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Seismographic Systems 8/28/2022 
 
It is common to separate seismographic systems into “seismographs” and “strong-motion 
accelerographs.”  Seismographs have generally been developed by geophysicists and 
seismographs are typically designed to record ground motions that are far too small to be 
felt.  Strong-motion accelerographs have usually been designed by earthquake engineers 
to record the ground acceleration during severe earthquake shaking.  In actuality, though, 
there is nothing fundamentally different in the physics of these two systems. 
 
Seismographs (including strong-motion accelerometers) consist of (at least) a sensing 
unit and a recording unit.  I will begin by discussing the recording system.  Current state-
of-the-art is to record output voltages from a seismometer (the sensing system) with a 
digital data logger, which typically consists of an analog to digital converter (ADC) and 
some type of digital computer for processing, storage, and communications. 
 
Dynamic Range 
 
The most critical specification of a data logger is its dynamic range, which is defined as 
the ratio of the largest on-scale voltage Vmax  divided by the smallest resolvable voltage  
Vmin .  That is, 

 max

min

VDR
V

=  (2.1) 

 
Traditionally, dynamic range is given in the somewhat obscure units of decibels dB (a 
tenth of a Bell).  This nomenclature was originated with measuring the relative intensity 
of sound, which is proportional to the power of acoustic waves.  Bells are a base 10 
logarithmic measure of energy per unit time, and 1 Bell corresponds to a factor of 10 
increase in energy per unit time.  However, most of our discussions concern the 
amplitude of some signal as opposed to its power.  Since power is proportional to the 
square of the amplitude, a factor of 10 in amplitude corresponds to 2 Bells or 20dB.  
Therefore we can define dynamic range in units of dB as 

 max

min

20 log dBVDR
V

 
= ⋅  

 
 (2.2) 

   
The dynamic range of a digitizer is typically determined by the number of bits that it uses 
to characterize voltage.  Each bit represents a factor of 2 in dynamic range, so the 
dynamic range is #bits2 .  Since log 2 0.301= , the dynamic range in dB is #bits times 6.02. 
 
Early digitizers were typically 8-bit or 12-bit units.  16-bit units were common by the mid 
1980’s, and 20-bit or 24-bit units had become the standard by the mid 1990’s. 
 
Some examples of dynamic range are given in Table 2.1. 
 
 
 



 2-2 

Table 2.1   
         #bits  Dynamic Range   DR in dB 

8  256    48 
12  4,096    72 
16  65,536    96 
20  1,048,576   120 
24  16,777,216   144 

 
 
Paper or film recording devices were the most common system prior to introduction of 
digital systems.  These older analog systems typically had a dynamic range of 50 to 60 
dB, depending on how well the trace could be measured.  As we shall see later, the total 
dynamic range of motions encountered in the Earth is on the order of 200 dB, and current 
digitizers do not come close to having the dynamic range to record both the strongest 
motions in earthquakes and the smallest motions that occur at quiet sites. 
 
Most electro-mechanical seismometers have an effective dynamic range that is about 100 
dB, which is much larger than the range of optical recording systems.  However, 
electronic feedback seismometers (described below) typically have dynamic ranges of 
about 140 dB. 
 
Seismometers 
 
Seismometers are the sensors that produce the signal to be recorded.  Modern 
seismometers produce some voltage that is related to the ground motion by the 
instrument response.   The earliest seismometers (circa 1900) consisted of a mass, a 
spring, and sometimes a damper.  The mass was usually very large since its motion was 
typically measured by a series of levers that caused a needle stylus to move over a 
rotating drum covered with smoked paper.  Thus it was necessary for the small motions 
of the ground to cause enough momentum in the mass to overcome the friction of the 
recording system. 
 
In 1922, Harry Wood (a seismologist) and John Anderson (an astronomer) collaborated 
to build a simple system known as the Wood-Anderson torsion seismometer.  They 
developed a system that illuminated a mirror on a mass suspended by a vertical wire that 
served as a torsion spring.  When the ground moved horizontally, the wire would twist, 
causing a deflection of the reflected light.  The reflected light was focused onto a rotating 
drum covered with photographic paper.  The motion of the mass was damped electro-
magnetically.  The Wood –Anderson has undamped natural period of 0.8 s, it’s gain is 
2,800, and its damping is 70% of critical.  Several dozen Wood-Anderson seismometers 
were operated in southern California until about 1980.  This system was the standard that 
was used by Richter in the definition of earthquake magnitude in the 1930’s.  The 
response of this instrument is that of a simple single degree-of-freedom oscillator. 
 
Many strong-motion accelerographs were also simple optical SDOF’s.  More than 10,000 
SMA-1 series of accelerographs were manufactured by Kinemetrics in Pasadena from the 
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late 1960’s to the mid 1990’s.  This instrument also has a mirror that deflects in torsion.  
It’s natural frequency is about 30 Hz and it also 70% damped.  A sketch of this 
instrument is shown in Figure 2.1.  A frequencies lower than 30 Hz, the records from this 
instrument are proportional to ground acceleration.  These instruments record on 70 mm 
film and they only record when triggered by vertical accelerations that exceed about 1% 
g.  The clip level on an SMA1 is about 1.5 g.  When the frequency of the signal exceeds 
15 Hz, it is necessary to deconvolve the instrument response to obtain true ground 
acceleration from this instrument. 
Figure 2.2 shows a schematic of another common strong motion accelerometer (SMAC) 
used in Japan from the 1960’s through the 1980’s.  This is a purely mechanical 
instrument with air damping.  Unfortunately, static friction in the system made this a poor 
system for recording motions at periods exceeding 2 seconds. 
 
 

 
Figure 2.1  Schematic of the mechanics of an SMA-1 strong motion accelerometer. 
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Figure 2.2.  Schematic of a Japanese SMAC strong motion acclerograph. 
 
Table 2.1 gives the instrument constants of a number of strong-motion seismographs. 

 
Table 2.1 
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Beginning in the 1910, seismometers with electromagnetic pickups were developed by 
Galitzen.  Currents generated by the seismometer were used to drive a galvanometer that 
that deflected a beam of light.  A number of different types of these instruments became 
popular in the 1930’s.  These instruments gave new flexibility since the signals could 
electronically amplified and filtered.  Velocity transducers are the most common type of 
pickup and they typically consist of a magnetized mass that moves through a conducting 
coil.  The voltage generated in the coil is proportional to the velocity of the mass with 
respect to the coil, and hence the term, velocity transducer.  Benioff short-period 
seismometers with a 1-second free period, 70% damping, and velocity transducers were 
important standards in seismology. 
 
