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Chapter 5   Surface Waves  8/28/2022 
 
Post-Critical Planar SH waves 
 
In the last chapter we discussed how to solve the problem of a planar SH-wave incident 
from a half space onto the bottom of a layer welded on that half space. In this case, there 
were no post-critical angle reflections in the problem.  However, there are instances in 
which plane waves can travel horizontally such that there is a critical reflection of the 
wave at the boundary between the layer and the half-space.  In this case the waves are 
totally reflected at the top and the bottom of the layer and it becomes trapped within the 
layer.  This problem is similar to the propagation of planar SH-waves in a plate that was 
also discussed in the last chapter.  However, this problem differs in that the plate problem 
had traction free boundaries above and below, while the current problem has an elastic 
half-space below.  In order to solve this problem, we must investigate the nature of 
critically reflected waves.  Consider the problem of a planar harmonic SH-wave that is 
incident on the boundary of two welded spaces, as was shown in Figure 4.2 of the 
previous chapter.  A general expression for such a wave can be written as 
 
 ( ) ( ), expt A ik ct= −  u x d x p  (5.1) 
 
where the motion is either the real or imaginary part of the right hand side of (5.1).  A is a 
complex number whose modulus is the amplitude of the wave, d is a unit vector in the 
direction of the particle motion, p is a unit vector in the direction of propagation 
(perpendicular to the wavefront), and c is the phase velocity in the direction of p.  k is the 
wavenumber, and it is related to the wavelength Λ , period T,  and angular frequency ω ,  
by 

 2kc
T
πω = =  (5.2) 

 2k π
=
Λ

 (5.3) 

 
Using this notation we can write the incident SH wave shown in Figure 5.1 as  
 
 ( )2 1 1 3 1 1exp sin cosI

I Iu A ik x x tθ θ β= + −    (5.4) 
The reflected wave is 
 ( )2 1 1 3 1 1exp sin cosR

R Iu A ik x x tθ θ β= − −    (5.5) 
and the transmitted wave is 
 ( )2 1 2 3 2 2exp sin cosT

T Tu A ik x x tθ θ β= + −    (5.6) 
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If the reflection is post-critical, then ( )2 2 1 1sin sin 1θ β β θ= > , and since 
2

2 2cos 1 sinθ θ= − , then 2cosθ  is imaginary.  In this case, the transmitted wave (5.6) is 
given by 
 ( ) ( )2 3 1 2 2exp exp sinT

T Iu A bx ik x tθ β= − −    (5.7) 
where 

 
2

22
2 1

1
sin 1Ib k β θβ

 = − 
 

 (5.8) 

 
(5.7) means that the disturbance into the second medium dies exponentially with the 
distance from the interface, with longer wavelength harmonic waves disturbing regions 
further into the medium than do short wavelengths.  The reflection coefficient RA  
becomes complex with a modulus of 1 for post-critical reflections.  That is, 

 
1

1 1 2 2
2

1
1 1 2 2

2

cos cos

cos cos
RA

βµ θ µ θβ
βµ θ µ θβ

 −  
 =
 +  
 

 (5.9) 

When 2cosθ  is imaginary (post-critical reflection), then the modulus of RA  is 1.  The fact 
that RA  is complex means that a phase shift δ  is introduced in the reflected wave given 
by (5.5).  This phase shift is a number that depends on the velocity contrast and the 
incidence angle, but it does not depend on the wavelength.  This means that the location 
of the crests of the incident waves at the boundary are offset by a constant percentage of 
the wavelength from the crests of the reflected waves as is shown in Figure 5.1.  In a 
sense, it almost looks as if the wave is reflected at some virtual point beneath the 
boundary, where the depth of the virtual bounce point increases with the wavelength of 
the wave. 

 
Figure 5.2  Critically reflected planar SH-waves. 
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Figure 5.3  This figure shows the effect of the phase lag introduced by the complex 
reflection coefficient on an incident wave that consists of a step in displacement.  The 
reflected wave has a very different time behavior.  At the time of the expected geometric 
reflection, the waveform locally looks like it is the time derivative of the incident wave. 
 
