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0. Notation

• k denotes a (ground) commutative ring

• k-linear = enriched in k -mod

• graded = Z-graded

• Ck = the category of complexes of k-modules

• A differential graded (dg) category is a category enriched in Ck.

In particular, since Ck is a closed monoidal category, it gives rise to a

category Ck enriched in Ck, i.e., to a dg category.

• We use geometric notation for composition:

f
→

g
→ =

fg
→
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1. Preliminaries on A∞-categories

A∞-categories

Definition. An A∞-category A consists of

• a set of objects Ob A

• for each X, Y ∈ Ob A, a graded k-module A(X, Y )

• for each n > 1 and X0, . . . , Xn ∈ Ob A, a k-linear map

mn : A(X0, X1) ⊗ · · · ⊗ A(Xn−1, Xn) → A(X0, Xn)

of degree 2 − n,

satisfying the equations

∑

p+k+q=n

(−1)pk+q(1⊗p ⊗ mk ⊗ 1⊗q)mp+1+q = 0, n > 1.

(n = 1) m2
1 = 0

(n = 2) m2m1 = (m1 ⊗ 1 + 1 ⊗ m1)m2

(n = 3) (m2 ⊗ 1)m2 − (1 ⊗ m2)m2

= m3m1 + (m1 ⊗ 1 ⊗ 1 + 1 ⊗ m1 ⊗ 1 + 1 ⊗ 1 ⊗ m1)m3

Example. A dg category can be viewed as an A∞-category in which mn = 0

for n > 3.
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A∞-functors

Definition. An A∞-functor f : A → B consists of

• a function Ob f : Ob A → Ob B, X 7→ Xf

• for each n > 1 and X0, . . . , Xn ∈ Ob A, a k-linear map

fn : A(X0, X1) ⊗ · · · ⊗ A(Xn−1, Xn) → B(X0f, Xnf)

of degree 1 − n,

satisfying the equations

l>0∑

i1+···+il=n

(−1)σ(fi1 ⊗ · · · ⊗ fil)ml

=
∑

p+k+q=n

(−1)pk+q(1⊗p ⊗ mk ⊗ 1⊗q)fp+1+q, n > 1,

where σ = (i2 − 1) + 2(i3 − 1) + · · · + (l − 1)(il − 1).

(n = 1) f1m1 = m1f1

(n = 2) m2f1 − (f1 ⊗ f1)m2 = f2m1 + (m1 ⊗ 1 + 1 ⊗ m1)f2

Example. A dg functor can be viewed as an A∞-functor with fn = 0 for

n > 2.
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Graded quivers

Definition. A graded quiver A consists of

• a set of objects Ob A

• for each X, Y ∈ Ob A, a graded k-module A(X, Y ).

A morphism f : A → B of graded quivers consists of

• a function Ob f : Ob A → Ob B, X 7→ Xf

• for each X, Y ∈ Ob A, a k-linear map

f = fX,Y : A(X, Y ) → B(Xf, Y f)

of degree 0.

Let Q denote the category of graded quivers. It is symmetric monoidal with

tensor product (A, B) 7→ A ⊠ B given by

Ob A ⊠ B = Ob A × Ob B,

(A ⊠ B)((X, U), (Y, V )) = A(X, Y ) ⊗ B(U, V ),

(X, Y ∈ Ob A, U, V ∈ Ob B). The unit object is the graded quiver 1 with

Ob1 = {∗}, 1(∗, ∗) = k.
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Graded quivers with a fixed set of objects

For a set S, denote by Q/S the fibre of the functor Ob : Q → Set over S,

i.e., the subcategory of Q whose objects are graded quivers with the set of

objects S and whose morphisms are morphisms of graded quivers acting as the

identity on objects.

Q/S is a monoidal category with tensor product (A, B) 7→ A ⊗ B given by

(A ⊗ B)(X, Z) =
⊕

Y ∈S

A(X, Y ) ⊗ B(Y, Z), X, Z ∈ S.

