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1. INTRODUCTION

One of the most serious obstacles for sound and thor-
ough climate impact research is the treatment of
extreme, predominantly hydrological, events. Such
events have a very great impact on many ecosystems,
and can wipe out in a single stroke the agricultural and
economic development of a whole year (and longer).
Therefore, the adequate modeling of the statistics of
extreme events is an indispensable part of downscal-
ing studies.

By definition, an extreme event occurs with small
probability, and so its empirical statistical properties
have to be determined quite exactly. Small estimation
errors create artificial extremes or restrict large model
extremes, with enormous consequences for the ecosys-
tem. In the case of a precipitation scenario, for exam-
ple, the omission of only a few heavy showers can lead
to an overall decrease of precipitation, even if the gen-
eral mean trend is increasing, and vice versa.

A major problem for today’s climate impact studies is
how to utilize the climate change information that is
produced by General Circulation Models (GCMs).
Since those models are not designed to describe the

smaller space and time scales of our daily environ-
ment, a ‘downscaling’ mechanism has to be added
which transmits information from the global models to
the local scales. A number of tools have been formu-
lated in recent years (Bardossy & Plate 1992, Elsner &
Tsonis 1992, Hewitson & Crane 1992, Wilson et al.
1992, Hughes et al. 1993, McGinnis 1994, Bürger 1996)
which aim at finding a mathematical relation (a ‘trans-
fer function’) between the global and local fields that is
stable in time and, moreover, valid for a variety of dif-
ferent climates. For many quantities, such as tempera-
ture and pressure, this relation can be expressed by a
simple linear relation between the global and local
anomaly fields. Unfortunately, the ecologically most
important fields, to which all hydrological phenomena
belong, do not exhibit such simple linear relations to
the global circulation. For example, the generation of
convective storms in a mountainous region or the
occurrence of fog over wetlands is too complicated to
be linearly predictable from the large-scale flow; these
kinds of interaction between circulation and surface
cannot be comprised in a simple mathematical form. A
standard way to include even complicated, nonlinear
interactions in the transfer function is to use a neural
net (NN; see Bishop 1995). By decomposing the trans-
fer function into more basic parts, NNs are capable of
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approximating a wide range of functions, including
even strongly nonlinear ones. Although specifically
suited for this latter case, a NN still needs a large num-
ber of parameters, and it requires large training sets to
produce reliable estimates. This usually marks the
limit of applicability of NNs.

An alternative to the use of transfer functions is the
‘analogue method’ (Zorita et al. 1995). By selecting the
weather elements from the already observed record
(taking, for a given model circulation pattern, an ‘ana-
logue’ observed circulation pattern) the original time
series is re-ordered according to the model circulation.
Using this method, no new weather scenarios are
generated but, at least, realistic local variability is
achieved.

The current study is meant to deepen our under-
standing of the performance of both methods. It has
been demonstrated in other studies, e.g. McGinnis
(1994), that, in fact, the use of NNs improves the down-
scaling of hydrological quantities. (Note that since NNs
usually comprise linear models their performance can-
not decrease relative to those linear models.) In that
study, 5-day averages of the 70 kPa height field and
snowfall amount were related, as measured at a num-
ber of stations in the western part of the U.S. The use of
5-day averages, of course, improves the downscaling
performance, as it does not have to be concerned with,
for example, extreme hydrological events, which only
occur at the daily time scale.

Following up on McGinnis (1994), we discuss a num-
ber of questions which remained unresolved in that
study. For example: Does the improvement that is
gained by the inclusion of nonlinear methods occur
uniformly over the whole phase space, or specifically
for certain regions, thereby distinguishing processes
which are captured by the NN only? What we have in
mind is, for example, a convective instability under hot
and humid conditions which often leads to convective
storms. It is known that, on the physical level, a num-
ber of highly nonlinear, small-scale processes are
responsible for the evolution of such storms. But these
processes cannot be reflected in the coarse resolution
of the GCM. On the other hand, if NNs perform better,
and our study demonstrates that they do, it is caused
by the nonlinear coupling of the global forcing fields.

