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Abstract. Model-based testing is a popular technology for automatic
and systematic test case generation (TCG), where a system-under-test
(SUT) is tested for conformance with a model that specifies its intended
behavior. Model-based mutation testing is a specific variant of model-
based testing that is fault-oriented. In mutation testing, the test case
generation is guided by a mutant, an intentionally altered version of the
original model that specifies a common modelling error.
In this paper, we propose a mutation testing framework for real-time
applications, where the model of the SUT and its mutants are expressed
as a variant of timed automata. We develop an algorithm for mutation-
based real-time test case generation that uses symbolic bounded model
checking techniques and incremental solving. We present an implemen-
tation of our test case generation technique and illustrate it with a non-
trivial car alarm example, providing experimental results.

1 Introduction

A common practice to show that a system meets its requirements and works as
expected consists in testing the system. Historically, testing has been predomi-
nantly a manual activity, where a human designs a test experiment, by choosing
inputs that are fed to the SUT, and observing its reactions and outputs. Tradi-
tional testing suffers from two pitfalls: (1) due to a finite number of experiments,
testing activity can only reveal presence of safety errors in the system, but not
their absence; and (2) the testing process is manual, hence ad-hoc, time and
human resource consuming and error-prone.

The first short-coming of testing was addressed by formal verification and
theorem proving, which consist in providing rigorous evidence in the form of a
mathematical proof that a system always behaves according to its specification.
The automation of the verification technology was enabled with model check-
ing [29, 12], a technique that consists in exhaustive exploration of the system’s
underlying state space. Although model checking resolves in theory the issues
present in classical testing, it suffers from the so-called state-space explosion
problems. In the past decades, large part of the effort invested by the verifica-
tion research community went into developing methods that fight the state-space
explosion problem (see for example [11, 7, 13]).

Model-based testing [32] was introduced as a pragmatic compromise between
the conceptual simplicity of classical testing, and automation and exhaustive-
ness of model checking. In model-based testing, test suites are automatically
generated from a mathematical model of the SUT. The main advantage of this
technique is the full test automation that provides effective means to catch er-
rors in the SUT. The aim of model-based testing is to check conformance of
the SUT to a given specification, where the SUT is often seen as a “black-box”
with unknown internal structure, but observable input/output interface. Model-
based testing is commonly combined with some coverage criteria, with the aim
to generate test cases that cover most possible use cases of the SUT.

Model-based mutation testing is a specific type of model-based testing, in
which faults are deliberately injected into the specification model. The aim of
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Fig. 1. Timed mutants example: (a) TA model A; (b) mutant M1; (c) a test case
generated from M1 and (d) mutant M2

mutation-based testing techniques is to generate test cases that can detect the
injected errors. This means that a generated test case shall fail if it is executed
on a (deterministic) system-under-test that implements the faulty model. The
power of this testing approach is that it can guarantee the absence of certain
specific faults. In practice, it will be combined with standard techniques, e.g.
with random test-case generation [1]. Mutation-based testing was studied in [2,
30] in the context of UML models, and in [9, 16] in the context of Simulink mod-
els. Model-based mutation testing is also known as specification-based mutation
testing. A recent survey by Jia and Harman [17] documents the growing interest
in mutation testing and points out the open problem of generating test cases by
means of mutation analysis. The present work contributes to this line of research.

Classical model-based testing is not always adapted to study embedded sys-
tem models, which often contain real-time requirements. In the past decade,
there was a number of attempts to extend model-based testing to the real-time
context, requiring the usage of timed models for the specification of the SUT and
adaptation of the classical conformance relations to real-time. A comprehensive
overview and comparison of real-time conformance relations is presented in [31].
A framework for black-box conformance testing based on the model of partially-
observable, non-deterministic timed automata is proposed in [18]. Two types of
tests are considered: (1) analog-clock tests which are generated either offline with
a restricted set of resources (clocks) or on-the-fly without that restriction; and
(2) digital-clock tests that can measure time only with finite precision. In a simi-
lar work [23], a test case generation technique is developed for non-deterministic,
but determinizable timed automata. Another extension of model-based testing
to the real-time context is introduced in [10], where the authors provide an oper-
ational interpretation of the notion of quiescence for real-time behavior. In [20],
an online testing tool for real-time systems is proposed, based on symbolic tech-
niques of Uppaal [19]. Testing real-time models expressed as UML models is
studied in [27], where the focus is given on the usage of bounded model checking
techniques combined with abstract interpretation for the test case generation.

In this paper, we propose a framework for mutation testing of real-time sys-
tems modeled using a deterministic class of timed automata (TA) [3]. Given a
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TA specification, we first propose a number of mutation operators which mimic
common modeling errors. Given a specification model of an SUT and its mutant,
we develop a technique for automatic generation of a real-time test case which
exactly tries to “drive” the SUT to the error inserted by the mutation operator,
as illustrated by the following example.

Example 1. Consider the TA model A from Figure 1 (a) and its timed mutants
M1 and M2, shown in Figure 1 (b,d). The mutant M1 alters the original spec-
ification by changing the output action of the transition q1 → q4 from e! to d!.
In model-based mutation testing, we generate a test case leading to an error
introduced by the mutant, resulting in the test case shown in Figure 1 (c). Note
that not every mutant of a real-time specification introduces errors. The mutant
M2 is such an example.

