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Chapter 3   Waves in an Elastic Whole Space  8/28/2022 
 
Equation of Motion of a Solid 
 
Hopefully, many of the topics in this chapter are review.  However, I find it useful to 
discuss some of the key characteristics of elastic continuous media.  These concepts are 
critical for understanding both seismic waves in the Earth and also the response of 
engineered structures (e.g. buildings).  I will assume that you already know what stress 
and strain are and I will begin with the equation of motion.  I will use Einstein’s 
summation convention that any repeated index signifies summation over three spatial 
coordinates. 
 
In the first two chapters we considered dynamics problems in which time was the only 
dependent variable.  However, in a continuum, the motion is a function of both time and 
space.  Consider an infinitesimally small cube of elastic solid shown in Figure 3.1.  
Although this cube is surrounded by a continuous solid, we can ask about the net forces 
on the cube. 

 
Figure 3.1.  Distribution of tractions on the faces of an infinitesimal cube of matter.  

i
T  is 

the vector traction (force per unit area) on the thi  face of the cube. 
 
We inquire about the net force F  on the cube.  We begin by noting that the traction 
vector on the ith  face is given by   

 
i

ij jσ=T n  (3.1) 
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where  is stress in cartesian corrdinates and ij jσ n  is unit normal vector to the thj face of 
the cube.  For example, 

 
1

11 1 12 2 13 3σ σ σ= + +T e e e   (3.2) 
We begin by assuming that there is no net torque on the cube, otherwise it would start to 
spin.  This condition is satisfied if and only if the stress tensor is symmetric; that is 
 ij jiσ σ=  (3.3) 
 
We next employ Newton’s 2nd  law to derive the rectilinear acceleration of the mass, 
 m= ≈F P u

  (3.4) 
The cube is assumed to have a density of 1 2 3 and dimensions of , , .dx dx dxρ  The ≈  
becomes a true =  if we take u  to be the position of the center of mass of our 
infinitesimal cube. The thi component of net force on the cube is  
 

 
1 2 3

2 3 1 3 1 2i i i iF d T dx dx d T dx dx d T dx dx= + +  (3.5) 
 
Recognizing that  

 
j

ij
i j

j

d T dx
x
σ∂

=
∂

    (no summation) (3.6) 

we can rewrite Newton’s law (3.4)  for the thi component of net force and acceleration as  

 1 2 3 1 2 3
ij

i
j

dx dx dx u dx dx dx
x
σ

ρ
∂

=
∂

  (summation on j) (3.7) 

or using the notation where , i signifies differentiation with respect to  thi coordinate, this  
be written 
 ,ij j iuσ ρ=   (3.8) 
 
We can obtain a slightly more general expression by allowing there to be some external 
“body” force f that is acting on the cube (e.g. gravity) and we then obtain 
 ,ij j i if uσ ρ+ =   (3.9) 
 
Equation (3.9) is the basic equation of motion of a solid continuum.  Although we 
derived it from Newton’s law, it is fundamentally different in that it contains a spatial 
derivative of forces as well as the time derivative of linear momentum.  As we will see, 
this fundamentally changes the nature of the forces in the problem.  In particular, it says 
that acceleration at a point is not related to stress at that point (force per unit area), but to 
the spatial derivative of stress.  We can generalize (3.9) by noting that it can be written as 
 σ ρ∇ + =f u



  (3.10) 
Where ∇  is the divergence operator (operating on the stress tensor).  This operation is a 
3-vector whose components are the divergence of the three columns of the stress tensor. 
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Strain and Constitutive Laws 
 
In order to actually solve elasticity problems, we must have some relationship between 
the deformation of the body and the internal stresses.  If we consider our infinitesimal 
cube as shown in Figure 3.2, then we can describe the motion of the cube as a 
combination of a rigid body rotation and internal strain.  We will keep track of the 
motions of our cube by characterizing the position u  and the diagonal vector R .  We will 
call the diagonal of the unstrained element R and the diagonal of the element after 
straining ′R .  We define the change in the diagonal element due as 
 δ ′= −R R R  (3.11) 
If the motion of the infinitesimal cube is small, then in component form 
 ,i i j jR u dxδ =  (3.12) 
which can be rewritten in the form of 
 i ij j ij jR dx dxδ ω ε= +  (3.13) 
where 

 ( ), ,
1
2ij i j j iu uω = −  (3.14) 

and 

 ( ), ,
1
2ij i j j iu uε = +  (3.15) 

ijω represents rigid body rotation and it is anti-symmetric.  ijε  is the infinitesimal strain 
tensor and it is symmetric. 
 