By the 1970’s more compact 1-second velocity seismometers were manufactured in large 
numbers for use in exploring for petroleum.  Over a thousand L4-C (Mark Products, Inc)  
1-second seismometers were employed by regional seismic U.S. networks from the 
1970’s through the 1990’s. 
 
The electrical output from these seismometers has been recorded in a number of ways.  In 
many important seismographic systems, the electrical current from the seismometer was 
used to drive galvanometers.  These galvanometers consisted of a mirror suspended on a 
torsion wire.  Deflection of the mirror was measured photographically as in other direct 
seismometers.  The galvanometer was itself a linear SDOF whose forcing was the output 
from the seismometer.  The galvanometer/seismometer system actually constitutes 2 
linearly coupled oscillators.  Therefore, the response of these galvanometer seismometer 
systems is approximately given by. 
 ( ) ( ) ( ) ( )2

02x t x t x t u tβ ω+ + =    (2.3) 
 
 ( ) ( )V t Cx t=   (2.4) 
  
 ( ) ( ) ( ) ( )22 G Gy t y t y t DV tβ ω+ + =   (2.5) 
 
where x(t) and y(t) correspond to the motion of the seismometer and galvanometer 
masses, respectively, ( )  and  are constants,  is voltage,  and G GC D V t β ω  are the 
damping and free period of the galvanometer.  Note that the driving term in the second 
equation is not a 2nd derivative with respect to time. 
 
Since the damping of both systems was 70% of critical, and since older seismometer 
masses were quite large, the feedback from the motion of the galvanometer back into the 
seismometer was minimized.  Therefore we can approximately solve this problem as if 
the solution to equation (2.3) is used as the input to equation (2.5).  As was the case for 
the simple SDOF, we can write the solution for these equations as a convolutions with the 
Green’s functions of the seismometer G(t) and the galvanometer  GG(t). 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

G

G

G

y t G t V t
dG t D CG t u t
dt

CDG t G t u t

= ∗

 = ∗ ∗ 

= ∗ ∗





 (2.6) 

where 

 ( ) ( ) ( )2 2
02 2

0

sintH t
G t e tβ ω β

ω β
−= −

−
 (2.7) 

and 

 ( ) ( ) ( )2 2

2 2
sinGt

G G G

G G

H t
G t e tβ ω β

ω β
−= −

−
 (2.8) 

 
 
 
 
The dynamic range of these electromagnetic seismometers is typically in the range of 80 
to 100 dB. This is far greater than the range of the film or paper systems that were used to 
record the data from them. 
 
Just as before, we can take the Fourier transform of (2.6) to obtain 
 
 ( ) ( ) ( )( ) ( )3

Gy CDG G i uω ω ω ω ω= − 

   (2.9) 
where  

 ( ) 2 2
0

1
2

G
i

ω
ω ω ωβ

=
− +

  (2.10) 

 ( ) 2 2
1

2G
G G

G
i

ω
ω ω ωβ

=
− +

  (2.11) 

 
 
Table 4.1 lists some instrument constants for several seismometer systems.  All of these 
systems are from the early 1900’s, except for the WWSSN LP, which was operated as a 
standard world-wide network from the 1960’s to the 1980’s. 
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The ground displacement amplification response as a function of period 2T π

ω
=  is 

shown in Figure 2.3.  Figure 2.4 shows a similar plot for a number of important 
seismographic systems, many of which were operated at the Seismological Laboratory of 
Caltech. 
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Poles and Zeros 
 
We can rewrite the frequency domain response of our seismometer/galvanometer system 
(2.9) in the following way 
 ( ) ( ) ( )y t R t u t= ∗  (2.12) 
where R(t) is the displacement response of  the system given by 

 ( ) ( ) ( )3 G
dR t CDG t G t

dt
 = ∗   (2.13) 

This can be written in the frequency domain as 
 ( ) ( ) ( )y R uω ω ω=    (2.14) 
where 
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( )( )

( )
( )( )

( )
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=
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=
   − + − − + −   

− − −
=
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

 (2.15) 

where 
 1 2 3 0z z z= = =  (2.16) 
and 
 2 2

2 0p iβ ω β= − −  (2.17) 

 2 2
2 0p iβ ω β= + −  (2.18) 

 2 2
3 G G Gp iβ ω β= − −  (2.19) 

 2 2
4 G G Gp iβ ω β= + −  (2.20) 

The pj and zi are called the poles and zeros of this system, and together with the station 
gain, -iCD, they define the response of the system. 
 
Unfortunately, there is always confusion about conventions used in transforms.  The 
common convention for poles and zeros is defined by the Standard for Exchange of 
Earthquake Data (SEED).  This standard is described in the SEED user’s manual that can 
be found at http://www.iris.washington.edu/DOCS/manuals.htm.  The standard is based 
on Laplace transforms as opposed to Fourier transforms.  These two transforms are very 
similar except that the poles are zeros are defined in terms of the Laplace transform 
variable s iω= .  Denoting the poles and zeros by  Pi and Zi, we can rewrite (2.15) as 

http://www.iris.washington.edu/DOCS/manuals.htm
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 ( ) ( )( )( )
( )( )( )( )

1 2 3

1 2 3 4

s Z s Z s Z
R CD

s P s P s P s P
ω

− − −
=

− − − −
  (2.21) 

where 
 1 2 3 0Z Z Z= = =  (2.22) 
and 

  2 2
1 1 0P ip β β ω= − = + −  (2.23) 

 2 2
2 2 0P ip β β ω= − = − −  (2.24) 

 2 2
3 3 G G GP ip β β ω= − = + −  (2.25) 

 2 2
4 4 G G GP ip β β ω= − = − −  (2.26) 

In fact, any complex transfer function that can be written in the form 

 ( )
1

1 0
1

1 0

...
...

n n
n n

l l
l l

a a aT
b b b
ω ωω
ω ω

−
−

−
−

+ + +
=

+ + +
 (2.27) 

can also be written in the form 

 ( )
( )

( )
1

1

n

i
i
l

j
j

a z
T

b p

ω
ω

ω

=

=

−
=

−

∏

∏
 (2.28) 

The convention of using poles and zeros is especially useful in systems that can be 
described as a series of convolutions.  Since these convolutions can be written as a series 
of multiplications in the frequency domain, a system can be described by compiling the 
set of all of the poles and zeros that correspond to each of the functions that are 
convolved to form the transfer function.  If an additional filter or device is added to the 
system (and if its effect is that of a convolution), then the poles and zeros of that device 
are simply added to the set. 
 