In contrast to [18, 23, 10, 20], we propose a symbolic test generation procedure
based on bounded model checking (BMC) techniques. We believe that using
SMT solvers to generate test cases is a promising technique in our context
because mutation testing is fault oriented, and focuses on finding finite traces
which expose faults resulting from mutating a specification. In addition, SMT
solvers provide support for future extensions such as handling unbounded data
domains.We are not aware of other work which applies BMC techniques for
testing TA models.

The survey of Fraser et al. [15] gives a great overview of different previous ap-
proaches to generate test cases via model checking and shows the progress made
in the past years. [8] investigates problems and solutions for test case generation
via model checkers for non-deterministic specifications. The work by Nilsson et
al. [26, 24] proposes a mutation-based testing framework for real-time systems
using Timed Automata with Tasks. In contrary to our work, he generates test
cases for mutants that violate task deadlines, while we check the conformance
between mutants and specification with regard to a timed input/output confor-
mance relation. While some of the mutation operators we propose are specific
to timed automata, most of them can be related to the state chart operators
introduced in [14].

We first introduce in Section 2 a TA variant for real-time SUT specification.
In Section 3, we propose several mutation operators adapted to the TA model.
We recall the timed input/output conformance relation tioco in Section 4 and
discuss how we handle quiescence in our framework. In Section 5, we propose an
encoding of TA k-reachability problem into an SMT problem and develop an
algorithm based on BMC for automatic test-case generation from a TA specifi-
cation and its timed mutant. In Section 6 we present an implementation of our
mutation testing for real-time systems. Section 7 describes a car alarm system
case study used to illustrate our approach, and presents experimental results. In
Section 8, we conclude the paper.
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2 Timed Automata with Inputs and Outputs

The time domain that we consider is the set R≥0 of non-negative reals. We denote
by Σ the finite set of actions, partitioned into two disjoint sets ΣI and ΣO of
input and output actions, respectively. A time sequence is a finite or infinite non-
decreasing sequence of non-negative reals. A timed trace σ is a finite alternating
sequence of actions and time delays of the form t1 · a1 · · · tk · ak · · · , where for all
i ≥ 1, ai ∈ Σ and (ti)i≥1 is a time sequence.

Let C be a finite set of clock variables. Clock valuation v(c) is a function
v : C → R≥0 assigning a real value to every clock c ∈ C. We denote by H
the set of all clock valuations and by 0 the valuation assigning 0 to every clock
in C. Let v ∈ H be a valuation and t ∈ R≥0, we then have v + t defined by
(v + t)(c) = v(c) + t for all c ∈ C. For a subset ρ of C, we denote by v[ρ]
the valuation such that for every c ∈ ρ, v[ρ](c) = 0 and for every c ∈ C\ρ,
v[ρ](c) = v(c).

A clock constraint ϕ is a conjunction of predicates over clock variables in C
defined by the grammar

ϕ ::= c ◦ k | ϕ1 ∧ ϕ2,

where c ∈ C, k ∈ N and ◦ ∈ {<,≤,=,≥, >}. Given a clock valuation v ∈ H,
we write v |= ϕ when v satisfies the clock constraint ϕ. We are now ready to
formally define input/output timed automata (TAIO):

Definition 1. An input/output timed automaton1 A is a tuple (Q, q̂, ΣI , ΣO, C, I,∆),
where:

– Q is a finite set of locations;

– q̂ ∈ Q is the initial location;

– ΣI is a finite set of input actions and ΣO is a finite set of output actions,
such that ΣI ∩ΣO = ∅. We denote by Σ the set of actions ΣI ∪ΣO;

– C is a finite set of clock variables;

– I is a finite set of location invariants, that are conjunctions of constraints of
the form c < d or c ≤ d, where c ∈ C and d ∈ N. Each invariant is bound to
its specific location;

– ∆ is a finite set of transitions of the form (q, a, g, ρ, q′), where

• q, q′ ∈ Q are the source and the target locations;

• a ∈ Σ is the transition action

• g is a guard, a conjunction of constraints of the form c ◦ d, where ◦ ∈
{<,≤,=,≥, >} and d ∈ N;

• ρ ⊆ C is a set of clocks to be reset.

1 Our TAIO are very similar to UPPAAL timed automata, which we use to illus-
trate our examples. One difference is that for simplicity of presentation we do not
have urgent and committed locations. However, these types of locations are just syn-
tactic sugar to make modelliing easier, and can be expressed with standard timed
automata.
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We say that a TAIOA is deterministic if for all (q, a, g1, ρ1, q1) and (q, a, g2, ρ2, q2)
in ∆, q1 6= q2 implies that g1 ∧ g2 = ∅. We denote by A the set of all TAIO
and by Det(A) ⊂ A the set of all deterministic TAIO. We denote by ∆O ⊆ ∆
the set {δ = (q, a, g, ρ, q′) | δ ∈ ∆ and a ∈ ΣO} of transitions in ∆ labeled
by an output actions and by ∆I = ∆\∆O the set of transitions in ∆ labeled
by an input action. We also define |G| as the number of basic constraints that
appear in all the guards of all the transitions in A, i.e. |G| = Σδ∈∆|Jg|, where
δ = (q, a, g, ρ, q′) and g is of the form

∧
j∈Jg cj ◦dj . We similarly define |I| as the

number of basic constraints that appear in all the invariants of all the locations
in A.