 
Figure 3.2. Deformation of an infinitesimal element. 
 
The relationship between stress and strain is called the constitutive relation.  For small 
strains, most materials exhibit a linear relationship between stress and strain that can be 
generally written as  
 ij ijkl klCσ ε=  (3.16) 
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where there are 81 elastic coefficients ijklC .  However, due the symmetry of the stress and 
strain tensor, and due to the requirement for a unique strain energy, there are at most 21 
independent elastic coefficients.  If the material is isotropic (no intrinsic directionality to 
the properties), then there are only 2 independent elastic coefficients.  Table 3.1 provides 
a handy conversion between several different elastic coefficients for an isotropic solid.  
For our discussion we will use the st nd1  and 2  Lame constants  and .λ µ   In this case 
(3.16) simplifies to 
 2ij kk ij ijσ λε δ µε= +  (3.17) 
where 

 
0

Kronecker delta
1ij

i j
i j

δ
≠ 

= ≡ = 
 (3.18) 

 

 
Table 3.1.  Relationship between elastic constants for an isotropic elastic medium 
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Navier’s Equation 
 
We are now in a position to write the equation of motion entirely in terms of 
displacement of the medium.  Combining equations (3.9), (3.15), and (3.17), we obtain 
 ( ), ,i i i jj j jiu f u uρ µ λ µ= + + +  (3.19) 
This is Navier’s equation and it is such an important equation that it is worth writing it 
out to see the terms more explicitly. 

 ( )
22 23

2 2
1

ji i
i

j j j i

uu uf
t x x x

ρ µ λ µ
=

 ∂∂ ∂
= + + + 

∂ ∂ ∂ ∂  
∑  (3.20) 

In Navier’s equation 2nd derivatives of displacements with respect to time are linearly 
related to 2nd derivatives of displacement with respect to space.  Everything that happens 
in an isotropic linearly-elastic solid is a solution to this equation. 
 
We can also write Navier’s equation in vector form as 
 ( ) ( )2µ λ µ ρ∇ + + ∇ ∇ + =u u f u

 

 (3.21) 

Where Laplacian operator ( )2∇ ≡∇ ∇u u

 

 is the divergence (a 3-vector) of the gradient of 
the displacement vector (a 3-tensor).  The term ∇ u



 is seen to be the dilatation, or the net 
volume change of our infinitesimal element.  This vector form of the equation has the 
advantage that we can rewrite it in any type of coordinate frame for which we know the 
Laplacian operator, the gradient operator, and the acceleration vector.  In particular, we 
can write these operators for  
Cartesian coordinates   
 i iu=u e   (3.22) 
 ,i iu∇⋅ =u



 (3.23) 

 i
ix

∂
∇ =

∂
e



 (3.24) 

 
2

2   (note the double sum on  and )i
i

j j

u i j
x x
∂

∇ =
∂ ∂

u e  (3.25) 

 3 32 1 2 1
1 2 3

2 3 3 1 1 2

u uu u u u
x x x x x x

     ∂ ∂∂ ∂ ∂ ∂
∇⊗ = − + − + −     ∂ ∂ ∂ ∂ ∂ ∂    

u e e e


 (3.26) 

 
Cylindrical coordinates 
 
 r r zu u uθ θ= + + zu e e e     (3.27) 

 ( )1 1 z
r

u uru
r r r z

θ

θ
∂ ∂∂

∇ ⋅ = + +
∂ ∂ ∂

u


 (3.28) 

 1
r zr r zθ θ
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

e e e


 (3.29) 

 
2 2

2
2 2 2

1 1r
r r r r zθ
∂ ∂ ∂ ∂ ∇ = + + ∂ ∂ ∂ ∂ 

 (3.30) 
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 ( )1 1 1z r z r
r z

uu u u uru
r z z r r r r

θ
θ θθ θ

∂∂ ∂ ∂ ∂∂     ∇⊗ = − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    
u e e e