Broad-Band Seismometers 
 
It is worth inspecting Figure 2.4 to see that most seismographic systems were designed to 
have high magnification in either a short-period band (about 1 second) or a long-period 
band (about 20 seconds).  This was accomplished by using short-period galvanometers 
together with short-period seismometers to make a short period seismograph, or by 
combining a long-period galvanometer with a long-period seismometer to make a long-
period seismograph.  However, it was possible to use a short-period seismometer with a 
long-period galvanometer to make a system which records over a broad range of 
frequencies.  One such instrument was the Benioff 1-90, which had a 1-second velocity 
transducer seismometer driving a 90-second galvanometer.  The response of this 
instrument (see Figure 2.4) is approximately flat to velocity between 1 and 90 seconds; 
hence it records velocity over a broad frequency range. 
 
Notice that the amplification of the 1-90 is much less than that of either the short- or 
long-period systems.  This is because there are microseisms, which are relatively large 
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amplitude waves continuously, excited by water waves in the ocean at periods between 6 
and 12 seconds.  There was not much point in making a high-magnification broad-band 
system since it would fill the seismogram with quasi-harmonic microseisms.  The 
presence of microseismic noise at virtually all stations meant that seismograph designers 
who wished to detect and locate frequent small-magnitude earthquakes were forced to 
design either long- or short-period instruments. 
 
Simple optical seismometers (Wood-Anderson, SMA-1 accelerograph) also respond over 
a broader frequency band, but they have a relatively small overall amplification of 
signals.  Furthermore, their response is flat to acceleration at periods longer than their 
natural frequency.  This means that they are quite insensitive to long-period ground 
displacements when compared to a seismograph that whose response is flat to velocity. 
 
Figure 2.5 shows that amplitude for many different wave types as a function of 
frequency.  The vertical axis is the log of the max amplitude of a seismogram after 
filtering with a 1-octave wide bandpass filter.   The curves labeled maximum and 
minimum correspond to the background noise level recorded at worldwide seismographic 
stations.  The minimum curve was recorded at a site in Lajitas, Texas.  There is really no 
maximum curve, since one can always find sites with high background noise.  It actually 
represents the noise encountered on ocean island stations where ocean wave generated 
noise is high. 
 
The various lines shown for different earthquake situations show approximate median 
amplitudes for earthquakes recorded at approximately 10 km, 100 km, and 3000 km from 
earthquakes of different magnitudes.  You can see that there are more than 200 dB in 
amplitude difference (10,000,000,000 to 1) between the ambient ground noise and the 
maximum ground accelerations at seismically quiet sites.  The stippled regions show the 
on-scale range of both an SMA-1 strong motion accelerograph and a typical short-period 
seismographic channel from a regional seismographic network with analog telemetry 
(frequency modulated, FM).  Almost 1,600 of these short period seismographs were 
operating in the United States in the 1980’s.  These stations were designed to operate at 
maximum magnification to detect the smallest earthquakes that created motions just 
larger than the ambient ground motions.  Although these stations were well suited for 
detecting ground motions, they were not well suited for recording them.  That is, many 
earthquake ground motions were too large for the range of the system and they caused 
clipping. 
 
Some seismological observatories operated a wide variety of seismographs that operated 
in different amplitude and frequency bands.  The Pasadena station routinely recorded 
several dozen seismograms each day in order to obtain a more or less complete record of 
ground motion over this vast range of amplitude and frequency. 
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Figure 2.5 
 
Notice that the spectra of ground accelerations from strong motion records of large 
earthquakes are relatively flat in the frequency band from 0.3 Hz to 5 Hz.  Since the 
recording system of early strong motion accelerographs was less than 60 dB, it was a 
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good choice to record ground acceleration since that was the best way to recover motion 
in the frequency band from 0.1 Hz to 10 Hz. 
 
In the 1980’s seismic instrumentation was revolutionized by the development of force-
feedback seismometers.  These systems are similar to standard seismometers, but they 
usually have a displacement transducer to measure the motion of the seismometer mass.  
In addition, they add an electromagnetic forcing system that has the role of minimizing 
the motion of the mass with respect to the seismometer case.  The force necessary to keep 
the mass stationary is simply the ground acceleration.  The essential feature of these 
systems is that the dynamic range of the instrument is dictated by the dynamic range of 
the electronic feedback system, and not by the dynamic range of the mechanical 
seismometer.  This essential addition allows modern feedback seismometers to often 
achieve 140 dB dynamic ranges (a factor of 100 times greater than the dynamic range of 
mechanical systems). 
 
The electronic feedback system can also be designed to provide the desired instrument 
response.  STS-1 seismometers manufactured by Streckeisen A.G. in Switzerland are 
considered a standard of excellence for feedback seismometers.  They have a mechanical 
natural period of about 1 Hz that is extended to 0.003 Hz (360 seconds) by the feedback 
system.  Their electronic feedback system is designed to provide an instrument response 
that is flat to velocity from 360 seconds to 8 Hz.  In essence they have a response that is 
identical to an SDOF with a 360 second natural period and a velocity transducer.  The 
range of amplitudes and frequencies that can be recorded by an STS-1 are shown in 
Figure 2.5. 
 
Notice that microseismic noise in the .2 Hz to .1 Hz band is several orders of magnitude 
larger than the minimum motion resolved from an STS-1.  Thus, it is necessary to filter in 
this frequency band if one wants to see small motions in either shorter or longer periods.  
Such filtering was not particularly feasible when STS-1’s were recorded with older 
systems with limited dynamic range.  The development of 24-bit recording systems with 
dynamic ranges of 140 dB that matched that of the seismometer was the other important 
development that revolutionized seismographic systems in the 1990’s. 
 
A number of other important feedback seismometers have been developed.  In particular, 
the Caltech/USGS network has many stations that use STS-2 seismometers that are flat to 
velocity from 120 seconds to 30 Hz.  These systems are better suited to record small 
earthquakes and they are also about 1/3 or the cost of STS-1’s. 
 