The semantics of a TAIO A = (Q, q̂, ΣI , ΣO, C, I,∆) is given by the timed
input/output transition system (TIOTS) [[A]] = (S, s0,R≥0, Σ, T ), where

– S = {(q, v) ∈ Q×H | v |= I(q)};
– s0 = (q0,0);
– T ⊆ S × (Σ ∪ R≥0) × S is the transition relation consisting of discrete and

timed transitions such that:
• Discrete transitions: ((q, v), a, (q′, v′)) ∈ T , where a ∈ Σ, if there

exists a transition (q, a, g, ρ, q′) in ∆, such that: (1) v |= g; (2) v′ = v[ρ]
and (3) v′ |= I(q′); and

• Timed transitions: ((q, v), t, (q, v + t)) ∈ T , where t ∈ R≥0, if v + t |=
I(q).

A run r of a TAIO A is the sequence of alternating timed and discrete
transitions of the form

(q1, v1)
t1−→ (q1, v1 + t1)

δ1−→ (q2, v2)
t2−→ · · · ,

where q1 = q̂, v1 = 0 and δi = (qi, ai, gi, ρi, qi+1). The run r of A induces the
timed trace σ = t1 ·a1 · t2 · · · . We denote by L(A) the set of timed traces induced
by all runs of A.

3 Mutation of TAIOs

Mutation of a specification consists in altering the model in a small way, mimick-
ing common modelling errors. In our setting, a mutation is a function µm : Det(A)→
2A parametrized by a mutation operator m which maps a deterministic TAIO
A into a finite set µm(A) of possibly non-deterministic TAIOs , where each
M ∈ µm(A) is called an m-mutant of A. We now introduce and define specific
mutation operators which are relevant to the TAIO model.

Definition 2. Given a TAIO A = (Q, q̂, ΣI , ΣO, C, I,∆), its mutants are de-
fined by the following mutation operators:

1. Change action (µca) generates from A a set of |∆I |(|ΣO|)+|∆O|(|ΣO|−1)
mutants, where every mutant changes a single transition in A by replacing
the action labeling the transition by a different output label. A TAIO M ∈
µca(A), if M is of the form (Q, q̂, ΣI , ΣO, C, I, (∆\{δ}) ∪ {δm}), such that
δ = (q, a, g, ρ, q′) ∈ ∆, δm = (q, am, g, ρ, q

′), am ∈ ΣO and am 6= a;
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(a) (c) (d)

(e) (f) (g) (h)

(b)

Fig. 2. Mutant M of model A resulting from: (a) µca(A); (b) µct(A); (c) µcs(A); (d)
µcg(A); (e) µng(A); (f) µci(A); (g) µsl(A); (h) µir(A);

2. Change target (µct) generates from A a set of |∆|(|Q|−1) mutants, where
every mutant replaces the target location of a transition in A, by another loca-
tion in A. A TAIOM ∈ µct(A), if M is of the form (Q, q̂, ΣI , ΣO, C, I, (∆\{δ
}) ∪ {δm}), such that δ = (q, a, g, ρ, q′) ∈ ∆, δm = (q, a, g, ρ, q′m), q′m ∈ Q
and q′m 6= q′;

3. Change source2(µcs) generates from A a set of |∆|(|Q|−1) mutants, where
every mutant replaces the source location of a transition in A, by another lo-
cation in A. A TAIOM ∈ µcs(A), if M is of the form (Q, q̂, ΣI , ΣO, C, I, (∆\
{δ}) ∪ {δm}), such that δ = (q, a, g, ρ, q′) ∈ ∆, δm = (qm, a, g, ρ, q

′), qm ∈ Q
and qm 6= q;

4. Change guard (µcg) generates from A a set of 4|G| mutants, where every
mutant replaces a transition in A with another one which changes the original
guard by altering every equality/inequality sign appearing in the guard by an-
other one. A TAIOM ∈ µcg(A), if M is of the form (Q, q̂,ΣI , ΣO, C, I, (∆\{
δ}) ∪ {δm})), such that δ = (q, a, g, ρ, q′) ∈ ∆, δm = (q, a, gm, ρ, q

′), g =∧
i∈I ci ◦i di, gm =

∧
i∈I ci ◦mi di, ◦, ◦mi ∈ {<,≤,=,≥, >}, ◦i 6= ◦mi for some

i ∈ I and ◦j = ◦mj for all j 6= i;

5. Negate guard (µng) generates from A a set of |∆| mutants, where every
mutant replaces the guard in a transition in A, by its negation. A TAIO

2 Note that change source and target mutation operators also generate mutants where
a self-loop transition is created, hence there is no need for a separate “self-loop”
mutation operator.
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M ∈ µng(A), if M is of the form (Q, q̂, ΣI , ΣO, C, I, (∆\{δ}) ∪ {δm}), such
that δ = (q, a, g, ρ, q′) ∈ ∆ and δm = (qm, a,¬g, ρ, q′)3;

6. Change invariant (µci) generates from A a set of |I| mutants, where every
mutant replaces the invariant of a location with another invariant which
multiplies all original constants by a factor of 2. A TAIO M ∈ µci(A), if
M is of the form (Q, q̂,ΣI , ΣO, C, Im, ∆), and there exists q ∈ Q such that
I(q) =

∧
i∈I ci ◦ di, ◦ ∈ {<,≤}, Im(q) =

∧
i∈I ci ◦ dmi , dmi = 2di for some

i ∈ I, dmj = dj for all j 6= i and I(q′) = Im(q′) for all q′ 6= q;
7. Sink location (µsl) generates from A a set of |∆| mutants, where every

mutant replaces the target location of a transition in A, by a newly created
sink location which models a don’t care location which accepts all inputs. A
TAIOM ∈ µsl(A), if M is of the form (Q∪{sink}, q̂, ΣI , ΣO, C, I, (∆\{δ})∪
{δm} ∪ ∆sink), such that ∆sink = {(sink, a, true, {}, sink) | a ∈ ΣI}, δ =
(q, a, g, ρ, q′) ∈ ∆ and δm = (q, a, g, ρ, sink);