But which situations are responsible for the different
behavior of linear and nonlinear models? Is it possible
to distinguish specific circulation patterns which are
modeled differently? These questions are very impor-
tant especially with respect to climate change scenar-
ios. If there is a tendency to more extreme events in a
warmer climate (as climate change is often depicted in
the media) there is a chance that NN downscaling
much better reflects such events, as they are possibly
caused by exactly those nonlinear processes. 

We emphasize that the models used are designed
solely for the described comparison, and have not been
streamlined towards any performance optimum. While
this is certainly possible, and in fact necessary once
they go into practical operation, the main interest of
this, mainly theoretical, study lay in the improvement
gained from using nonlinear models. But before we
enter the comparison in full detail let us first briefly
introduce each model.

2. DOWNSCALING

‘Downscaling’ includes any attempt to model a
small-scale (local) process, l, by means of a series of
large-scale (global) states, g, establishing a mathemat-
ical relation of the form

l =  ƒ(a–,g) (1)

with a transfer function ƒ that has to be determined
empirically. Usually, one has an a priori knowledge
about the main class the function belongs to, such as
linear or logarithmic, and so the main purpose of
Eq. (1) is to fit the set of parameters, a–. Since the data
are usually noisy it is important to keep the number of
parameters small to avoid fitting the noise.

2.1. Linear downscaling

For linear downscaling, the transfer function is cho-
sen to be a simple linear matrix, L (whose entries are
the parameters to be fitted):

(2)

It is assumed that g and l are given as anomalies
about some previously determined (daily, monthly,
annual) mean values. Depending on how L is chosen a
whole variety of downscaling methods exist. For exam-
ple, one way to choose L is to determine global and
local patterns, g0 and l0, respectively, such that the
respective projections of the global and local fields
onto these patterns are maximally correlated. L is then
given by

(3)

with ρ denoting the correlation. This approach is called
‘canonical correlation analysis’ and is probably the
most frequently applied form of linear downscaling;
examples are von Storch et al. (1993), Werner & von
Storch (1993), Gyalistras et al. (1994) and Heyen et al.
(1996). An alternative is the so-called ‘best linear pre-
dictor’. Here one tries to minimize the modeling error,
Lg – l, in terms of its covariance. The appropriate cost
function can be expressed as

   L = ρ l g0 o
T

  
ˆ Ll g=
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(4a)

(where k l denotes expectation); or

(4b)

where Clg etc. denote the various covariance matrices.
The condition of a local extreme, ∂Γ/∂L = 0, gives the
solution

(5)

This approach is taken, for example, in Bürger
(1996). So far, significant differences between the var-
ious linear techniques have not been observed. In most
cases, L is allowed to depend on the seasonal cycle. For
the following, it will be important to note that the
model equation, Eq. (2), describes nothing more than a
simple projection of the circulation onto one specific
pattern, for each local variable (the rows of L).

2.2. Neural nets

Neural networks are used in various domains rang-
ing from concept (Boolean function) learning to func-
tion approximation. The task considered here, i.e.
approximation of the function ƒ as described in Eq. (1),
is a type of supervised function learning. Below, we
briefly describe our hierarchical variant of the radial
basis function (RBF) approach, which has been tested
with excellent results on standard chaotic maps and
also on natural time series (Fröhlinghaus et al. 1994).
Similar methods have been used for a long time for
approximating nonlinear smooth functions. The RBF
method was applied first by Moody & Darken (1989) in
conjunction with neural networks and consists of 2
main steps:

(1) unsupervised clustering,
(2) supervised function approximation.

Regarding Step 1: To approximate the function ƒ, the
ƒ-domain is first partitioned into various regions, using
the following, recursive procedure: starting with the
whole input space, the ƒ-domain is divided with a hy-
perplane into 2 regions. Each region is split once again
in the next step. This procedure is repeated until a de-
fined break condition is met. The hyperplanes are cal-
culated using only the statistical correlations of the in-
put (predictor) variables. The normal of the hyperplane
is the dominant principal component (PC) of the data-
points in that region and it points to the corresponding
mass-center. The so-generated subsets of the data-
points are called clusters, denoted by Cj for cluster j.