Currently, strong-motion accelerographs are typically force-feedback systems with stiff 
(high-frequency) mechanical suspensions.  Their output is usually flat to acceleration 
from static acceleration (sometimes called DC, as in DC current) to 100 Hz.  Their 
dynamic range is also in the range of 140 dB.  However, most strong motion 
accelerographs are still designed to record only during strong shaking (usually a trigger 
threshold of 0.01 g) and hence it has not been seen as necessary to record with 24-bit 
resolution.  The Kinemetrics K-2 accelerograph has a 20-bit digitizer and it has been a 
standard at the turn of the millennium. 
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Stations of the Caltech/USGS seismographic system (TriNet) have six 24-bit digitizers to 
record 3 components each of broad-band velocity and strong-motion acceleration.  The 
24-bit range of the strong-motion accelerometers is also shown in Figure 2.5.  The total 
range of the combined systems is encompassed by the heavy lines in Figure 2.5. 
 
John Clinton prepared the figure on the following page and it shows an updated version 
of the amplitudes of different signals recorded by the TriNet system in southern 
California (see www.trinet.org). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.trinet.org/
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In this case, the dotted lines outline the range of an STS-2 seismometer and the solid blue 
lines show the range of a hypothetical strong-motion broad band seismograph that could 
potentially serve the dual purpose of recording both strong ground motions and large 
distant earthquakes (teleseisms). 
 
Microelectromechanical systems (MEMS Accelerometers) 
 
MEMS accelerometers are very small accelerometers that are fabricated with silicon 
chips.  They were first developed to provide inexpensive triggers for air bag deployment 
in automobiles.  They often consist of a small cantilevered conductive plate that is placed 
in the void space between an upper and lower surface.  All of these plates are connected 
to a circuit that measures the capacitance of the MEMS device.  This capacitance is 
determined by the distance between the plates, which is determined by the flexure of the 
cantilevered plate.  Typically, the undamped frequency of the MEMS is very high (> 100 
Hz).  Since the output of the MEMS is proportional to the displacement of the mass 
(displacement transducer), the output of the sensor is proportional to accelerations for 
frequencies less than the natural frequency. 
 
Of course, the main advantage of a MEMS sensor is that it can be mass produced and can 
be extremely inexpensive.  These sensors are finding more applications as time goes on.  
Today, all smart phones have MEMS accelerometers; these are used to determine the 
orientation of the phone (acceleration due to gravity is down) and they are also necessary 
for some game controllers.  The original MEMS accelerometers were designed for 
automobile collisions and hence their clip range was high (>10 g).  Furthermore, there 
was not much need for precision and the resolution of the devices was often only 40 dB. 
 
 

 
Figure 2.7 ONAVI MEMS accelerometer used by QuakeCatcher network.  This is a 3-
component 80 dB device with a 2 g clip level. 
 
Lately MEMS manufacturers are improving the dynamic range of their devices, which 
makes them more suitable for use as strong motion seismometers.  Towards that end, two 
separate development projects are attempting to deploy large numbers of MEMS 
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accelerometers to be operated by volunteers.  The MEMS accelerometer in Figure 2.7 
shows an ONAVI accelerometer that has been deployed by the QuakeCatcher Network 
that is being developed by Jesse Lawrence (Stanford Univ.) and Elizabeth Cochran 
(USGS, Pasadena).  This device was developed for use in navigational equipment and 
hence it has better fidelity that most other MEMS accelerometers. 
 
Figure 2.8 shows the response of several MEMS accelerometers.  Notice that the noise 
level of most current MEMS devices are significantly higher than that for a current state-
of-the-art accelerometer (a Kinemetrics Episensor with a dynamic range of 140 dB).  The 
Caltech Community Seismic Network project is another development project to deploy 
MEMS accelerometers to volunteers.  In this case the accelerometer is a Phidget MEMS 
accelerometer with a 2 g clip level.  The total dynamic range of the current device is in 
the range of 80 dB.     
 

 
Figure 2.8 Shows the operating range of several MEMS accelerometers as compared 
with a Kinemetrics Episensor (force balance accelerometer).   Currently, the cost of the 
Android phone accelerometer is less than $1, the Phidget is less than $100, and the 
Episensor is in the range of $4,000. 
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Deriving Ground Motion from Seismograms 
 
Chapter 1 provides the basic theory of an SDOF oscillator and deconvolution.  While this 
is straightforward in principal, it is anything but simple in practice.  Most seismologists 
use an excellent signal processing package for UNIX machines that is available from 
Lawrence Livermore National Lab called SAC (http://www.llnl.gov/sac/).  This package 
has many routines to remove instrument responses, filter, differentiate, integrate, and 
baseline correct.  There are some issues to keep in mind when processing data.  First, 
consider that we typically have three seismometers to record three linear components of 
motion plus three components of rotation of the ground.  In general, seismometers are not 
directly sensitive to rotation.  However, because they sit on the surface of the Earth in the 
presence of gravity, rotation does have an effect as follows.  If ( )tθ is maximum tilt of 
the site, then  

 
( ) ( ) ( )

( ) ( )

2 2

2 2

arctan

 for small 

z z

z z

u t u t
t

x y

u t u t
x y

θ

θ

∂ ∂   
= +   ∂ ∂   

∂ ∂   
≈ +   ∂ ∂   

 (2.29) 

where x and y are horizontal Cartesian coordinates of the seismometer and z is the 
vertical component.  In most of this class, we simply equate the acceleration of the base 
of a seismometer with the particle acceleration ( )u t of the ground on which it sits.  
However, if the ground tilts there is an additional acceleration on the instrument caused 
by changes in the resolved gravitational force on the instrument and we need to be more 
precise in our definition of the acceleration experienced by the seismometer. We can  
write the acceleration A(t) that the seismometer experiences as  

 
( ) ( ) ( )
( )

cos

  for small .
z z

z

A t u t g t

u t g

θ

θ

= −

≈ −





 (2.30) 

and 

 
( ) ( ) ( )
( ) ( )

sin

   for small 
x x

x

A t u t g t

u t g t

θ

θ θ

= +

≈ +





 (2.31) 

Therefore, vertical-component seismic records are insensitive to tilt.  This is not generally 
true for the horizontal component seismographs.  Fortunately, in most cases the effect of 
the tilt is small.  However, there are cases when the tilt is important.  Tilt can be 
considered to be the sum of rotations about a horizontal axis due to both elastic strain and 
rigid body rotations.  Tilts can be caused by both traveling elastic waves and also by 
static (or quasi-static) tilts of the ground surface. 
 