8. Invert reset (µir) generates from A a set of |∆||C| mutants, where every
mutant replaces a transition in A, by another transition with the occurence
of one clock flipped compared to the original set of clocks. A TAIO M ∈
µcs(A), if M is of the form (Q, q̂, ΣI , ΣO, C, I, (∆\{δ}) ∪ {δm}), such that
δ = (q, a, g, ρ, q′) ∈ ∆, δm = (q, a, g, ρm, q

′), and for some c ∈ C either
ρm = ρ ∪ {cm} if cm 6∈ ρ, or ρm = ρ\{cm} if cm ∈ ρ.

Figure 2 illustrates mutants resulting from applying the above mutation op-
erators to the model A from Figure 1(a). The effectiveness of the mutation
operators is analysed and evaluated in more details in Section 7. For more com-
plex models there might rise the need to reduce the amount of mutants. Here
we refer to the survey by Jia and Harmann[17], that describes multiple ways of
reducing mutants for mutation testing, which can in gerneal also be applied to
model-based mutationt testing.

Several different approaches to model mutation have already been published,
using Finite State Machines [28, 14], Kripke structures [8] or Event Sequence
Graphs [6]. [25] introduces mutation operators for Timed Automata with Tasks,
yet his mutation operators concentrate on tasks and timeliness and not the core
essence of timed automata. Our mutation operators 6 and 8 are specific to timed
automata, the other mutation operators described in this section are similar or
closly related to the operators described in [14].

4 Conformance Relations for Timed Automata

Different real-time extensions of the input-output conformance relation ioco were
studied and compared in [31]. We consider the timed input-output conformance
relation introduced in [18] and inspired by ioco. Intuitively, AI conforms to AS if
for each observable behavior specified in AS , the possible outputs of AI after this

3 For the sake of simplicity, we represent δm as a single transition even though ¬g
may also have disjunctions. The guard ¬g can be represented in DNF and every
disjunction of the guard can be used as a guard of a separate transition.
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behavior is a subset of the possible outputs of AS . In contrast to ioco, tioco does
not use the notion of quiescence, but requires explicit specification of timeouts.
Since we consider TAIO without silent (τ) transitions, all actions are observable.
Hence, we present a simplified version of the tioco definition from [18].

Given a TAIO A and σ ∈ RT(Σ), A after σ is the set of all states of A that
can be reached by the sequence σ, i.e.

A afterσ = {s ∈ S | ŝ σ−→ s}.

Given a state s ∈ S, elapse(s) is the set of all delays that can elapse from s
without A making any action:

elapse(s) = {t > 0 | s t−→}

Given a state s ∈ S, out(s) is the set of all output actions or time delays that
can occur when the system is at state s.

out(s) = {a ∈ ΣO | s
a−→} ∪ elapse(s)

This definition naturally extends to a set of states S, i.e. out(S) =
⋃
s∈S out(s).

Definition 3. The timed input-output conformance relation, denoted tioco, is
defined as

AI tiocoAS iff ∀σ ∈ L(AS) : out(AI after σ) ⊆ out(AS after σ)

In [18], the authors develop a number of theoretical results about the tioco
relation. In particular, they establish that given two TAIO AI and AS , if
AI tioco AS , then the set of observable traces of AI is included in the set of
observable traces of AS , while the converse is not true in general. However, if
AS is input-enabled, then the set inclusion between observable traces of AI and
AS also implies the tioco conformance of AI to AS .

Specification automaton AS has often intentionally under-specified inputs in
order to model assumptions about the environment in which the SUT is designed
to operate correctly. Hence, the input-enabledness is not a desired requirement
for AS in this context. In [32], [18], the notion of demonic completion was in-
troduced to transform automatically a model AS and make it input-enabled. In
essence, all non-specified inputs in all locations of AS lead to a new sink “don’t
care” location, from which any behavior is possible. Figure 3 illustrates demonic
completion d(A) of a TAIO A.

Formally, given a deterministic TAIO A = (Q, q̂,ΣI , ΣO, C, I,∆), its de-
monic completion d(A) is the input-enabled TAIO d(A) = (Q∪{sink}, q̂, ΣI , ΣO, C, Id, ∆d),
where

– Id(q) = I(q) and Id(sink) = true
– ∆d = ∆∪{(sink, a, true, {}, sink) | a ∈ Σ}∪{(q, a,¬g, {}, sink) | q ∈ Q∧a ∈
ΣI}, such that for each q ∈ Q and a ∈ ΣI , g = (g1 ∨ . . . ∨ gk) ∧ I(q), where
{gi}i are guards of the outgoing transitions of q labeled by a.
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q1

q0

a?
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· · ·

q1

q0

a?
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b?

x! a?
c < 2

· · ·

sink
ΣI ∪ΣO

a?
c ≥ 2

b?

(a)

Fig. 3. Demonic completion of TAIO: (a) A; and (b) d(A).

It is not hard to see that

L(d(A)) = L(A) ∪ {σ · a · (R≥0 ·Σ)∗ | a ∈ ΣI , σ ∈ L(A) ∧ σ · a 6∈ L(A)}

Given an arbitrary TAIO AI and a deterministic specification TAIO AS ,
considering the demonic completion d(AS) instead of AS does not affect the
conformance relation. Formally, we have the following proposition, proved in [18].