It is known that PCs form an orthogonal system
which minimizes the coordinate entropy S (Watanabe

1985); the variance of the data distribution is strongly
peaked in a few, say d, directions. If in this coordinate
system g = (g1, g2, ..., gd)T, the coordinate entropy Sj for
cluster j is defined as:

with (6)

and (7)

The dominant PC is the direction with the greatest
variance. Hence, our dividing strategy extracts the
maximal amount of coordinate information from the
data distribution when only a single cut-plane is
allowed.

Once a binary tree is constructed up to some prede-
termined depth, each tree level defines a set of clusters
covering the whole ƒ-domain. The tree itself can be
regarded as a compact representation of the data dis-
tribution. In the hierarchical method all cluster levels
are used. Because this approach did not significantly
improve the performance in the present task, we use
only the cluster at the end of the binary tree.

The clusters are separated by hyperplanes, so that
they form polyhedra. This structure can be repre-
sented as a multilayer perceptron (Hecht-Nielsen
1990) with 1 hidden layer. The neuron j in the output
layer corresponds to a characteristic function χ j(g) = 1,
if g ∈ Cj, 0 otherwise. This function is further smoothed
depending on the chosen form of the sigmoid activa-
tion function. The RBF approach uses a similar
approach but approximates the data-points in a cluster
by a multivariable Gaussian distribution. The RBF uses
a characteristic function of form

(8)

where g j is the mass-center and Cj the covariance
matrix of cluster j. The scaling factor η is a free para-
meter whose value defines the overlap between differ-
ent clusters. Characteristic functions of the form of
Eq. (8) are known as radial basis functions, which are
usually ‘normalized’ as:

(9)

where M denotes the number of clusters.
Regarding Step 2: Once the radial function basis is

set up, one proceeds with supervised learning, which
means here fitting a linear combination ƒ of the cluster
radial functions by minimizing the mean squared error
of the training set with N samples:

(10)
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The function ƒ describes the output of the entire
neural network with M clusters as:

(11)

Following Farmer & Sidorowich (1987) the fit might
include also (a linear) interpolation term

(12)

where aj is a vector and Bj a matrix. The training pro-
cedure has several global parameters: the number of
clusters (the depth of the tree), η, the overlap between
clusters, and whether one applies linear interpolation
or not. Usually, it is best to start with the simplest net-
works containing one cluster (which in our case corre-
sponds to a linear regression) and proceed towards
more complex ones. By monitoring the improvement in
performance of a data-set which has not been used for
training, one can avoid overfitting due to an excess of
fit parameters. In all cases discussed in this paper we
took the fixed value η = 5, while the parallel use of dif-
ferent tree levels only marginally improved the predic-
tion. Similarly, the Farmer-Sidorowich linear interpola-
tion was not needed. Hence, the only major global
network parameter was the number of used clusters.
For the downscaling problem we used 113 clusters; a
minimal cluster size of 40 points was used as the clus-
tering break condition. This produces a nonbalanced
tree with deeper depth (more clusters) in the regions
with large point density.

3. TESTING THE MODELS

For a comparison of the linear and nonlinear models
we used the linear model that is based on the best lin-
ear predictor, here denoted as BLP, and the NN which
uses radial basis functions, denoted RBF.

Our test case is made up of the following compo-
nents: As a predictor field, we chose a combination of
the geopotential height field at 50 kPa, z50, and the
temperature field at 85 kPa, T85, both in a 5° × 5° grid
box with corners 55° W, 25° N and 45° E, 75° N. We
used daily values from the period 1 October to 30 June
1989. The fields originate from an updated version of
an older NCAR analysis project (see Mass et al. 1987).
From the PCs of each individual field, the combination
uses the first 14 and 25 entries, respectively, which
each explain 90% of the total field variance; the annual
cycle was removed beforehand. In this way the large-
scale North Atlantic/European circulation plus tem-
perature is condensed into a 39-dimensional time-
series. On the local side, we experiment with 3
variables: TAV, the average temperature, PRC, the
precipitation amount, and HPR, the vapor pressure, as