The unit object is the discrete quiver kS given by

Ob kS = S, kS(X, Y ) =






k if X = Y ,

0 if X 6= Y ,

X, Y ∈ S.
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Cocategories

Definition. An augmented graded cocategory is a graded quiver C

equipped with the structure of an augmented counital coassociative coalgebra

in the monoidal category Q/ Ob C. Therefore, C comes with

• a comultiplication ∆ : C → C ⊗ C

• a counit ε : C → k Ob C

• an augmentation η : k Ob C → C

which are morphisms in Q/ Ob C satisfying the usual axioms.

A morphism of augmented graded cocategories is a morphism of graded quivers

that preserves the comultiplication, counit, and augmentation.

The category of augmented graded cocategories inherits the tensor product ⊠

from Q.
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Main example: tensor cocategory of a quiver

Let A be a graded quiver. Denote

T n
A = A

⊗n = A ⊗ · · · ⊗ A︸ ︷︷ ︸
n times

(tensor product in Q/ Ob A).

The graded quiver

TA =
∞⊕

n=0

T n
A

equipped with the cut comultiplication

∆0 : h1 ⊗ · · · ⊗ hn 7→
n∑

k=0

h1 ⊗ · · · ⊗ hk

⊗
hk+1 ⊗ · · · ⊗ hn,

the counit

ε = pr0 : TA → T 0
A = k Ob A,

and the augmentation

η = in0 : k Ob A = T 0
A →֒ TA

is an augmented graded cocategory.
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Cocategory approach to A∞-categories

For a graded quiver A, denote by sA its suspension:

Ob sA = Ob A, (sA(X, Y ))d = A(X, Y )d+1, X, Y ∈ Ob A.

Let s : A → sA denote the ‘identity’ map of degree −1.

Proposition (folklore). There is a bijection between structures (mn)n>1 of

an A∞-category on a graded quiver A and differentials b : TsA → TsA

of degree 1 such that (TsA, ∆0, pr0, in0, b) is an augmented differential

graded cocategory, i.e.,

b2 = 0, b∆0 = ∆0(b ⊗ 1 + 1 ⊗ b), b pr0 = 0, in0 b = 0.

The bijection is given by the formulas

mn =
[
A

⊗n s⊗n

→ (sA)⊗n bn
→ sA

s−1

→A
]
,

bn =
[
(sA)⊗n ⊂

inn

→TsA
b
→TsA

pr1⊲ sA
]
,

bnm =
∑

p+k+q=n
p+1+q=m

1⊗p ⊗ bk ⊗ 1⊗q : T nsA → TmsA.

We may think of A∞-categories as of augmented dg cocategories of particular

form. Then A∞-functors f : A → B correspond precisely to morphisms

(TsA, b) → (TsB, b)

of augmented dg cocategories.

The advantage is that we can easily define A∞-functors of many arguments!
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A short reminder about multicategories

A multicategory is just like a category, the only difference being the shape

of arrows. An arrow in a multicategory looks like

X1
X2

Xn

... Y

with a finite family of objects as the source and one object as the target.

Composition turns a tree of arrows into a single arrow, e.g.

Y1

Y2

X1

X2

X3
X4
X5

Yg

f1

f2

7→ (f1, f2)g

X1

X2

X3

X4

X5

Y

Example. A one-object multicategory is an operad (multicategories are some-

times called many-object operads, or ‘colored operads’).

Example. A monoidal category C gives rise to a multicategory Ĉ with the

same set of objects. An arrow

X1, . . . , Xn → Y

in Ĉ is an arrow

X1 ⊗ · · · ⊗ Xn → Y

in C. Composition in Ĉ is derived from composition and tensor product in C.
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A∞-categories constitute a symmetric multicategory

Definition. Let A1, . . . , An, B be A∞-categories. An A∞-functor

f : A1, . . . , An → B

is a morphism of augmented dg cocategories

TsA1 ⊠ · · · ⊠ TsAn → TsB.