Proposition 1. Given a deterministic TAIO AS and its demonic completion
d(AS), for any TAIO AI , AI tioco AS if and only if AI tioco d(AS).

It turns out that given two TAIO AS and AI , by applying demonic com-
pletion d(AS) to AS , checking tioco of AI to AS is equivalent to checking the
language inclusion L(AI) ⊆ L(d(AS)), as shown in [18].

Proposition 2. Given a TAIO AI and a deterministic TAIO AS, AI tioco AS
if and only if L(AI) ⊆ L(d(AS)).

By Proposition 2, it follows that the tioco conformance of AI to AS when
AS is deterministic can be replaced by language inclusion check between AI and
d(AS). Finally, the problem of checking L(AI) ⊆ L(d(AS)) is decidable when
AS is deterministic [3].
Remark: Quiescence was introduced in the ioco conformance relation to dis-
tinguish states which do not accept any output actions, and thus prevent the
system to autonomously proceed without external stimuli. In practice, testing
an SUT in a quiescent state consists in waiting for some predetermined timeout
to expire, ensuring that the SUT does not generate output actions. After time-
out expiration, it is assumed that the SUT will not generate output actions. A
timed extension of ioco from [10] introduces the notion of M -quiescence which
makes the timeout an explicit parameter of the definition, resulting in a family
of conformance relations. In contrast, tioco does not use quiescence, but rather
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expects timeouts to be part of the specification model. We believe that the tioco
approach is more natural since it exposes timeouts in an explicit way and gives
more flexibility to the engineer, while resulting in a more elegant definition of the
conformance relation. However, we do not put restrictions on our TAIO model,
and allow true invariants and guards. As a consequence, we add an additional
global timeout, but defer it to the test driver, as explained in Section 7.

5 Symbolic Test Case Generation from Timed Mutants

In classical model-based testing, the SUT is often not known in advance and can
be seen as a black box. The conformance relations such as ioco and tioco serve
to establish soundness of the TCG algorithms, but are not actually computed
between two models. In fact, only the specification model is explored in order to
generate test cases, and the conformance relation is used to decide which tests
pass and which fail.

In contrast, mutation testing requires effective conformance checking of the
mutated model to the original specification model. Mutation testing is a partic-
ular instance of fault oriented testing where the test cases are generated in a way
that tries to “steer” the SUT towards failure, due to a common modeling error if
one exists. Hence, the rational behind this approach is that if the mutated model
does not conform to its original version, the mutation introduces traces which
were not in the original model, and the non-conformance witness trace serves as
the basis to generate a test case. In case that the mutated model conforms to its
original version, the mutation does not introduce new behaviors with respect to
the original specification, hence no useful test case is generated. It follows that
in mutation-based testing, test cases are generated only if the mutated model
does not conform to its original version. We propose a TCG algorithm which
can be summarized as follows:

1. Given a deterministic TAIO A, a mutation operator m and a mutation
function µm, generate the mutant M ∈ µm(A);

2. Generate d(A) by demonic completion of A;
3. Check M tioco A, by effectively checking the language inclusion L(M) ⊆
L(d(A));

4. If L(M) 6⊆ L(d(A)), generate a test case based on the trace which witnesses
non conformance of M to A.

The steps 1 and 2 were already presented in Section 3 and 4, respectively. In
this section, we detail the steps 3 and 4 of our test case generation framework.

5.1 k-Bounded Language Inclusion

We have seen that mutation-based testing is fault-oriented, i.e. test cases are
generated only if the mutated model does not conform to its original version.
Consequently, symbolic techniques based on BMC are well-adapted to solve this
type of problems. BMC was used in [4, 22] for the reachability analysis of TA, and
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in [5] for checking the language inclusion between two timed automata. We now
show how the language inclusion problem from 3 can be encoded as a k-bounded
language inclusion SMT problem. Intuitively, given two TAIO AI and AS such
that AS is deterministic and an integer bound k, we have L(AI) 6⊆k L(AS) if
there exists a timed trace σ = t1 · a1 · · · ti · ai such that i ≤ k, σ ∈ L(AI) and
σ 6∈ L(AS). We now show how to construct a formula ϕkAI ,AS

that is satisfiable

if and only if L(AI) 6⊆k L(AS).
Let A = (Q, q̂, ΣI , ΣO, C, I,∆) be a TAIO. We denote by locA : Q →

{1, . . . , |Q|} and actA : Σ → {1, . . . , |Σ|} functions assigning unique inte-
gers to locations and actions in A, respectively. Given A and a constant k,
we denote by X the set of variables {x1, . . . , xk+1} that range over the do-
main {1, . . . , |Q|}, where xi encodes the location of A after the ith step. Sim-
ilarly, let A = {α1, . . . , αk} be the set of variables ranging over {1, . . . , |Σ|},
where αi encodes the action in A applied in the ith discrete step. We denote by
D = {d1, . . . , dk} the set of real-valued variables, where di encodes the delay ac-
tion applied in the ith time step. Let Ci denote the set of real variables obtained
by renaming every clock c ∈ C by ci. We denote by C =

⋃k+1
i=1 C

i ∪
⋃k+1
i=1 C

∗,i

the set of real (clock valuation) variables, where c∗,i ∈ C∗,i and ci ∈ Ci encode
the valuation of the clock c ∈ C after the ith timed and step, respectively.