 (3.31) 

 

 
Spherical coordinates 

 
 r ru u uθ θ ϕ ϕ= + +u e e e     (3.32) 

 ( ) ( )2
2

1 1 1sin
sin sinr

u
r u u

r r r r
ϕ

θ θ
θ θ θ ϕ

∂∂ ∂
∇ ⋅ = + +

∂ ∂ ∂
u



 (3.33) 

 1 1
sinr zr r r zθ θ θ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
e e e



 (3.34) 

 
2

2 2
2 2 2 2 2

1 1 1sin
sin sin

r
r r r r r

θ
θ θ θ θ ϕ

∂ ∂ ∂ ∂ ∂   ∇ = + +   ∂ ∂ ∂ ∂ ∂   
 (3.35) 
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( ) ( )

( )

1 1sin sin
sin sin
1

r
r

r

u uu ru
r r r

uru
r r

θ
ϕ ϕ θ

θ ϕ

θ θ
θ θ ϕ θ ϕ

θ

 ∂   ∂∂ ∂
∇⊗ = − + −   ∂ ∂ ∂ ∂   

∂∂ + − ∂ ∂ 

u e e

e



 (3.36) 

 
There are infinitely many solutions to Navier’s equation and the solution to any 
individual problem is the one that has the correct initial conditions and boundary 
conditions for any particular problem.  In general, it is not possible for humans to 
analytically solve 3.18 for all classes of three-dimensional solutions to (3.20).  However, 
there are a number of analytic solutions to (3.20) if the problem is assumed to be uniform 
in one direction (two-dimensional).  This is ultimately due to the fact that division is 
defined for two dimensional vectors (the same as division by complex numbers) but it 
cannot be defined for higher dimension vectors.  Therefore, there are analytic (well 
mostly analytic) solutions to problems in which the elastic media is described by a stack 
of horizontal plane layer, but entirely numerical procedures (finite-element or finite-
difference) must be used to solve problems in which the structure is truly three 
dimensional.  The techniques for solving general layer problems often rely on expressing 
the displacement vector field as the sum of potentials (Helmholtz decomposition).  That 
is, we can decompose the displacement as  
 φ ψ= ∇ +∇⊗u

 



 (3.37) 
where  and ϕ ψ



are scalar and vector functions of time and space.  If we make this change 
of variables, then Navier’s equation separates into several wave equations as follows. 

 2
2

1φ φ
α

∇ =  (3.38) 

 2
2

1
i iψ ψ

β
∇ =   (3.39) 

Of course the boundary conditions must also be transformed into potential form.  These 
potential forms can be used in any coordinate system as long as you know how to 
compute the Laplacian, the gradient and the curl. 
 
It is beyond the scope of this class to demonstrate general solution techniques for 
Navier’s equation (see Achenbach for a nice treatment), but we can demonstrate several 
simple solutions which have attributes similar to those of solutions encountered in the 
real world.  Since Navier’s equation is linear, any solution that is added to any other 
solution is also a solution.  Therefore, we can often build the appropriate solution by 
adding together known simple solutions in such a way that they produce the desired 
stresses or displacements on the boundary of a domain; that is they match boundary 
conditions.  When a domain contains layers, the solutions apply inside the individual 
layer and they are constructed to produce continuous displacement at the boundaries and 
balanced tractions on the boundaries. 
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Plane P-waves 
 
Suppose that we consider a motion defined by 

 ( ) 1
1 1 2 3, , , xu x x x t f t

α
 = − 
 

 (3.40) 

and 
 2 3 0u u= =  (3.41) 
then it is a simple matter of substituting (3.40) and (3.41) into (3.20) to show that this is a 
valid solution for any single-variable function f , that is twice differentiable, and provided 
that 

 2λ µα
ρ
+

=  (3.42) 

We could have alternatively chosen the potentials, 

 ( ) 1; xf d t
c

φ α ξ ξ ξ= − ≡ −∫  (3.43) 

 ψ = 0


 (3.44) 
 
It is a trivial matter to show that its gradient is the displacement field given by (3.40) and 
(3.41), and that it satisfies the wave equations (3.38) and (3.39). 
 