Explicitly, an A∞-functor f : A1, . . . , An → B consists of

• a function

Ob f :
n∏

i=1

Ob Ai → Ob B, (X1, . . . , Xn) 7→ (X1, . . . , Xn)f

• for each k = (k1, . . . , kn) ∈ N
n

r {0} and Xj
i ∈ Ob Ai, i = 1, . . . , n,

j = 1, . . . , ki, a k-linear map

[A1(X
0
1 , X

1
1) ⊗ · · · ⊗ A1(X

k1−1
1 , Xk1

1 )]⊗

· · · ⊗ [An(X
0
n, X

1
n) ⊗ · · · ⊗ An(X

kn−1
n , Xkn

n )]

B((X0
1 , . . . , X

0
n)f, (Xk1

1 , . . . , Xkn

n )f)

fk↓

of degree 1 − (k1 + · · · + kn)

subject to equations.

Denote by A∞ the symmetric multicategory of A∞-categories and A∞-functors.
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The multicategory A∞ is closed

For each collection of A∞-categories A1, . . . , An, B, there exists a ‘functor’

A∞-category A∞(A1, . . . , An; B) and an evaluation A∞-functor

evA∞ : A1, . . . , An, A∞(A1, . . . , An; B) → B

such that the mapping

A∞(B1, . . . , Bm; A∞(A1, . . . , An; C)) → A∞(A1, . . . , An, B1 . . . , Bm; C),

f 7→ (1A1
, . . . , 1An

, f) evA∞

is a bijection. The objects of the A∞-category A∞(A1, . . . , An; B) are

A∞-functors A1, . . . , An → B. For A∞-functors f, g : A1, . . . , An → B,

A∞(A1, . . . , An; B)(f, g) = { A∞-transformations f → g}

= { (f, g)-coderivations TsA1 ⊠ · · · ⊠ TsAn → TsB}.

The evaluation A∞-functor acts on objects as expected:

A1, . . . , An, A∞(A1, . . . , An; B) → B, (X1, . . . , Xn, f) 7→ (X1, . . . , Xn)f.

In the case n = 1, the A∞-category A∞(A; B) has been considered by many

authors (Keller, Kontsevich, Lefèvre-Hasegawa, Lyubashenko, Soibelman. . . ).
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Unital A∞-categories

Definition. An A∞-category A is called unital if, for each X ∈ Ob A, there

is a cycle 1X ∈ A(X, X)0, called the identity of X , such that

(1X ⊗ id)m2, (id⊗1Y )m2 ∼ id : A(X, Y ) → A(X, Y ),

for each X, Y ∈ Ob A.

A unital A∞-category A gives rise to a k-linear category H0(A):

Ob H0(A) = Ob A, H0(A)(X, Y ) = H0(A(X, Y ), m1), X, Y ∈ Ob A.

Composition is induced by m2, and the identity of an object X is the class

[1X ] ∈ H0(A)(X, X). The category H0(A) is called the homotopy cate-

gory of A.

An A∞-functor f : A → B is unital if it preserves identities modulo bound-

aries:

1Xf1 − 1Xf ∈ Im m1.

A unital A∞-functor f : A → B gives rise to a k-linear functor

H0(f) : H0(A) → H0(B)

such that Ob H0(f) = Ob f , and for each X, Y ∈ Ob A, the k-linear map

H0(f) : H0(A)(X, Y ) → H0(B)(Xf, Y f)

is induced by f1 : A(X, Y ) → B(Xf, Y f).

An A∞-functor of many argument is unital if it is unital in each argument.

13



The symmetric closed multicategory of unital

A∞-categories

Composition of unital A∞-functors is unital. Let Au
∞ ⊂ A∞ denote the sub-

multicategory of unital A∞-categories and unital A∞-functors. It is also closed:

Au
∞(A1, . . . , An; B) ⊂ A∞(A1, . . . , An; B)

is the full A∞-subcategory whose objects are unital A∞-functors. It is a unital

A∞-category. The evaluation A∞-functor evA
u
∞ is the restriction of evA∞. It

is a unital A∞-functor.