We express the effect of applying Resetρ in the ith step of a run to the set C
of clocks in A as follows:

doResetiA,ρ(C) ≡
∧
c∈ρ

ci+1 = 0 ∧
∧
c 6∈ρ

ci+1 = c∗,i

We express the ith passage of time in A as follows:

tDelayiA(D,C) ≡
∧
c∈C

(c∗,i − ci) = di

The ith time step in a location q ∈ Q is expressed with:

tStepiA,q(D,X,C) ≡ xi = locA(q) ∧ tDelayiA(D,C) ∧ I(q)[C\C∗,i],

where I(q)[C\C∗,i] is the invariant of q, with every clock c ∈ C substituted by
c∗,i. The formula for the ith discrete step is:

dStepiA,δ(A, X,C) ≡ xi = locA(q) ∧ αi = actA(a) ∧ g[C\C∗,i] ∧
doResetiA,ρ(C) ∧ xi+1 = locA(q′)

where g[C\C∗,i] denotes the guard of δ, where every clock c ∈ C is substituted by
c∗,i. We express the segment of a path in TAIO A from j to k with the following
formula:

pathj,kA (A, D,X,C) ≡
k∧
i=j

(
∨
q∈Q

tStepiA,q(D,X,C) ∧
∨
δ∈∆

dStepiA,δ(A, X,C))
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The initial state of TAIO A is expressed as follows:

initA(X,C) ≡ x1 = locA(q̂) ∧
∧
c∈C

(c1 = 0)

Let AI = (QI , q̂I , ΣI , ΣO, C, II , ∆I) and AS = (QS , q̂S , ΣI , ΣO, C, IS , ∆S) be
two TAIOs such that AS is deterministic. The general formula ϕkAI ,AS

(i,A, D,
XI , XS , CI , CS) which specifies the negation of k-language inclusion is expressed
as follows:

ϕkAI ,AS
≡

∧k
i=1(di ≥ 0 ∧ αi ≥ 1 ∧ αi ≤ |Σ|) ∧ i ≥ 1 ∧ i ≤ k ∧

initAI
(XI , CI) ∧ initAS

(XS , CS) ∧ path1,i
AI

(A, D,XI , CI) ∧
path1,i−1

AS
(A, D,XS , CS) ∧ ¬pathi,iAS

(A, D,XS , CS)

5.2 Test Case Generation

Given a specification model A and its mutant M , our test case generation algo-
rithm creates a test only if M does not conform to A. The generated test follows
a test purpose which is in our case the timed trace σ which witnesses the non
conformance of M to A and exposes the error caused by the mutation in M . We
denote a test by AT and give it in a form of a deterministic TAIO.

The test AT specifies the execution of real-time traces and provides a verdict
after observing at most k combined (timed/discrete) steps of a trace. The verdict
can be:

– Pass (pass) - if the test purpose was successfully reached and the error
introduced by the mutant was not exposed by the SUT during the test
execution;

– Inconclusive (inc) - if the test purpose covering the fault introduced by the
mutant could not be reached by the SUT during the test execution;

– Fail (fail) - if the fault introduced by the mutant as part of the test purposed
was exposed by the SUT during the test execution.

The skeleton of AT consists of the sequence q1 · δ1 · · · qk · δk of locations
and transitions in A which are executed while observing the witness trace σ =
t1 ·ai · · · tk ·ak. This skeleton corresponds effectively to the test purpose described
above. In addition, AT is completed in order to satisfy a number of properties
described next. After observing a prefix σ′ = t1 ·a1 · · · ti ·ai of σ, AT is in location
qi, where i < k, and can do one of the following:

– Wait if the invariant of qi allows a positive time delay;
– Emit action a if a is an input action equal to ai and the transition δi is

enabled, and move to location qi+1;
– Accept action a if a is an output action equal to ai and the transition δi is

enabled, and move to location qi+1;
– Accept action a if a is an output action different from ai and there exists

an enabled transition δ in A with source location qi and labeled with a, and
move to the inc verdict location;
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– Refuse action a if a is an output action and there is no transitions in A with
the source location qi which is both labeled by a and enabled, and move to
the fail verdict location.

Finally, when AT is in location qk, it accepts all output actions a such that there
exists an enabled transition δ in A with the source location qk and labeled by a,
moving to the pass verdict location, and it rejects all other output actions, mov-
ing to the fail verdict locations. The test case generation procedure is formalized
in Algorithm 1.

Fig. 4. Necessity of symbolic constraints on inputs in a test.

Note that our test AT follows a fixed qualitative sequence of actions, defined
by the witness σ. In particular, it stops following a valid output according to the
specification A if it differs from the one defined in the witness σ, by returning
the inc verdict. It means that the test is not pursued when the SUT deviates
from the test purpose. On the other hand, AT is time adaptive, and the witness
σ defines a class of timing constraints which are allowed by the test. In fact,
it is highly unlikely that an expected output action is preceded by the exact
time delay as defined by the witness trace. Hence, we need the test to be more
flexible and to accept the expected output in a larger time range defined by the
specification model. In addition, if we allow time flexibility for output actions,
we cannot use the strict time delay, defined by the witness trace σ, to precede an
input action either, since it may violate input assumptions of the specification
during some test executions. We illustrate this observation in Figure 4, which
depicts model A (Figure 4 (a)), and its mutant M (Figure 4 (b)). The trace
σ = 4 ·x! · 2 ·a? · 2 · y! witnesses the non-conformance of M to A and can be used
to develop the skeleton of the test AT . During the test execution, the test may
observe the prefix σ′ = 2 ·x! which is allowed by the specification. In that case, if
AT requires exactly 2 time units to elapse between observing x! and emitting a?,
the assumptions expressed by A are violated. Hence the need to keep the timing
constraints symbolic, defining the elapse of time between x! and a? dependent
on the previous observations.