This is the equation of a planar P-wave traveling at velocity α  in the positive 

1x direction.  Since the material is isotropic, this direction is arbitrary and it could just as 
well be traveling in the negative 1x  direction.  Note that the shape of the waveform is 
unchanged as it propagates through the medium.  This property is called nondispersive 
and it contrasts with some other solutions that we will explore later where the wave 
velocity depends on the frequency of the oscillation. 
 
Since the equation is linear, we could write a more general solution that has different P-
waves traveling in both positive and negative directions as 

 1 1
1

x xu f t g t
α α

   = − + +   
   

 (3.45) 

where g is some other twice differentiable function.  P-waves are also called 
longitudinal waves since their particle motion is in the same direction as the wave 
propagates.  They are also called compressional waves, although they have both 
compressional and shear stresses as shown by the computing the strain and stress tensor 
for (3.40) as follows. 
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1
11

1

1 1

1

u
x

x xf t f t

xu t

ε

α α
α α

α
α

∂
=
∂

   ′ − −   
   = − = −

 − 
 = −





 (3.46) 

 
and all other strain components are zero.  Don’t be confused by the f ′  , it simply means 

differentiation with respect to the argument, 1xt
α

 − 
 

 .  We see that the strain in this 

wave is proportional to the particle velocity divided by the wave speed.  This will be 
a recurring theme for other solutions of Navier’s equation. 
 
We can substitute (3.46) into (3.17) to obtain the stress, which gives 
  

 
( )

( )
11 11 22 33 11

11

2

2

σ λ ε ε ε µε

λ µ ε

= + + +

= +
 (3.47) 

and 
 22 33 11σ σ λε= =  (3.48) 
 12 23 13 0σ σ σ= = =  (3.49) 
Substituting (3.42) and(3.46) into (3.47) and (3.48) we find that 
 11 uσ ρα= −   (3.50) 
and 

 22 33 112
λσ σ σ

λ µ
= =

+
 (3.51) 

Equation (3.50) tells us that the stress in this wave is related to the particle velocity 
times the product of the density and the wave speed.  The ratio of the stress to the 
particle velocity u

σ ρα=


 is called the mechanical impedance; it measures the stress 

that is needed to make a particular ground motion.  In our particular example, 

 ( )11

1

mecahnical impedance 2
u
σ ρα ρ λ µ= = = +


  (3.52) 

Notice that although there are no explicit shear stresses in this coordinate frame (which is 
the principal coordinate frame for this problem), there are shear stresses in other 
coordinate frames.  The maximum shear stress is in the frame rotated 45 degrees from the 
principal frame and in this frame the maximum shear stress is 

 ( )1 2 11 22 11
1 2
2 2

µσ σ σ σ
λ µ′ ′ = − =
+

 (3.53) 

Therefore there are shear stresses associated with these P-waves. 
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We can also calculate the power ( )1,P x t  associated with this wave as the energy flux in 
the 1x  direction.  This energy flux is the rate of work per unit area done by the traction 
vector on a plane perpendicular to the velocity of propagation.  This rate of work (power 
P  ) per infinitesimal unit area dS  is the stress times the particle velocity, or   

 ( )1 2
11 1 1

,P x t
u u

dS
σ ρα= − =   (3.54) 

The energy per unit volume ( )1,E x t associated with the wave is just the energy flux 
divided by the wave velocity, or 

 ( ) 2,E x t
u

dV
ρ=   (3.55) 

As is the case for all linear dynamic systems, this energy is evenly divided between 
kinetic energy and potential (strain) energy if averaged throughout the system. 
 
Finally we can inquire about the maximum accelerations that can occur in an elastic 
continuum.  We can differentiate equation (3.50) to obtain 

 ( )
1

11

1 1,

xt
u x t

σ
α

ρα

 − 
 = −



  (3.56) 

 
That is the acceleration of a point scales like the time derivative of the compressive 
stress.  If a finite compressive stress were suddenly applied to a surface then it would 
generate a P-wave whose acceleration would be described by a Dirac-delta function, 
which has infinite acceleration.  That is, if 

 1
11 0

xH tσ σ
α

 = − 
 

 (3.57) 

where H(t) is a Heaviside step function, then 

 0 1
i

xu tσ δ
ρα α

 = − 
 

  (3.58) 

Notice that the acceleration is infinite, whereas the stress is finite. 
 