Definition. Unital A∞-functors

f, g : A1, . . . , An → B

are called isomorphic if they are isomorphic as objects of the category

H0(Au
∞(A1, . . . , An; B)).
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Opposite A∞-categories

Definition. Let A be an A∞-category. The opposite A∞-category Aop is

given by

Ob A
op = Ob A, A

op(X, Y ) = A(Y, X), X, Y ∈ Ob A,

and operations mA
op

n are given by

mA
op

n = (−1)n(n+1)/2+1



 signed permutation

of arguments



 · mA

n .

The correspondence A 7→ Aop extends to A∞-functors and yields a symmetric

multifunctor −op : A∞ → A∞.

The opposite of a unital A∞-category (resp. A∞-functor) is again unital, hence

−op restricts to a symmetric multifunctor −op : Au
∞ → Au

∞.
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2. Serre functors

Hereafter, k is a field.

Definition (Bondal–Kapranov). Let C be a k-linear category. A k-linear

functor S : C → C is called a (right) Serre functor if there exists an

isomorphism

C(X, Y S) ∼= C(Y, X)∗

natural in X, Y ∈ Ob C, where ∗ denotes the dual vector space. A right Serre

functor, if it exists, is unique up to isomorphism.

Example. Let X be a smooth projective variety of dimension n over the field

k. Let ωX denote the canonical sheaf on X . Let C = Db(CohX) be the

bounded derived category of coherent sheaves on X . Then the functor

S = −⊗ ωX [n]

is a right Serre functor.
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3. Serre A∞-functors

Definition

For an A∞-category A, there is an A∞-functor

HomA : A
op, A → Ck, (X, Y ) 7→ (A(X, Y ), m1).

It is unital if so is A. The A∞-functor A → A∞(Aop; Ck) that corresponds to

HomA : Aop, A → Ck by closedness of the multicategory A∞ is precisely the

Yoneda embedding.

Definition (Kontsevich–Soibelman). Let A be a unital A∞-category. A

unital A∞-functor S : A → A is called a (right) Serre A∞-functor if the

diagram

A
op, A

1,S
→A

op, A

Ck

op

Hom
op

Aop
↓

D
→Ck

HomA

↓

commutes up to isomorphism (in H0(Au
∞(Aop, A; Ck))). Here

D : Ck

op → Ck, M 7→ M ∗ = Ck(M, k),

is the duality dg functor.

Proposition. As in the case of ordinary Serre functors, if a right Serre

A∞-functor exists, then it is unique up to isomorphism.
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A∞-categories closed under shifts

(see also V. Lyubashenko’s talk)

Let A be an A∞-category. It gives rise to an A∞-category A[ ] obtained from

A by formally adding shifts of objects:

Ob A
[ ] = Ob A × Z, A

[ ]((X, n), (Y, m)) = A(X, Y )[m − n].

A embeds as a full A∞-subcategory into A[ ] via

u : A →֒ A
[ ], X 7→ (X, 0).

Definition. A unital A∞-category A is called closed under shifts if u is an

A∞-equivalence.

Equivalently, each object (X, n) of A[ ] is isomorphic in H0(A[ ]) to an object

of the form (Y, 0).

Example. Pretriangulated A∞-categories (to be defined by V. Lyubashenko)

are closed under shifts.
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Main theorem

As above, assume that k is a field.

Theorem. (1) If S : A → A is a right Serre A∞-functor, then the induced

functor H0(S) : H0(A) → H0(A) is an ordinary right Serre functor.

(2) Conversely, suppose that A is closed under shifts and that H0(A) admits

a right Serre functor S̄ : H0(A) → H0(A). Then there exists a right

Serre A∞-functor S : A → A such that H0(S) = S̄.

Example. By results of Drinfeld, we know that Db(CohX) is of the form

H0(A), where A is the dg quotient of the dg category of complexes of coherent

sheaves over the full dg subcategory of acyclic complexes. Therefore, the Serre

functor S = −⊗ ωX [n] lifts to a Serre A∞-functor A → A.
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