6 Implementation

In this section, we present the tool that implements the test case generation
framework described in Section 5. The implementation of the algorithms is done
in Scala (v2.9.1). We use standard Uppaal TA XML format to model TAIO
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Algorithm 1 Test case generation algorithm.

Input: A = (Q, q̂, ΣI , ΣO, C, I,∆) and q1 · δ1 · · · qk · δk · qk+1

Output: Test automaton AT

1: QT ←
⋃k

i=1{qi} ∪ {pass, fail, inc}
2: ∆T ←

⋃k−1
i=1 {δi}

3: for i = 1 to k do
4: for all (qi, a, g, ρ, q

′) ∈ ∆\{δi} st. a ∈ ΣO do
5: if i < k then
6: ∆T ← ∆T ∪ {(qi, a, g, {}, inc)}
7: else
8: ∆T ← ∆T ∪ {(qi, a, g, {},pass)}
9: end if

10: end for
11: for all a ∈ ΣO st. ∃(qi, a, g, ρ, q′) ∈ ∆ do
12: gT ← (g1 ∨ . . .∨ gj)∧ I(q) st. {gi} are guards of outgoing transitions from qT

labeled by a
13: ∆T ← ∆T ∪ {(qi, a,¬gT , {}, fail)}
14: end for
15: for all a ∈ ΣO st. 6 ∃(qi, a, g, ρ, q′) ∈ ∆ do
16: ∆T ← ∆T ∪ {(qi, a, true, {}, fail)}
17: end for
18: end for
19: return AT ← (QT , q̂, ΣO, ΣI , C, I,∆T )

specifications. The (bounded) language inclusion between two TAIOs is com-
puted using the Z3 (v4.0) SMT solver [21]. The communication between our
implementation in Scala and the Z3 solver relies on the Scala∧Z3 API. Figure 5
gives an overview of different tool component interactions.

Fig. 5. Test case generation framework.

The test case generation framework, depicted in Figure 5, consists of four
main steps:

1. Parsing and demonic completion of the TAIO model;
2. Mutation of the TAIO model;
3. Language inclusion between the original model and its mutant;
4. Test case generation.
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In what follows, we present more details about these steps.
Specification Parsing and Demonic Completion: The TAIO model spec-
ified in the Uppaal XML format is parsed with Scala’s parser generator. We
require the following restrictions on the Uppaal automata in order to guarantee
their compliance with the TAIO model: (1) one automaton per file; (2) no ur-
gent nor committed locations. Of course urgent locations can still be expressed
via invariants. We note that the actual modelling can have important impact
on the number and effectiveness of consecutive generation of mutants and test
cases.

We implemented the demonic completion of the model by straighforward
application of the procedure from Section 4.
Mutation of Models: Our tool supports all mutation operators introduced in
Definition 2. We store each mutant as a separate Uppaal XML model.
Language Inclusion: The language inclusion check between a model and its
mutant is at core of the TCG framework. We translate an Uppaal model and
its mutant to a bounded language inclusion problem expressed as an SMT-LIB2
formula, following the procedure described in Section 5.1. The formula is then
fed to the Z3 solver, which checks whether there exists a satisfying assignment
to the variables which represents a witness trace violating the language inclusion
property.

Apart from this standard procedure, we also implemented the same TCG
algorithm using Z3’s incremental solving feature, with the aim to improve the
computation time of the bounded language inclusion check. Given an SMT for-
mula expressing the k-bounded language inclusion problem, we first feed the Z3
solver with the sub-formula for the i-bounded language inclusion problem, for
some i smaller than k. Z3 checks the satisfiability of the sub-formula, and if a
satisfying assignment is found, the procedure can stop. Otherwise, we pop the
sub-formula from the Z3 stack and push the sub-formula expressing the step
from i to i+ 1. The procedure is iterated until a witness is found or the k bound
is reached.
Test case generation: If Z3 generates a counter-example which witnesses vi-
olation of language inclusion between the specification and its mutant, we use
this counter-example together with the specification model in order to generate
a test case. The test case generation implementation closely follows Algorithm 1.

7 Case Study and Experimental Results

In this section we illustrate our TCG approach with the Car Alarm System
(CAS) [2, 30] and evaluate the framework, presenting the evaluation results.

The car alarm system (CAS) is a model inspired by the Ford’s demonstrator
developed in the EU FP7 project MOGENTES4. The model is developed from
the following requirements provided by Ford:

1. Arming: The system is armed 20s after the vehicle is locked and the bonnet,
luggage compartment and all doors are closed;

4 http://www.mogentes.eu/
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Fig. 6. A TAIO model of the car alarm system.

2. Alarm: The alarm sounds for 30s if an unauthorized person opens the door,
the luggage compartment or the bonnet. The hazard flasher lights flashes for
5min;

3. Deactivation: The anti-theft alarm system can be deactivated at any time,
even when the alarm is sounding, by unlocking the vehicle from outside.

We developed the TAIO model of the CAS, shown in Figure 6, following the
above requirements.