Plane Shear Waves 
 
Another important solution to Navier’s equation can be expressed as 

 1
2

xu f t
β

 
= − 

 
 (3.59) 

 1 3 0u u= =  (3.60) 
It is again a simple matter to substitute (3.59) and (3.60) into Navier’s equation (3.20) to 
find that this is a solution so long as  

 µβ
ρ

=  (3.61) 
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As before, we could have used the displacement potentials 
 0φ =  (3.62) 
 1 2 0ψ ψ= =  (3.63) 

 1
3

xf tψ β
β

 
= − 

 
 (3.64) 

where the curl of ψ


 is the displacement and (3.64) solves the scalar wave equation  
(3.39). 
 
This is the description of a planar shear wave (S-wave) traveling in the positive 1x  
direction with velocity β .  The particle motion is in the 2x  direction and it is parallel to 
the wave front and perpendicular to the direction of motion.  As was the case with P-
waves,  f(t) is any function with a finite 2nd derivative.  Like the planar P-wave, planar S-
waves are also nondispersive. 
 
Notice that the S-wave is slower than the P-wave and that the ration of the velocities is 

 2α λ µ
β µ

+
=  (3.65) 

This can be expressed in terms of Poisson’s ratio ν  by using Table 3.1.  In this case, 

 2 2
1 2

α ν
β ν

−
=

−
 (3.66) 

So the ratio of P- to S-wave velocities depends only on Poisson’s ratio.  For many solids, 
1, or 4λ µ ν≈ ≈ , in which case we call the solid Poissonian and 3 1.717α

β ≈ = .  The 

typical P- and S-wave speeds in the Earth’s crust are 4 km/s and 6.5 km/s, respectively.  
A handy trick is estimated the distance between an earthquake and a seismic station by 
the following simple formula 
 ( ) ( )km7 sS Pt t∆ ≈ − ⋅   (3.67) 

There are important cases where the P-wave speed is much higher than the S-wave speed.  
In particular, the types of water saturated muds found in coastal areas can have P-wave 
speeds that are more than 10 times the S-wave speed.  In this case Poisson’s ratio 

approaches its upper limit of 1
2

 . 

We can also compute strain, stress, and energy flux for the S-wave wave as we did for the 
planar P-wave.  In this case, 

 2
12

1
2

uε
β

= −


 (3.68) 

 11 22 33 13 23 0ε ε ε ε ε= = = = =  (3.69) 
 12 2uσ ρβ=   (3.70) 
 11 22 33 13 23 0σ σ σ σ σ= = = = =  (3.71) 
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 ( )1 2
12 2 2

,P x t
u u

dS
σ ρβ= − =   (3.72) 

 
Diagrams of the motion of Planar P- and S-waves are shown in Figure 3.3. 
 

 
 
 Figure 3.3. a) longitudinal P-wave, b) Transverse S-wave 
 
 
Harmonic Plane Waves 
 

While planar P- and S-waves can be expressed for any function of the variable, xt
c

 − 
 

, 

where c is the wave velocity,  it is instructive to investigate the solution if the function is 
harmonic, a sinusoid or cosine.  That is, there are many instances in which the 
superposition of harmonic solutions can be used to construct solutions to more general 
problems.  To demonstrate, let’s consider the planar S-wave in the previous section, but 
we will assume that our function is a cosine. That is, 

 

( )

1
2

1

cos

cos

xu t

kx t

ω
β

ω

  
= −  

  
= −

 (3.73) 

where k is spatial wavenumber given by 

 2k ω π
β

= =
Λ

 (3.74) 

and Λ  is the wavelength.  We can now consider what happens when two harmonic plane 
waves of identical strength and frequency, but traveling in opposite directions are added 
together.  We can use standard trigonometric identities to easily show that. 
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( ) ( )
( ) ( )

2 1 1

1

cos cos

2cos cos

u kx t kx t

kx t

ω ω

ω

= − + +

=
 (3.75) 

Equation (3.75) is therefore a standing wave with the same frequency and wavenumber 
as the two traveling waves.  Since Navier’s equation is linear, and since the waves 
traveling in each direction are solutions, then their sum (the standing wave) is also a 
solution of Navier’s equation.  Obviously, standing wave solutions are natural when 
identical waves are traveling in opposite directions.  This is a common occurrence when 
harmonic waves are reflected off of an interface.  It also happens in our spherical Earth 
when waves that travel around the Earth in opposite directions meet.  In this case the 
interference makes the free oscillations of the Earth. 
 