 As we will see in the next chapter, the strains associated with traveling elastic waves are 
proportional to the ratio of particle velocity divided by wave velocity.  Therefore, we can 
generally state that  

 ( ) ( )u t
t B

c
θ



  (2.32) 
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where B is a constant that depends on the many details of an individual problem and c is a 
wave speed.  Therefore, for traveling waves, we can rewrite (2.31) using (2.32) as 

 ( ) ( ) ( )x x x
gA t u t B u t
c

+ 
  (2.33) 

The fact that the effect of tilt is proportional to velocity as opposed to acceleration means 
that tilts generally become more important for lower frequency waves. That is (2.33) can 
be written in the frequency domain as 

 ( ) ( )2 1x x
g iA u B
c

ω ω ω
ω

 − 
 




  (2.34) 

 The constant B can, in many cases, depend strongly on the local geometry of the 
seismometer installation. That is, there can be concentrations in strain (i.e., tilt) in corners 
of rooms.  In fact, the relationship between local tilt at a station and the waves passing 
through are extremely complex and, in most instances, they can only be determined from 
empirical measurements.  In this case, the relationship between Earth strain and local tilt 
is not a single constant, but is itself a tensor quantity.  This unfortunate fact means that it 
is extremely difficult to determine true horizontal particle motion for long-period seismic 
waves (see King, ??, for more discussion of this problem).  This ambiguity could be 
resolved if rotations could be independently measured at a site.  Unfortunately, the 
measurement resolution of instruments to measure rotation has not been sufficient to be 
useful for removing the effects of tilt from long-period seismograms.  Fortunately, the 
vertical particle motions are not affected by this problem. 
 
As a particularly simple example, consider the case of a harmonic Rayleigh wave (we 
will discuss them in more detail in the next chapter) with wavenumber k and frequency 
ω traveling at velocity c in the x direction.  The motion of this wave can be described as 

 ( ) ( ), cos cosx x x
xu x t a kx t a t
c

ω ω  = − = −    
 (2.35) 

 ( ), sin( ) sinz z z
xu x t a kx t a t
c

ω ω  = − = − −    
 (2.36) 

where  

 c
k
ω

=  (2.37) 

 

 

( ) ( ) ( )

( ) ( )

2

2

2

2

cos cos

1 cos( )

x z
x

u kx t u kx t
A t g

t x
kx t gk kx t

g kx t
c

ω ω

ω ω ω

ω ω
ω

∂ − ∂ −
≈ +

∂ ∂
= − − − −

 = − − −  

 (2.38) 
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Thus, for a given wave velocity, the tilt term becomes large with respect to the linear 
acceleration term when the frequency becomes small.  If we assume that  km3.3 sc ≈  

and 210m sg ≈ , then (2.38) becomes 

 
( )

( ) ( )

3
2

4 2

3 101 cos

1 5 10 cos

xA kx t

T kx t

ω ω
ω

ω ω

−

−

 ⋅
≈ − − − 

 

≈ − − ⋅ −

 (2.39) 

 
where T is the period of the wave.  That is, the size of the tilt effect is about 10% for a 
200-second Rayleigh wave.  In actuality, the tilts on a seismometer are very complex 
since they are really a measure of the local strain at the base of the seismometer.  These 
strains can be strongly affected by the geometry of the seismic recording station.  That is, 
the corners of rooms may cause concentrated strains that are several times larger than the 
average strain in the earth for the traveling wave that is being considered.   
 
Permanent static tilts can also be caused by other factors, such as land sliding or being 
next to a fault scarp.  In these cases, it is impossible to independently determine both the 
ground displacement and the ground rotation from just the traces of a seismometer.  
However, it there is a static change in tilt, it will show up as a shift in the baseline of a 
horizontal accelerometer.  If one assumes a particular function of time over which the 
static tilt occurs, then it can be removed from the record.  However, this usually involves 
many ad hoc assumptions in practice. 
 
Even if we knew the tilting of the ground and the response of the instrument, there are 
still difficulties in recovering the true ground displacement.  Consider the case of an 
SDOF in which the seismogram x(t) is known (to the resolution of the instrument and the 
digitizer).   We could recover the ground motion U(t) by either deconvolution (discussed 
in Chapter 1), or by direct integration of the equation of motion (1.2) as follows. 

 
( ) ( )

( ) ( )

2
0 0 0

0 0

2 2
0 0 0 0 0 0

0 0 0

2

2

t t

t t t

u t u u t x x x dtdt

u x u x t x x xdt xdt

β ω

β ω

= + − + +

 
= − + − − − + − 

 

∫ ∫

∫ ∫ ∫

  

  

 (2.40) 

While the implementation of the integrals in (2.40) may seem simple, there are some 
difficult issues.  In particular, what time should we consider zero time to be, and what is 
the initial velocity, 0u ?  Unfortunately, many important strong motions were recorded on 
analog triggered instruments; there is no recording for the time period prior to the 
triggering of the instrument.  Therefore, the initial velocity is unknown, which may have 
an important effect on the record. 
 
Another important problem is simply that of obtaining a good record of x(t).  In 
particular, there is often some constant baseline that is superimposed on the inertial part 
of x(t); this is usually called the bias which I will call 0E .  Let us further suppose that we 
have some digital record from our seismograph y(t) which is actually composed of the 
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true motion of the seismograph x(t) plus some polynomial function of time E(t) that 
represents the bias and other sources of long-period error.  That is, assume that  
 ( ) ( ) ( )y t x t E t= +  (2.41) 
where  
 ( ) 2

0 1 2 ...E t E E t E t= + + +  (2.42) 
 
Now if we mistakenly substitute y(t) for x(t) in (2.40) (what other choice do we have?), 
then we derive a flawed ground displacement ( )Fu t  whose difference from u(t) is given 
by (after some algebra) 
 

 
( ) ( )

2
20

0 1 0 1 1 1 2 0

2
3 40 2

2 2 1

2 2
2

2
3 3 4

Fu u E E E E t E E E E t

EE E E t t

ωβ β β

ω

 
− = + + + + + + + 

 
 

+ + + + 
 

 (2.43) 

One can see that having an error in the baseline value 0E causes an error in the 
displacement that grows as the square of time.  If there are further problems in the digital 
data, such as linear trends, then we can end up with errors that grow as the cube of time.  
These problems were especially serious for digitizations of paper or film records.  In 
these cases, the baseline of the record was often assumed to be the average of the record 
through time.  Unfortunately, the average of the record depends on the time interval that 
is being averaged.  Furthermore, there is no satisfactory way to ensure that there are no 
linear or quadratic trends in the records.  These trends can occur if the film or paper in the 
recording device is allowed to skew slightly. 
 
