatially averaged stress on the length scale 
of the spatial averaging. 
I can use Parseval’s theorem to calculate the variance of a stationary function that 
is described by its covariance.  That is, the integrated energy in the space domain, 
which is the variance times the length of the function, is identically equal to the 

integral of the power spectrum at all frequencies.  That is, if ( ), ,Int
x y zk k kσ  is the 

3-dimensional Fourier transform of the spatially averaged internal stress, then it 
has a variance given by 
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( ) ( )

( )

0 0

1 1
0 0

2

2
0 0 0

2

2
0

1, , , ,

1 , ,

L L LL
IntInt

L
Int

x y z y z
L L

Var x y z x y z dydz
L

k k k dk dk
L

σ σ

σ
− −

∞ ∞

 
= 

 

=

∫ ∫

∫ ∫ 
 (8.231) 

 
 If I can characterize how the integral in (8.231) depends on scale length L, then I 
will have solved our problem.  At this point, I assume that ( ), ,Int x y zσ is a mean-

zero (i.e., ( ), , 0IntE x y zσ =   ) Gaussian stationary process.  That is, I assume 
that the internal stress can be approximated by a spatially filtered version of 
Gaussian white noise.  I am unaware of any physical basis for this assumption, 
and I use it because it makes the mathematics simpler. 
I am particularly interested in the obtaining the statistical properties of 

( ), ,
L

Int x y zσ , which is the spatial average of the stress over a 2-dimensional 
surfaces of dimension L .  Obtaining the spatial average of the stress is 
equivalent to 2-dimensional convolution of  the stress with some 2-dimensional 
function ( ) 2,y zg LL L

− , where g has circular symmetry with respect to y and z, 

and g has unit characteristic length and integrated area (e.g., a Gaussian, a box 
function, etc.).  That is, ( ) 2,y zg LL L

−  has a characteristic length of L and an 

integrated area of unity.  Therefore 

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

2

, , , , ,

, ,

L
Int Int

Int

y zx y z L x y z g L L

y zL x y z g z g yL L

σ σ

σ δ δ

−

−

= ∗

   ′ ′= ∗ ∗    
 (8.232) 
 Where g′  is the 1-dimensional version of g.  Therefore I can conclude that 

 ( ) ( ) ( ) ( )2, , , ,
L

Int Int
x y z x y z y zk k k L k k k g Lk g Lkσ σ− ′ ′=     (8.233) 

 
I can substitute (8.233) into (8.231) to conclude that 

 ( ) ( ) ( ) ( )
1 1

0 0

2

2
0

1, , , ,
L

Int Int
x y z y z y z

L L

Var x y z k k k g Lk g Lk dk dk
L

σ σ
− −

∞ ∞  ′ ′= 
  ∫ ∫   

 (8.234) 
At this point, it is helpful to be more specific about g′ .  If I were to assume g′  
to be a box rectangle function in the space domain (corresponding to an un-
weighted running mean), then it’s transform would be a sinc function in the 
wavenumber domain.  If, on the other hand, I assume that g′  is a sinc function in 
the space domain, then its transform is a rectangle function in the wavenumber 
domain and the solution becomes particularly simple.  That is if 
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 ( ) ( )sin y
g y

y
′ ≡  (8.235) 

Then 

 ( ) ( )
1 11,
2 2

0, otherwise

y
y y

k
g k k

 − < <′ = Π ≡ 


  (8.236) 

Substituting (8.236) into (8.234), I obtain 
 

 

( ) ( ) ( ) ( )

( )

1 1
0 0

1 1

1 1
0 0

2

2
0

2

2
0

1, , , ,

1 , ,

L
Int Int

x y z y z y z
L L

L L
Int

x y z y z
L L

Var x y z k k k Lk Lk dk dk
L

k k k dk dk
L

σ σ

σ

− −

− −

− −

∞ ∞ 
= Π Π 

 

=

∫ ∫

∫ ∫





 (8.237) 
 
Substituting (8.237) into (8.230) gives the functional dependence of rms strength 
on length scale. 

 ( ) ( )( ) ( )
1 1

1 1
0 0

2
22

0 2
0

1 , ,
L L

Ext Int
rms Y x y z y z

L L

L L k k k dk dk
L

σ σ
− −

− −

Σ = + ∫ ∫   (8.238) 

 
This relationship tells us how to determine the strength of the sample at smaller 
scales L  than the scale 0L of the entire sample.  Conversely, if I already knew 
the rms strength of the material at a smaller scale L , then I could determine its 
value at the larger scale 0L simply by rearranging (8.238) as  

 ( )( ) ( ) ( )
1 1

1 1
0 0

2
2 2

0 2
0

1 , ,
L L

Ext Int
Y rms x y z y z

L L

L L k k k dk dk
L

σ σ
− −

− −

= Σ − ∫ ∫   (8.239) 

That is, if I could make in situ measurements of stress in the crust at the scale 
length of meters, then I could infer the rms strength at the length scale of 
kilometers by using (8.239), provided of course that I can characterize 

( ), ,Int
x y zk k kσ . 