While this constant phase shift is relatively easy to understand for a harmonic plane 
wave, things get more complex if we consider the case of an impulsive wave.  Such 
waves can be considered to be the superposition of harmonic waves.  However, the effect 
of phase-shifting the reflected harmonic waves can be rather dramatic.  Figure 5.2 
demonstrates the shape of the reflected wave for different phase lags; the top trace is the 
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shape of the incident wave.  Notice the rather surprising fact that the reflected wave 
actually starts at minus infinite time (long before the incident wave begins its motion).  
This is a rather unusual consequence of the fact that we have assumed a planar incident 
wave.  Such waves can never really exist in nature since they require infinite spaces with 
waves that travel throughout all time.  Nevertheless, there is always a disturbance in the 
lower medium that precedes a critically reflected incident wave.  This is the inevitable 
result of the fact that there is no wave in the slower medium that can travel as slowly as 
the phase velocity of the incident wave along the interface. 
 
Diffraction vs. Refraction 
 
Waves that can be fully described by their ray paths (Snell’s Law) are generally referred 
to as refracted waves; this is really the same thing as saying that the waves can be 
considered to be plane waves that are propagating through a plane layered medium 
without any critical angle reflections.  In truth, nothing in the Earth actually does this, and 
in many cases wave propagation is very different from that of plane waves.  Waves that 
are not refracted are called diffracted.  In a sense, the phase lag introduced in a critically 
reflected wave is an example of diffraction. 
 
Love Waves 
 
If we now consider the case of SH-plane waves propagating in a low-velocity layer over 
a half-space, we see that we have a situation that is very similar to the plate-wave 
problem of Chapter 4, except that we now have a critical reflection to deal with at the 
bottom of the layer.  Although the wave is totally reflected at the bottom of the layer, 
there is a phase lag associated with the critical reflection.  The wavefronts are sketched in 
Figure 5.3.  The phase velocity dispersion relation is similar to that given in the last 
chapter for a plate, but an additional lag must be introduced to account for the phase shift 
of the critical reflection.  Love waves can only occur if the surface layer has a lower 
velocity than the whole space.   
 

Figure 5.3.  A love wave can be thought of as a plane wave that is trapped in a low 
velocity layer at the surface of the earth. 
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Love waves were actually observed on seismometers long before they were explained, by 
A.E.H. Love.  Although it is possible to derive the solution as series of critically reflected 
SH waves, it is also possible to derive the solution to this problem by investigating 
solutions of the form given below.  As it turns out, the solutions for a harmonic Love 
wave traveling in the 1x  direction in a layer of thickness H overlying a half space as 
shown in Figure 5.3, are given by 

 ( )
2

2 2 3 12
2

exp 1 expcu A kx ik x ct
β

 
= − − −    

  
 (5.10) 

in medium 2 (i.e., z>0), and  

 ( )
2 2

2 1 3 1 3 12 2
1 1

exp 1 exp 1 expc cu A kx A kx ik x ct
β β

     ′= − − + − −       
        

 (5.11) 

in medium 1 (the layer).  1 3 0u u= = everywhere in the medium.  Unfortunately, these 
motions seem rather complex to just pick out of a hat.  However, it can be shown that 
they do satisfy Navier’s equation.  If  2c β< , then we have a solution that dies 
exponentially in amplitude with distance below the interface.  Now (5.10) and (5.11) are 
acceptable solutions to the geometry shown in Figure 5.3 if i) the motion 2u  is 
continuous across the boundary at 3 0x = , ii) the stress 23σ  is continuous across the 
boundary 3 0x = , iii) and the stress 23 0σ =  on the free surface at 3x H= − .  By imposing 
these conditions on (5.10) and (5.11), we can find conditions on 2 1 1, , ,  and c A A A′  which 
provide an acceptable solution.  By following this procedure, one can show that for an 
acceptable solution, the phase velocity c depends not only on the intrinsic velocities 1β  
and 2β , but also on the frequency of the wave.  That is, the wave is dispersive.  It is also 
generally true that 1 2cβ β< < .  Furthermore, low frequency Love waves tend to have 
phase velocities that approach those of the high-velocity half space, where as short period 
love waves tend to have phase velocities close that of the low-velocity layer (at least that 
is true for the fundamental mode Love waves).  As was the case for plate waves, there are 
also higher mode Love waves, but their derivation is more complex because of the 
critical reflection. 
 