SMA-1 film records contain additional null traces, called fixed traces, that are the record 
described by a rigidly mounted mirror.  Trends in these fixed traces are subtracted from 
trends in the live traces in order to minimize baseline shifts. 
 
Because of these problems with trends in the baseline that can cause large errors in 
displacement that grow large with time, it has been common to subtract best fitting 
polynomials from records at various stages of processing.  Unfortunately, this also 
introduces new problems.  In particular, the process of removing best-fitting polynomial 
baselines (of any order) is a nonlinear operator. That is, summing two baseline-corrected 
ground motions does not give the same result as baseline correcting the sum of the 
motions.  Furthermore, when a baseline correction is applied to certain types of true 
ground motions, it may result in very misleading conclusions about ground motion.  For 
example, ground displacements near fault scarps often have a static displacement. 
 
Consider the ground motion shown in Figure 2.6.  This motion consists of a 
monotonically increasing displacement up to a new value.  The corresponding velocity 
and accelerations are shown.  Acceleration consists of a period of constant positive 
acceleration followed by an identical negative acceleration.  However if a best-fitting 
linear baseline is removed from the acceleration record, then we obtain a “corrected” 
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acceleration that is quite different from the true acceleration.  Integration of this baseline 
corrected acceleration will result in a displacement that is quite different from the true 
displacement. 
 
A real example of this problem is shown in Figure 2.6 from a study by Iwan, Moser, and 
Peng (BSSA, 1985, 1225-1246).  They digitally recorded a Kinemetrics FBA-13 feed-
back accelerographs placed on a moving platform.  The platform was moved 25 cm and 
the resulting accelerogram is shown.  If the accelerogram is simply integrated into 
velocity and displacement, then the resulting motions are close to the known input.  
However, if baselines are removed, then the resulting motion does not look much like the 
input. 

 
 Figure 2.5.  Idealized example of how baseline corrections can distort acceleration 
records for records with net displacements.   
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Figure 2.6.  From Iwan, Moser, and Chen.  Integration of raw displacement records are 
shown on the left and the effect of baseline correction is shown on the right.  The 
instrument was actually moved to a static displacement of 25 cm. 
 
Records that have no processing, or which only have a bias and the trend of a fixed trace 
removed are sometimes referred to as Volume I records.  This alludes to an important 
project at Caltech in the 1970’s to provide standard processing of most of the known 
strong-motion records.  Records that were further corrected baselines, initial velocities, 
and otherwise filtered (using Ormsby filters) were referred to as Volume II records 
(everything was published in CIT reports).  This processing is described by Trifunac and 
Lee (Routine Computer Processing of Strong-motion Accelerographs, Earthquake 
Engineering Research Laboratory Report 73-03, 1973, Pasadena, CA). 
 
An example of how static ground displacement can be recovered is from a study of the 
1985 M 8.2 Michoacan, Mexico, earthquake (Anderson and others, 1986, Science, v. 233, 
1043-1049).  Figure 2.7 shows the locations of strong-motion stations on the Mexican 
west coast.  It also shows the surface projection of the rupture surfaces for several 
important earthquakes including the Michoacan earthquake that is labeled 19 Sept. 1985.  
The accelerograms from the four closest digital fba stations (three of which are directly 
above the rupture) are also shown.  The surface projection of the place where rupture 
originated (called the epicenter) is located near the station Caleta de Campos.  It was in 
this vicinity that the ground first began to shake.  I took time for the rupture to propagate 
throughout the fault surface and stations to the south began to shake at later times; 
Zihuatanejo did not shake hard until 40 seconds after strong shaking at Caleta de 
Campos.  
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Figure 2.7 North-south component of the ground acceleration for stations above the 
aftershock zone.  The vertical separation of the records is proportional to the NW-SE 
distance of the station location (along trench distance).  Time is measured with respect to 
the origin time of the earthquake (from Anderson and others, 1986). 
 
 
Caleta de Campos records that were integrated into velocity and displacement are shown 
in Figure 2.8. 
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Figure 2.8 (from Anderson and others, 1986) 
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Figure 2.9 (from Anderson and others, 1986) 
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Permanent displacements of about 1 meter can be seen in the displacement records from 
Caleta de Campos.  Fortuitously, Caleta de Campos is next to the sea shore.  The 
shoreline at this location was permanently uplifted about 1 meter (as derived from killed 
sea animals such as barnacles), which is in good agreement with the integrated vertical 
record. 
 
Figure 2.9 shows a cross section view (perpendicular to the oceanic trench) that shows 
the approximate location of the thrust fault beneath the coast and the relative locations of 
the strong motion stations.  The motion on the thrust fault caused the stations to move 
upward and towards the ocean.  The north components of the derived displacement from 
the three stations above the faulting are also shown. 
 
As another interesting example of problems with recovering ground displacement, 
consider the Lucerne station records (station LUC) from the 1992 M 7.2 Landers 
earthquake.  These were recorded on a digital tape system (Kinemetrics SMA-2) which is 
not widely deployed.  The ground velocities recorded for this earthquake are shown in 
Figure 2.10 (from Wald, Heaton, and Hudnut, 1994, BSSA).  The solid line is the surface 
trace of the faulting and the star is the epicentral location.  The recording occurred about 
1 km from the fault trace which experienced about 5 meters of strike-slip surface rupture.  
This means that the east side of the fault moved about 2.5 meters to the south and the 
west side moved 2.5 meters to the north.   
 
Standard processing was applied to the Lucerne records, and the acceleration, velocity 
and displacement are shown in Fig. 2.11 and 2.12 for the two horizontal components.  
Notice that the maximum velocity and displacement that is indicated from these records 
are only 49 cm/sec and 9 cm, respectively.  The displacement is unreasonably small 
compared to the size of the nearby fault offset.  The maximum acceleration, 0.85 g (830 
cm/sec) is actually quite large, however. 
 
Iwan and Chen carefully reanalyzed these records; they actually tested the instrument in 
the lab to see what motions would best reproduce the recordings of the instrument.  These 
motions are shown in Figure 2.13.  Notice that the maximum velocity and displacement 
have increased to 143 cm/sec and 255 cm, respectively.  The 255 cm displacement is 
similar to numbers derived from resurveys of Global Positioning Satellite geodesy 
network stations in this region. 
 