measured at the climate station in Potsdam in Ger-
many (13° E, 52° N). TAV and HPR are examples of
variables which behave fairly linearly, with distribu-
tions that are essentially normal. PRC, in contrast,
shows a quite nonlinear, frequently ‘switch-like’,
behavior and has, correspondingly, a rather skewed
distribution function. Consequently, PRC is a quantity
whose behavior and importance for ecosystems are not
so much determined by the evolution of its mean but
by the occurrence or non-occurrence of extreme val-
ues or, as for rain, the intermittency characteristics.
TAV and HPR are, on the other hand, quantities which
are mainly characterized by the evolution of their
means.

Both models were calibrated using the first 6000
dates, and validation was performed with the remain-
ing period, consisting of 3770 dates; in this way it was
guaranteed that no artificial skill was left in any of the
models.

We do not model TAV, PRC, and HPR directly. As
mentioned above, PRC is an example of a quantity that
is highly non-normally distributed. But since the pre-
dictor fields are fairly normal, the modeled PRC would
strongly deviate from its observed counterpart. There-
fore, it is recommended before any modeling that each
of the 3 quantities be normalized. Being rather impor-
tant, one might as well call this a model step in itself.
We do not go into the details of this procedure, espe-
cially regarding the treatment of boundaries; for this,
see Bürger (1996). We only mention that the procedure
is based upon the probit (probability integral transfor-
mation) theory, which, in a rather general sense, maps
a given random variable 1-1 to a variable which is nor-
mally distributed with mean 0 and standard deviation
1 [N(0,1) distribution]. We note that for boundary val-
ues, such as 0 for PRC, a threshold value is assigned to
the normalized variable such that any occurrence of
the boundary corresponds to a randomly chosen nor-
mal variate below (or above, for an upper bound) the
threshold. All seasonality is removed from the normal-
ized fields (it is contained in the monthly probit para-
meters). However, this does not mean that there is no
seasonality left in the normalized fields, as is shown
below. Nevertheless, in terms of simple correlations
there is practically no improvement if one models each
season separately.

In Fig. 1 we see the outcome of the modeling as a
scatter-plot of observed and modeled normalized val-
ues, together with a quadratic regression line indicat-
ing the slope and unresolved nonlinearities. Note that,
in 1-dimensional regression for normalized variables,
this slope equals the correlation. We note that for both
models the quadratic regression part is fairly small,
with the exception of PRC (see below). The most obvi-
ous feature is the small PRC correlation for both mod-

   L Bj j jg a g( ) = + ⋅

    
ƒ( ) = ( ) ⋅ ( )

=
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els (ρ ≈ 39% for BLP and 42% for RBF), indicating the
general difficulty of PRC downscaling. Consequently,
the modeled PRC amplitude is very low throughout, for
both models. The slope and correlation are much
higher for the other quantities, even for the linear
model, with ρ ≈ 72% for TAV and 66% for HPR; the
performance of RBF is 5 to 7% greater. For these quan-

tities, it can be concluded that model
performance, even on a daily basis, is
quite satisfactory, although extreme
peaks of TAV and HPR certainly cannot
be modeled. But as we have mentioned
before, this is less important in compari-
son to the evolution of mean values. A
shift in the climatological mean by about
20 to 30%, as is indicated by the correla-
tion of 70 to 80%, can have a dramatic
impact on many ecosystems. 

Are there specific scales in Fig. 1
where modeling is of different quality?
There are vague indications that both
models, but especially BLP, perform
slightly better for higher TAV values, as
the clouds are more scattered at the
negative end. For HPR, the negative
quadratic coefficient for BLP points to
some nonlinearities which cannot be
resolved by the linear model; BLP per-
formance is slightly better for negative
HPR anomalies. For the nonlinear
model, scatter and curvature are re-
duced correspondingly. The PRC situa-
tion is different. The visible curvature
for both models is caused by the follow-
ing: below the threshold value (which
depends on the month) the ordinate is
uncorrelated with the abscissa by con-
struction, hence the slope on that part
must be 0. This is a drawback of the
(extended) probit transformation when
applied to bounded quantities. It is pos-
sible to fix this, but this goes beyond the
current topic.