Love waves can be generated by a source located at a point (called a point source).  In 
this case, Love waves are observed on the transverse component of motion Since Love 
waves have their motions near the top of the elastic medium, their energy spreads as an 
expanding circle along the surface.  That is the energy flux associated with Love waves 
must be conserved for any outward traveling wave.  Since the circumference of a circle 
grows as r , and since energy depends on 2u , the amplitude of Love waves must decay as 
1

r
 for Love waves radiated by a point source.  Thus, as the observer distance becomes 

larger, the Love waves become larger relative to other waves whose amplitude decays as 
1

r .  It is generally true that at large distances, surface waves tend to be larger than body 

waves. 
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Rayleigh Waves 
 
The Rayleigh wave is a special solution to the equation of motion; it has the characteristic 
that it allows zero traction along a boundary.  We will discuss the simplest example of a 
Rayleigh wave; that is, a two dimensional plane Rayleigh wave that propagates at 
velocity c in the 1x  direction as is shown in Figure 5.4.   

 
Figure 5.4  
 
The material is an elastic half-space and the surface 3 0x =  is traction free, or 

3 3 3
13 23 330 0 0

0
x x x

σ σ σ
= = =
= = = .  Consider the motion 

 ( ) ( ){ }1 3 1exp expu A bx ik x ct=ℜ − −    (5.12) 

 ( ) ( ){ }3 3 1exp expu B bx ik x ct=ℜ − −    (5.13) 

 2 0u =  (5.14) 
where b is a real constant, A and B are complex constants, and where ℜ  means to take 
the real part of the argument.  Keep in mind that 
  
 ( ) ( ) ( )exp sin cosik x ct k x ct i k x ct− = − + −            (5.15) 
 
This solution represents a sine wave of wavelength 2 kπΛ = , which travels in the 1x  
direction with a velocity of c.  For this to be a valid solution for our problem, we need to 
find the appropriate values of b, A, B, and c.  Since we are only considering the real parts 
of the solution in (5.12) and (5.13), we have four unknowns and two boundary conditions 
at the free surface(

3
23 0

0
x

σ
=
=  is satisfied trivially because of (5.14)).  Therefore 

 
3

3 31
33 0

3 1 3

0 2
x

u uu
x x x

σ λ µ
=

 ∂ ∂∂
= = + + ∂ ∂ ∂ 

 (5.16) 

and 

 
3

31
13 0

3 1

0
x

uu
x x

σ µ
=

 ∂∂
= = + ∂ ∂ 

 (5.17) 
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  Furthermore, we must also satisfy Navier’s equations, or 
 

 ( )
22 2 2 2

31 1 1 1
2 2 2 2

1 3 1 1 3

uu u u u
t x x x x x

ρ µ λ µ
   ∂∂ ∂ ∂ ∂

= + + + +   ∂ ∂ ∂ ∂ ∂ ∂   
 (5.18) 

and 

 ( )
2 2 2 2 2

3 3 3 3 1
2 2 2 2

1 3 3 1 3

u u u u u
t x x x x x

ρ µ λ µ
   ∂ ∂ ∂ ∂ ∂

= + + + +   ∂ ∂ ∂ ∂ ∂ ∂   
 (5.19) 

 
It is actually a rather laborious process to find the appropriate values of  b, A, B, and c 
that satisfy these equations.  However, the following solution does satisfy the conditions 
if the solid is considered to be Poissonian (i.e., Poisson’s ratio 1 , or 4 λ µ= = ). 

 ( ) ( )3 30.8475 0.3933
1 10.5773 coskx kx

Ru D e e k x c t− −= − −    (5.20) 
and  
 ( ) ( )3 30.8475 0.3933

3 10.8475 1.4679 sinkx kx
Ru D e e k x c t− −= − + −    (5.21) 

where 

 0.9194 0.9194Rc µ β
ρ

= =  (5.22) 

 
Figure 5.5 shows a schematic of the particle motion for a harmonic Rayleigh wave in a 
half-space.  
  

 
 
Figure 5.5  Snapshot in time of the particle motion for a harmonic Rayleigh wave in an 
elastic half-space. 
 