In a similar fashion, it is possible to add two harmonic standing waves together to 
produce a single harmonic traveling wave.  Again we can use standard trig identities to 
show that   

 
( ) ( ) ( ) ( )

( )
2 1 1

1

cos cos sin sin

cos

u kx t kx t

kx t

ω ω

ω

= +

= −
 (3.76) 

We have shown that we can represent any harmonic plane wave as either the sum of 
traveling waves or the sum of standing waves.  Obviously it works for P-waves too, since 
we use the same trig identities.  As it turns out, this duality of representations is far more 
general and can be applied to a variety of more complex problems.  These two solutions 
are sometimes referred to as characteristic solutions and mode solutions.  Figure 3.4 
shows a schematic of how sinusoids traveling in opposite directions sum to make a 
standing wave. 
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Figure 3.4.  From “Vibration and Waves” by A. P. French. W.W. Norton and Co., 1971. 
 
Spherical Waves 
 
Many problems that we encounter concern the radiation of waves from a point in the 
medium.  These waves spread spherically through the medium and their representation 
with Cartesian coordinates is awkward.  In a homogeneous whole space it is usually most 
natural to solve these problems in spherical coordinates.  However, if there are layers in 
the medium, then it usually is more convenient to solve these problems in cylindrical 
coordinates.  General solutions for these problems are quite complex and beyond the 
scope of this class.  However, we can consider the following potential in spherical 
coordinates.  This potential has radial symmetry. 

 ( ) 1 1, r rr t f t g t
r r

ϕ
α α

   = − + +   
   

 (3.77) 

This solves the transformed form of Navier’s equation given by (3.35) and (3.38).  When 
the problem is radially symmetric, this can be written as 

 2
2 2

1 1r
r r r

ϕ ϕ
α

∂ ∂  = ∂ ∂ 
  (3.78) 
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The displacement that results from this is 

 
2

2

1 1

1 1

r
r r r ru f t g t f t g t

r r r

r r r rf t g t f t g t
r r

ϕ
α α α α α

α α α α α

∂ −           ′ ′= = − + + − − − +          ∂           
−           = − + + − − − +                    





 (3.79) 

I have chosen a solution with waves that travels both radially outward (the f terms) and  
inwards (the g terms).  Each of these has terms that decay with distance as both 

1 2 and r r− − ; these are called far-field and near-field terms, respectively.  They are both 
required to solve Navier’s equation for this radial wave problem.  Notice that the far-field 
term has a time dependence that looks like the time derivative of the near-field term.  
Also notice that the far-field term is scaled by the factor 1α − . 
 
We can enquire about the energy in the spherically symmetric P-wave by integrating the 
power that is exerted on a shell of radius, r  .  Recall that power per unit area is given by 
equation (3.54),  or  
 ( ) ( )2 24P t r uπ ρα=    (3.80) 
Inserting the far-field term from (3.79) into (3.80), we obtain 
 

 ( ) ( )24P t f tρπ
α

=    (3.81) 

That is, the energy in the radiated far-field P-wave is the same as it passes through any 
spherical shell at any distance; the wave energy of far-field waves is conserved. 
 
Pressure Step in a Spherical Cavity 
We can explore this difference between near-field and far-field terms by investigating the 
exact solution to the problem of a step change in pressure p0 inside a spherical cavity of 
radius a.  The derivation is somewhat lengthy and is given by Achenbach.  The answer 
for a Poisson solid is   

 ( )
3

ˆ
0 1 12

1ˆ ˆ ˆ1 2 sin cos
4 2

bt
r

a ru p H t t t e
r a

ω ω
µ

−   = + − −      
 (3.82) 

where 

 ˆ rt t
α

≡ −  (3.83) 

 1
2 2
3a

αω =  (3.84) 

 2
3

b
a
α

=  (3.85) 