3.1. The ‘dry’ and ‘wet’ case

Let us now take a short look at precip-
itation back in the original domain, by
rescaling everything via the inverse pro-
bit. Precipitation is a typical variable
that is usefully grouped into the single
parts occurrence and amount, depend-
ing on a certain threshold value (which
is usually taken as 0, as above). Model-

ing the amount is without much value for the models in
question since the small amplitudes practically never
create amounts larger than 4 to 5 mm. Occurrence, on
the other hand, is conveniently measured by giving the
rate of correct forecasts (for the validation period). This
is 65% for BLP and 70% for RBF. Without any refer-
ence to the balance between observed dry and wet
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Fig. 1. Scatter plot of modeled and observed normalized variables, together
with a regression line. Model performance is generally much better for TAV
(upper panels) and HPR (lower panels), with a correlation of 72 and 66%,
respectively, for the linear model BLP (left panel) and 79 and 71%, respec-
tively, for the neural network model RBF (right panel). There are some indi-
cations that the linear modeling of positive anomalies is better. PRC modeling
is much worse than for the other parameters, with correlations of 39% (BLP) 

and 42% (RBF)
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days, these numbers are of little value. If, for example,
70% of all observed days are dry, the trivial forecast
‘dry’ (or, if it rains more, ‘wet’) always scores 70%. A
measure which respects this observed balance is the
so-called true-skill statistic, TSS:

TSS =  q0 + q1 – 1 (13)

where q0 and q1 denote the rate of correct dry (0) and
wet (1) forecasts, respectively; it is convenient to give
TSS in percentages. Note that –100% ≤ TSS ≤ 100%,
with –100%, 0%, and +100% corresponding to a sys-
tematically false forecast, the trivial forecast men-
tioned above, and a truly perfect forecast, respectively.
In our case, above, we find 33% for BLP and 40% for
RBF. This is a considerable improvement achieved by
the nonlinear model.

It is the existence of this threshold or, in other words,
the natural partitioning into 2 separate states (a wet
and a dry state) which allows a much more detailed
inspection of model performance. To understand this,
let us go back to the forcing fields in the multi-dimen-
sional phase-space. The main idea is the following: we
are guided by the idea that variations in model perfor-
mance do not occur uniformly over the whole state
space but, rather, are caused by specific physical pro-
cesses which are captured differently by BLP and RBF
and which, therefore, should be identifiable in the
global forcing fields. Mathematically, this comes down
to the following problem: we are given a set of 3770
points in the 39-dimensional phase-space, each of
which bears 3 labels, consisting of the observed value
of PRC together with its BLP and RBF version. Now, if
we are able to formulate conditions on the point-labels
which partition the phase-space into well distin-
guished regions, then these regions tell us about the
physical fields responsible for the different model per-
formances. The following point-labeling is suggested:

Case 1 (w): PRC > 0 and 0 < BLP
Case 2 (d): PRC > 0 and 0 = BLP and 0 < RBF
Case 3: everything else

The ‘w ’ and ‘d ’ stand for (1) BLP-wet and (2) BLP-dry +
RBF-wet conditions, respectively. Case d, for example,
simply means that a rainy day is correctly predicted by
the nonlinear model, while the linear one misses it. For
our question, only the first 2 cases are of interest; in
particular we will have to clarify what exactly is meant
by ‘well-distinguished regions’ of the phase space.
Each of the above cases can be viewed as a point cloud
of a specific color (= label), and the question is: can we
identify, in a statistically safe manner, each single
cloud, or do we just see a mixed color? From simple 2-
dimensional projections of the point clouds (not shown)
it is not obvious at all that there exists a significant par-
tition of phase space, since it is very likely that the w

and d clouds are quite mingled. Similarly to the proce-
dure for cluster analysis, we have to measure the ‘dis-
tance’ of 2 clouds and determine if this distance is large
enough. A common distance measure is the so-called
Mahalanobis distance (Morrison 1967). This is defined
to be the following weighted difference between the
mean of the w cloud and d cloud.

d2 =  (d -- – w --) C–1 (d -- – w --)T (14)

where the bar indicates the mean of the respective
cloud, and C denotes the pooled covariance of both
populations (clouds). We calculated this distance for
each season separately, the result of which is shown in
Fig. 2 as a vertical black bar.