Notice that the particle motion at the free surface is an ellipse for this harmonic wave. 
That is, the vertical component  (which is about 150% larger in amplitude than the 
horizontal component) is a sinusoid and the horizontal component is a co-sinusoid (or the 
vertical and horizontal components are out of phase by 2π ).  Notice also that, at the top 
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of the ellipse, the particle is moving in the opposite direction from the direction of the 
wave propagation.  This is referred to as “retrograde particle motion,” and it is quite 
characteristic of Rayleigh wave.  Also, notice that horizontal motions reverse their 
direction at a depth of about 0.192 times the wavelength Λ of the Rayleigh wave (or they 
have a node at this depth).  That is, the horizontal motion is zero at 0.192Λ and the 
particle motion is prograde at larger depths. 
 
Notice that Rayleigh wave velocities in a homogeneous half space are independent of the 
wavelength. That is, Rayleigh waves are non-dispersive in a homogeneous half-space.  
This is different from Love waves, which are inherently dispersive.  However, Rayleigh 
waves are only non-dispersive in a homogeneous half-space.  Shear wave velocities 
generally increase with depth in the Earth.  Since long-wavelength Rayleigh waves have 
motions at a significantly greater depth than do short wavelength Rayleigh waves 
(remember they die as exp( )z− Λ ), the velocities of Rayleigh waves generally increases 
with wavelength for the Earth. 
 
Just as was the case for Love waves, Rayleigh-wave energy generally spreads circularly 
from a point source and the amplitude of Rayleigh waves generally decrease as 1 r  
with distance from the point source.  In the case of point sources, Rayleigh waves are 
generally observed on both the radial and vertical components of a seismographic 
station. 
 
The solution demonstrated above is called a fundamental Rayleigh wave, and there are no 
nodes in the vertical motion as a function of depth (there is 1 node in the horizontal 
component with depth).  The fundamental Rayleigh wave is the only surface wave that 
can occur in a homogeneous half-space.  Love waves require at least one low velocity 
layer to be present.  In addition to fundamental mode Rayleigh waves, there are solutions 
to the layered space that are similar to the Love wave case, but which involve P- and SV- 
waves.  If the velocity of the upper layer is low enough so that both P- and SV-waves can 
be completely reflected (all reflections are post-critical), then there can be plate modes in 
the P-SV system just as there are in the SH system.  These are referred to as higher mode 
Rayleigh waves.  Just as with the Love wave case, they can be simplified into a harmonic 
wave with a horizontal phase velocity that is constant as a function of depth and also 
another function of depth (pseudo-harmonic) that describes the depth dependence of the 
mode.  If some of the reflections (e.g. SV to SV) are post critical, but others are pre-
critical (P to P), then there may be some wave energy that is continually radiated from the 
low-velocity layer.  The system is no long a perfectly trapped system.  These are referred 
to as leaky modes. 
 
Excitation of fundamental mode Rayleigh waves is rather difficult to imagine.  They 
cannot be generated by planar P- and S-waves incident on a planar free surface.  As it 
turns out, the curvature of either a wavefront, or a free surface is critical to the generation 
of fundamental Rayleigh waves; the tighter the radius of curvature, the broader the 
frequency band of Rayleigh waves that can be generated.  That means that deep 
earthquakes can only generate long-period fundamental Rayleigh waves, whereas shallow 
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earthquakes generate broader-band surface waves.  However, it is also true that 
fundamental P- and S-waves are much larger at high frequencies than Rayleigh waves. 
  
 This fundamental Rayleigh wave has some mathematical similarities to the solution for 
gravity waves in the ocean (the type that make you sea sick).  However, oceanic water 
waves have prograde particle motions as is shown in Figure 5.6.  As is the case with any 
two identical wavetrains that are traveling in opposite directions, standing waves are 
formed.  The series of figures show long exposures of gravity water waves traveling 
towards the right.  The white streaks are white particle of neutral buoyancy.  The ellipses 
are their particle motions.  In each successive figure more left-traveling wave is added to 
the mix.  In the final figure, one can see that there are purely standing waves.  In this case 
the particle motions are no longer elliptical, but instead become purely linear.  Notice that 
nodes for the horizontal motions are maxima for the vertical motions and vice versa. 
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