At the surface of the cavity the displacement is  

 0 1 1
1

1 sin cos
4

bt bt
r r a

a bu p e t e tω ω
µ ω

− −
=

 
= + − 

 
 (3.86) 
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This looks like the pressure rate convolved with the solution of damped harmonic 
oscillator problem subjected to a step in force (see equation 1.39).  The period of the 
undamped oscillator is given by (1.37), which when combined with (3.84) and (3.85) 
gives    
 2 2 2 2

0 1 3b bω ω= + =  (3.87) 
The fraction of critical damping of this system is given by (1.5) and is equal to 

 
0

1 0.58
3

bζ
ω

= = =  (3.88) 

So the surface of the cavity is a 58% damped oscillator that settles about its new static 
equilibrium position.  With each harmonic swing, it radiates wave energy to the far-field 
term, which at large r become.  

 
2

ˆ
0 1

ˆ2 sin
4

bt
r r a

au p e t
r

ω
µ

−
>>

≈  (3.89) 

The damping of the oscillating cavity is sometimes referred to as radiation damping and 
since it is linear and depends on the velocity at the source, it is very analogous to viscous 
damping discussed in the SDOF problem of chapter 1.  The concept of radiation damping 
can become useful when investigating the damping of an oscillating building that excites 
seismic waves as it oscillates. 
 
Of course a spherical cavity has many other modes besides the radially symmetric mode 
just described.  Each mode has its own natural frequency, mode shape, and radiation 
damping. The mode shapes are best described with spherical harmonics.  Since the 
pressure problem is radially symmetric, we only need the fundamental mode solution that 
is given by (3.82).  
 
 
Point Force 
 
The displacement in the i direction from a point force in the k direction with time history 
f(t) was given by Love (The mathematical theory of elasticity, Dover Pubs., 1944) and is 
 

( )
2

2 2 2

1 1 1 1 1
4 2

r ik
i r

i k i k

r r r r ru f t d f t f t f t
x x r x x r r r

β

α

δτ τ τ
π α α β β β β
        ∂ ∂ ∂  = − + − − − + −          ∂ ∂ ∂ ∂            

∫
 (3.90) 
where 
 2

i ir x x=  (3.91) 
This is an important building point in seismology, since it allows us to calculate the wave 
field that results from distributions of forces.  Although this solution is relatively 
compact, it is written in terms of both Cartesian coordinates and radial distance.  It is 
easier to write the full solution in spherical coordinates in which case all of the spatial 
derivatives turn into a relatively complex set of sines and cosines of the angular 
geometric parameters.  This is called “radiation pattern” and an example will be given in 
Chapter 7 (Sources).  
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Anelastic Attenuation of a Traveling Wave  
 
The solutions discussed above are for an elastic medium.  However, it is useful to 
introduce the concept that their energy slowly decays as they travel due to some inelastic 
response of the medium.  In addition, there are basic physical considerations that require 
that waves eventually attenuate.  One convenient approach to this problem is to break a 
waveform into its harmonic constituent parts and to then introduce the following 
definition of Q which is entirely analogous to the one that we used in Chapter 1 for the 
SDOF problem.  Recall that for a lightly damped oscillator (equation 1.30), 

 2 EQ
E

π≈ −
∆

 (3.92) 

where  and E E∆  are the total energy and energy lost per cycle.  We can also define the 
logarithmic decrement of the amplitude lost per cycle as 

 1

2

ln A
A

δ
 

≡  
 

 (3.93) 

since energy is proportional to the square of amplitude, 

 1ln ln
2

A E=  (3.94) 

from which it follows that  

 Q π
δ

≈  (3.95) 

We can now write the expression for the amplitude A of a harmonic wave as a function of 
distance traveled r as  

 ( ) ( )2
0

rQcA r A e
ω−

=  (3.96) 
 
where c is the velocity of the wave.  Sometimes the attenuation is described by the 
parameter t∗  which is defined to be 

 travel time
quality factor

rt
cQ

∗

= =  (3.97) 

  
 
Homework for Chapter 3 
 

1. Show that (3.40) and (3.59) are solutions to Navier’s equation. 
 

2. Show that (3.77) is a solution to Navier’s equation. 
 

3. If a plane harmonic wave with a frequency of 1 Hz and a propagation velocity of 
3 km/sec is ½ the amplitude after traveling 100 km through an attenuating 
medium, then what is the * and Q t ? 