 
The nature of stress heterogeneity in the crust 
 
.As mentioned in the introduction, we can view the question of strength of the 
crust as being equivalent to characterizing ( ), ,x y zk k kσ .  That is, through 

millennia of deformation, the crust has evolved into a state of stress whose 
statistical characteristics are determined by its spatial power spectrum.  In a very 
fundamental way, knowing this power spectrum tells us the strength of the crust. 
However, a power spectral definition of strength is definitely not as simple as the 
more traditional notion of measuring a force necessary to yield a sample (i.e., 
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equation (8.222)).  We saw that these two notions of strength can be connected 
through equation (8.238). 

What is the nature of ( ), ,x y zk k kσ ?  To keep things as simple as possible, we 

will assume that the power spectrum is isotropic in space.  Although we have 
explicitly acknowledged the 3-dimensionality of the crust, we have adopted a 
definition of strength that is based on the failure of 2-dimensional surfaces.  In 
some ways it is attractive to drop one of the dimensions from this discussion.  
However, we will later discuss seismicity data that is inherently 3-dimensional.  
If the stress power spectrum is isotropic in three dimensions, then we can 
consider that we can write it as ( )rkσ , where 2 2 2

r x y zk k k k= + + .  

If the stress in the crust was a simply a constant (which it’s clearly not), then the 
strength is also a constant, independent of the scale.  In this case, ( ) 0Int

rkσ =  
and the power spectrum of stress is simply a 3-dimensional impulse function at 
the origin, or ( ) ( ) ( )0r rk L kσ δ= Σ .  

A more interesting case is to investigate the possibility that the power spectrum 
can be approximated as a power law, or assume that ( )r rk Ck βσ −= , where β  is 
positive and where the outer scale of the sample is infinite.  In this case, the 
strength approaches zero as the scale becomes infinite and (8.238) can be written 
as 

 ( ) ( )
1 1

2 2 2
2
0 0 0

L L

rms y z y z
CL k k dk dk
L

β
− −

−
Σ = +∫ ∫  (8.240) 

This double integral over a rectangular box in Cartesian coordinates can be 
transformed to a double integral over a circular area without any loss of 
generality.  That is, we can rewrite (8.240) as  
  

 

( ) ( )

( ) ( )

1

1

2
2 2

0 0

1 2

0

2 1

2

2 1
1 2

L

rms r r r

L

r r

L C k k d dk

C k dk

C
L

π
β

β

β

θ

π

π
β

−

−

−

−

−

′Σ =

′=

′
=

−

∫ ∫

∫  (8.241) 

Or  

 ( ) 1

1 , 0 1
1 2rms
CL

L β β
β −

′′
Σ = ≤ <

−
 (8.242) 

The remarkably simple result of (8.242) only applies if the material is in a critical 
state at all length scales.  Or, in other words, the material could experience an 
event of any size.  The spectral decay parameter β  must be smaller than 1, since 
if it is larger than 1, it would lead to the conclusion that long wavelength 
variations in stress are large compared to small ones.  Such a stress state is 
incompatible with the concept that failure can occur at any length scale. 
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In many ways, either uniform stress, or random stress with a power law spectral 
content, are the stress states requiring the fewest parameters to describe them.  
Both of these idealized stress states have no inherent length scale.  Of course, the 
stress in the Earth is determined by failure processes that introduce scale lengths 
that result in power spectra that are not easily parameterized.  However, we will 
discuss evidence that suggests that earthquake failure processes may be 
consistent with power-law spectral behavior over a relatively broad range of scale 
lengths.   
Numerical simulations using fractal tensors 
Up to this point we have discussed stress as if it were a scalar quantity, which is 
clearly not the case.  Smith and Heaton (2006) demonstrate a procedure to 
generate spatially varying stochastic stress tensors that 1) are isotropic (no 
preferred orientations), 2) has scalar invariants that are power law for any section 
through the material, and 3) has orientations of principal coordinate frames that 
vary stochastically in space with correlation at all length scales (i.e., the 
orientations are fractal).  The procedure consists of parameterizing the stress at 
each point with three scalar invariants and with the orientation of the principal 
coordinate frame (another 3 degrees of freedom) for each point. For the purpose 
of this calculation, we are interested in spatial averages of shear stress, so we can 
assume that the scalar invariant corresponding to pressure is spatially constant 
(that is, it drops out of the problem). 
We start with a cubic grid of discrete points.  We then assign zero-mean Gaussian 
random numbers corresponding to two principal stresses.  The third principal 
stress is then chosen so that the sum of the principal stresses is zero.  These stress 
invariants are then spatially filtered in three dimensions using a wavenumber 

filter given by ( )
1

3 2 2 2 2 , , , 1...ijkf n i j k i j k n
β−−= + + = , where n is the number of 

points along a linear axis.  
 
 
Thin faults lead to fractal stress because there is no scale length 
Strong velocity weakening leads to very unstable slip 
Slip length scaling can be approximated with a self-similar statistical models 
Focal mechanism statistics 
Radiated energy may be controlled by prestress 
Kanamori, H., and T. Heaton, 2000, Microscopic and macroscopic physics of 
earthquakes, contained in Geocomplexity and the Physics of Earthquakes, Editors 
J. Rundle, D. Turcotte, and W. Klein, Geophysical Monograph 20, Published by 
the American Geophysical Union, D.C., 127-141. 
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