We applied our mutation testing tool to the CAS example. We first generated
all the mutants (1099) and for each mutant checked whether it tioco-conforms to
the original CAS model, by effectively doing the k-bounded language inclusion
test. We set the maximal k bound to 20 for the k-bounded language inclusion
test. We generated tests from all the non-conformant mutants. The whole pro-
cedure took 62.3 minutes and produced a total of 628 test cases. 471 mutants
are tioco conform to the specification and therefore did not produce any test
cases. Table 1 shows the run time of the standard and incremental approaches
for the language inclusion applied on the CAS and a single equivalent mutant,
indicating the efficiency of the incremental solving.

In order to evaluate our mutation testing framework, we used an existing
implementation of CAS [1], developed in Java. The implementation consists of
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k 5 10 15 20

Std Solving 0.1s 40.1s 115.2s 279.5s
Inc Solving 0.1s 0.3s 0.6s 1.0s

Table 1. Computation time for solving the k-bounded language inclusion between
CAS model and its equivalent mutant.

Mutants Equiv. Pairwise Different
Equiv. Faults

SetState 6 0 1 5
Close 16 2 6 8
Open 16 2 6 8
Lock 12 2 4 6
Unlock 20 2 8 10
Constr. 2 0 1 1

Total 72 8 26 38
Table 2. Injected faults into the CAS implementation.

4 public methods, open, close, lock and unlock, and 2 internal methods, setState
and the constructor. The CAS implementation simulates time elapse with a tick
function. We used µJava5 to mutate the above functions (except tick), resulting
in 72 mutants, some of them equivalent to the original implementation or to
other mutants. The total of 38 unique faulty implementations were derived, as
summarized in Table 2. Both the correct and the 38 faulty CAS implementations
were used to evaluate the effectiveness of the test cases we generated.

We developed a test driver in order to be able to execute tests that we gener-
ated on the CAS implementation. We integrated quiescence into the test driver,
which is responsible to detect prolonged absence of output actions. We set the
maximal timeout that the driver is allowed to wait for an output action to 400
time units. If the timeout is reached without observing an action, the test out-
puts a verdict pass if the test is in the last location with the true invariant or inc
otherwise. The test driver emits an input action as soon as the associated transi-
tion becomes enabled. If the timeout is reached before the transition labeled by
the input action becomes enabled, the test driver returns the inc verdict. Note
that the test execution was conducted against a known Java implementation
which models time passage as discrete ticks. Our test driver can be interfaced to
any SUT which is a simulated implementation model (for instance a Simulink
model). The test driver can handle arbitrary (variable) passages of time, as long
as the time passage is simulated and provided in form of a time stamp. However,
our current test driver does not fully support interfacing with physical SUT
implementations, where the real passage of time cannot be controlled. In order
to allow such support, we would need to model, possibly elaborated, interfacing
delays between the SUT and the test driver (see [18] for a detailed discussion

5 http://cs.gmu.edu/ offutt/mujava/
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Action Target Source Guard Not-Guard Invariant Sink State Clock Total

Model Mutants [#] 139 375 375 24 25 11 25 125 1099
TCs [#] 139 267 165 6 3 11 25 12 628
av. Kills per TC [#] 12.5 13.2 12.4 16.3 16.3 17.8 17.8 13.8 13
Mutation Score [%] 71 94.7 92.1 57.9 47.4 60.5 89.5 57.9 100
Table 3. Mutation analysis on each of the mutation operators evaluated on 38 faulty
implementations of the CAS using tioco as conformance relation.

on test execution and “delay automata”). We postpone the extension of our test
drivers to physical real-time SUT implementation for future work.

We say that a faulty implementation is killed if at least one test case reaches
the verdict fail during a test execution. We analyzed the effectiveness of our
mutation operators with respect to their ability to kill faulty implementations.
Table 3 summarizes the results on effectiveness of mutation operators, where
each row provides the number of mutants, the number of resulting test cases,
the average number of faulty implementations killed per test case and the mu-
tation score of a mutation operator. Mutation score is the measure which gives
the percentage of faulty implementations killed by mutants resulting of a single
mutation operator. We achieved a total of 100% mutation score for the combined
mutation operators. The highest mutation score is achieved by the “change tar-
get” operator, however at the price of generating 375 mutants and 267 test
cases. Evaluation results also showed that most of the faulty implementations
were killed by “change target” mutants in which self-loops were created. Finally,
we observed that 3 faulty implementations were only killed by mutants resulting
from “sink state” mutations.

Following the above observations, we conducted another experiment in which
we only applied “sink state” and “self-loop” mutations, resulting in only 50
mutants. All mutants were shown to be non tioco-conformant to the original
models, generating 50 test cases in just 56s. In addition, the combination of
these two operators achieved 100% mutation score on their own. These results
indicate that a smart choice of a small number of mutation operators and their
ordering can achieve high mutation scores while considerably reducing test case
generation and execution times.

8 Conclusion

We proposed a novel mutation testing framework for real-time systems. Our
TCG technique relies on symbolic BMC and uses incremental SMT solving. We
illustrated our testing approach on a Car Alarm System example and presented
promising experimental results, showing that we were able to kill all the faulty
implementations efficiently.

In the next step, we will apply our framework to other case studies, and study
mutation operators effectiveness in more detail, with the aim to identify a small
set of operators which achieve high mutation scores for a larger class of problems.
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We will also consider extending our test driver to allow test execution on physical
real-time implementations. We also plan to extend the expressiveness of timed
automata model with data variables, non-determinism and silent transitions. We
will finally extend our current framework by providing support for incremental
test case generation for real-time systems consisting of multiple components.
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