Figure 2.14 shows the motions of Iwan and Chen after they have been convolved with a 
14-second high-pass Butterworth filter.  Since high-pass filters do have no response at 
very long periods, they always remove static offsets from Displacement records.  Most 
strong motion data has been processed (i.e. filtered) in some way.  It is important to 
understand the processing in order to interpret ground displacement. 
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Figure 2.10.  Ground velocity records from the 1992 M 7.2 Landers earthquake (from 
Wald, Heaton, and Hudnut, 1994). 
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Figure 2.11. Longitudinal ground motions at LUC where the records have a strong band-
pass filter to only allow frequencies between 0.4 Hz and 22 Hz. 

 
Fig. 2.12 Same as 2.11 except for the transverse component. 
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Figure 2.13.  Ground velocities and displacements for horizontal components of LUC 
derived by Iwan and Chen.  The top numbers are the peak values in inches or inches/sec, 
and the bottom numbers are in cm or cm/sec. 

 
Figure 2.14.  Same as 2.13, except that a 14-sec high-pass Butterworth filter has been 
applied. 
 
As a final example of some of the issues involved with recovering ground displacement 
from acceleration records, consider the case of the 1999 M 7.6 Chi Chi, Taiwan 
earthquake.  The locations of stations relative to the fault scarp of this east dipping thrust 
fault are shown in Figure 2.15 (from Boore, D., 2001, Effect of baseline corrections on 
displacement and response spectra from several recordings of the 1999 Chi-Chi, Taiwan, 
earthquake, Bull. Seism. Soc. Am., 91, 1199-1210). 
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Figure 2.15 from Boore (2001) 
 
Ground motions were digitally recorded by force-balance accelerometers and the net 
change in ground displacement was also geodetically recorded by the GPS sites shown in 
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Figure 2.15.  In some cases it was possible to simply doubly integrate the acceleration 
(after removing a bias) to obtain displacements that were compatible with nearby GPS 
observations as shown in Figure 2.16. 

 
Figure 2.16 . From Boore (2001). 
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In other cases, such as that shown in Figure 2.17, removal of the bias was not adequate to 
obtain a stable ground displacement.  Perhaps the site tilted, or perhaps there was some 
problem with the instrument.  In any case, additional assumptions were necessary in 
order to derive a reasonable displacement history. 
 

 
Figure 2.17 from Boore (2001). 
 
Fortunately, the problem of integrating records is mitigated by modern digital instruments 
that have pre-event memories, force-balance seismometers, and high dynamic range 
instruments.  Nevertheless, it is often a good idea to obtain copies of raw digital records 
and to then integrate them yourself.  Try to understand the source of long period signals 
so you can decide what remove from the records. 
 
High-rate GPS 
 
Global Positioning Satellite geodesy has been steadily improving over the past several 
decades to the point that it can now be used to describe long-period ground motions in 
large earthquakes.  The current accuracy of displacement recording is several mm and 
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numerous stations in the western U.S. and Japan record continuously at 1 sps (or 
sometimes as high as 20 sps).  Figure 2.18 (top) is from Jing Yang’s PhD thesis and 
shows the amplitude spectra of both a 1 sps GPS station and a 24-bit fba.  Notice that 
these two spectra cross each other near 0.1 Hz; the GPS is quieter than the accelerometer 
for lower frequencies, while the accelerometer is better for high frequencies.  In the 
bottom panel, the spectra of two nearby recordings of the  2003 M 8.2 Tokachi-Oki 
earthquake are shown.  Notice that in the frequency band from 0.25 Hz to 0.03 Hz, the 
accelerometer and GPS records are virtually identical.  The two signals can be combined 
in the frequency domain such that the high frequencies are from the accelerometer and 
the low frequencies are from the GPS.  Figure 2.19 shows an example of a very broad 
band record that was produced by combining the accelerometer and GPS records.  While 
this type of analysis is rare today, it eliminates the problems caused by tilting 
accelerometers and it’s sure to become more common in the future. 
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Another example showing the exceptional ability of GPS stations to record strong ground 
displacement is shown in Figure 2.20.  The GPS data is from the 2010 M8.7 Maule 
(Chile) earthquake published by Vigny and others.  The figure is from Minson, Simons 
and Heaton (2011 AGU) and it shows the East component displacement.  These 
displacements occurred over tens of seconds and it would be almost impossible to 
recover these types of records using an accelerometer.  
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Figure 2.20 East component of 1 sps GPS data for the 2010 M 8.8 Maule earthquake 

(data from Vigny and others) 
 
Filters 
 
Several different filter types are commonly used in engineering seismology to remove 
either low-frequency noise (high-pass filter), high-frequency noise (high-pass filter), or 
both (band-pass filter).  In general, filters are designed to have a Fourier amplitude 
response that is approximately unity in the frequency band that is “passed” by the filter, 
and some small value in other frequency bands.   Before I describe the Fourier amplitude 
spectra of these filters, I will discuss the phase spectra of the filters.  Recall that the phase 
spectrum is related to the relative amplitude of the cosine and sine series.  If ( )F ω is the 

Fourier transform of some filter function ( )F t , then ( )F ω  is a complex function that 

can be described by either its real and imaginary parts, or by its amplitude ( )F ω and 

phase, ( )ωΦ , where 

 ( )
( )( )
( )( )

1tan
F

F

ω
ω

ω
−
 ℑ
 Φ ≡
ℜ  





 (2.44) 

The phase function determines how the filter shifts energy with respect to time.  In 
particular, recall the Shift Theorem of Fourier transforms. 
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If ( )f t has the Fourier transform ( )f ω , then ( )0f t t− has the Fourier transform 

( )0ite fω ω−
 . 

 
Since ( ) ( )0ite f fω ω ω− =  , we see that information  about shifts in timing are carried by 

the phase spectrum, and not the amplitude spectrum.  Further notice that the shift rule can 
be written as  
  

 ( ) ( )
( )

( )
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0

0

0
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0

0

sin
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e t
e t
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ω
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− − −

−

 ℑ  −
 Φ = = = −ℜ    

 (2.45) 

That is, the phase spectrum associated with a time shift (convolution with ( )0t tδ − is 
simply a linear relation between phase and frequency; a positive slope in frequency 
corresponds to a positive delay in time, and a negative slope corresponds to a negative 
time delay.  This example provides the motivation for a more general understanding of 
the delay caused by convolution with a filtering function.  In general, the phase of a filter 
is a nonlinear function of the frequency.  However, we can define the group delay 

( )groupT ω  as  
 

 ( ) ( )
group

d
T

d
ω

ω
ω

Φ
≡  (2.46) 

 
In the case of filtering with a delayed impulse function, the group delay is a constant.  
That is, all frequencies are delayed by an equal time shift.  In the more general case, the 
main energy is delayed by different amounts at different frequencies.  This time of the 
energy shift is called the group delay. 
 
The principle of causality is a statement that effects never precede their causes.  That is, 
if ( )I t is the response of a physical system to an impulse applied at 0t = , then  

 ( ) 0   for all  0I t t= <  (2.47) 
This is equivalent to saying that the Group delay must be positive at all frequencies if a 
filter is causal.  Or alternatively, filters with either zero, or negative, group delays cannot 
be causal; they create a response before the signal begins.  Non-causal filters are a 
mathematical construct.  While it is beyond the scope of this class, it is not too difficult to 
show that all causal filters ( )I t  can be written in the Fourier-frequency domain as 

  ( ) ( ) ( )I G iHT Gω ω ω= +     (2.48) 
Where HT signifies Hilbert transform, which is defined as 
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= ∗

∫
 (2.49) 
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Filters generally remove signals in a specified frequency range (usually called a 
frequency band).  For instance, the simplest filters you could think of would consist of a 
simple cut in frequencies, either above or below a specified frequency.  In particular, we 
could devise a very simple low-pass filter that consists of a rectangle function in the 
frequency domain. That is consider convolving with low-pass filter ( )hpf t  that has a 
Fourier transform of  

 ( ) ( )
1 11
2 2

0 elsewhere
lpf

ω
ω ω

 − < < = Π =
 
 

  (2.50) 

Since convolution in the time domain is identical to multiplication in the frequency 
domain, this filter simply eliminates frequencies higher than ½.  Since ( )lpf ω  is a real 
number, its phase is zero at all frequencies.  That is, it is a non-causal zero-phase filter, 
which is equivalent to the operation ( )sinc t∗ .  Convolution with a sinc function will 
result in a signal that rings at a frequency of 1.  That is, our simple low-pass filter will 
usually produce a signal that looks as if it is dominated by harmonic waves with a 
frequency defined by our limiting frequency.  
  
While a filter of the type defined by (2.50) is generally a very poor choice for a filter, it is 
actually commonly encountered.  In particular, there are several important techniques to 
solve the wave equation only up to a specified frequency.  That is, the solution does not 
contain its high-frequency terms.  These solutions are often characterized by a waveform 
that looks harmonic at the cut-off frequency.  If a similar filter is used on data for 
comparison, then both the data and the synthetic look similar because they both look like 
harmonic waves at the chosen cut-off frequency. 
 
In a likewise manner, we could construct a simple rectangular high-pass filter  ( )hpf t , 
where 

 ( ) ( )
1 10

12 2
1 elsewhere

hpf
ω

ω ω
 − < < = = −Π
 
 

  (2.51) 

 
This filter would be equivalent to the time domain operation ( ) ( )( )sinct tδ∗ − .  That is, 
the filter is the same as subtracting a low-pass filtered version of the signal from itself.  
It’s easy to see that this also will ring at the cutoff frequency. 
 
Finally, we could construct a band-pass filter ( )bpf ω  that is unity between between  
specified frequencies or 

 ( )
1 1

1 2
1 2
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0
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ω ω ω
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  (2.52) 
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This filter is the same operation as ( )1 2sinc sinct tω ω∗ − . 
 
 Ormsby filters are sometimes encountered in engineering seismology.  The Ormsby 
filter is best described in the Fourier domain as having a trapezoidal shape for the 
amplitude spectrum and a phase spectrum equal to zero at all frequencies.  It is in the 
class of filters known as zero-phase filters.  We can write the Ormsby filter ( )O ω as  
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  (2.53) 

 
This filter is an extension of our simple bandpass filter and it has the same undesirable 
features.  Fortunately, it is rarely used anymore.  However, it was heavily used in the 
1970’s and you should be cautious interpreting records that were filtered with it. 
 
Butterworth filters are far and away the most common type of filter encountered in 
engineering seismology.  They are a type of causal filter that has a frequency amplitude 
response that is optimally flat.  The Fourier amplitude response of an nth order 
Butterworth  is given by 
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1
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B ω
ω
ω

=
 
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 

  (2.54) 

This is a minimum-phase filter, which means that the group delay is the minimum 
possible for the shape of the amplitude spectrum.  It is beyond the scope of the class to 
derive the phase spectrum, but the entire filter is best described by its poles and zeros.  
Two-pole Butterworth filters are most commonly used in seismology, and their response 
looks very similar to a 71% damped SDOF.  A high-pass Butterworth is formed by 
taking the reciprocal of frequency or  
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1
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B ω
ω
ω

=
 +  
 

  (2.55) 

While Butterworth filters are causal filters, they are often applied as zero-phase filters.  
This is accomplished by filtering twice, once in the forward direction, and once again in 
the negative direction.  Time reversal is the same as taking the complex conjugate in the 
frequency domain, which is the same as taking the negative phase.  Causal filters are 
useful if one wants to identify the first arrival of a signal.  However, if one is interested in 
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the timing of a main group of energy, then causal filters introduce a group delay.  Zero-
phase filters eliminate this group delay, but they result in non-causal signals. 
 
Additional Resources    
 
A worldwide database of strong ground motions can be found at 
http://db.cosmos-eq.org/scripts/default.plx 
 
A worldwide seismic database of seismic data is available from IRIS (Incorporated 
Research Institutes for Seismology).  Iris also maintains a software download site for 
analysis of seismic data.  Many researchers use SAC to analyze seismic data. 
http://www.iris.edu/ 
 
Data from the California Integrated Seismic Network (Caltech, UC Berkeley, USGS, 
Calif. Geol. Survey) can be found at 
http://www.cisn.org/ 
 
Many researchers find it helpful to plot map data using GMT 
http://gmt.soest.hawaii.edu/ 
 
GPS data and resources can be found at UNAVCO 
http://www.unavco.org/ 
 
 
 

http://db.cosmos-eq.org/scripts/default.plx
http://www.iris.edu/
http://www.cisn.org/
http://gmt.soest.hawaii.edu/
http://www.unavco.org/
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Homework  Chapter 2 
 
Problem 2.1   Explain why an L4-C seismometer that has its case filled with highly 
viscous oil has an output voltage that is approximately equal to a constant times ground 
acceleration. 
 
Problem 2.2   Find the poles and zeros of seismograph system that has a 20 sec 
displacement transducer seismometer (70.7% damped) that is driving a 100 sec 
galvanometer (also 70.7% damped).  Sketch the response. 
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