3.2. Significance of the dry-wet clustering

The question is: is the magnitude of d2 significantly
larger than a d2 that comes from a random partition,
i.e. one that distributes the given set of w and d labels
randomly among the points of the cloud? If the clouds
are multivariate, normally distributed clouds, one
could use the well-known test statistic T 2 = n1n2/(n1 +
n2)d2, which is Fisher F distributed. If, however, the
condition of normality is only approximately satisfied
(which is the case with all empirically given samples)
the statistic is of less value, especially when the phase-
space is large as in our case of 39 dimensions. There-
fore, we refrained from using that test. Rather, by run-
ning a whole series of random tests we created our
own test statistic, in the following manner: starting
from the original point cloud with the w and d labels,
we now shuffle the labels randomly and each time cal-
culate the corresponding Mahalanobis distance, d2.
This is done a sufficient number of times (here: 1000)
so that the resulting probability distribution of d2 can
be considered reliable and can be compared to the
original outcome; the result is shown in Fig. 2 for the
4 seasons. The black bar, i.e. the original d2 value, is
located to the far right for all seasons but fall (SON).
Particularly for winter, with an error level ε approach-
ing 0%, it is clear that the corresponding partition of
the point cloud is statistically safe; the error level for
summer is slightly larger (ε ≈ 2%). For completeness
we mention here that, by reversing the role of BLP and
RBF in Cases 1 and 2 above, no significant results of
this kind can be obtained. Note that the distribution of
d2 exhibits the typical characteristics of the F distribu-
tion. The difference pattern itself, i.e. d --–w --, as recon-
structed for the z50 and T85 fields, is shown in Fig. 3 for
the 2 seasons. For winter, the most prominent feature is
a broad positive z50 and T85 anomaly in the northern
half of the analysis region; below, exactly at the Pots-
dam site, there is a cell of negative anomalies. In mete-
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orological terms, this means the following: while in the
winter season the whole northern part of Europe lies
under high pressure and warmer air masses, the Pots-
dam area is encircled by a body of cold and, probably,
by wet air which creates a foggy environment with
small amounts of rain that is missed by the BLP model.
For summer, hot air to the east of Potsdam and a cold
front approaching from the southwest leads to ex-
tended convective activity in that area. The spring sit-
uation (MAM) is quite similar.

To validate our findings, we examine the local parti-
tion of phase-space. For each season, 2 separate histo-
grams of rainfall amounts recorded at Potsdam are
shown in Fig. 4, representing the w and the d case.
Since there are many more w cases, relative scaling is
used to improve visibility, i.e. each histogram adds up
to a total of 1. No striking differences are observed for
any season. However, we see that for winter, the d dis-
tribution is a bit more skewed toward smaller PRC val-
ues, as compared to case w. That means that small PRC
amounts are relatively poorly modeled by BLP. For
summer (and even more for spring), we find indica-
tions of the convective-storm picture: larger amounts
of rainfall are missed by the linear model. In fall, where
we see a number of strong w but no d events, the same
picture appears, but since the w -d clustering is not

significant in the forcing domain we refrain from draw-
ing any conclusions. As an example of the above, let us
take a closer look at the sequence of events of 30
August through 2 September 1977, shown in Fig. 5
(which is not exactly, we know, the calendrical sum-
mer). We note that 1 September, with 35.7 mm, showed
the 12th largest amount of rain of the entire period of
record. A very strong highpressure system slowly
moves from the Western Baltic eastward towards Fin-
land, with a kernel anomaly of 150 m. In the west, off
the coast of France, low pressure approaches, but is
driven backwards as the high-pressure cell is too
strong. On 1 September, the heating is maximal (TAV
at 22°C), yielding the heavy rainfall event in the Pots-
dam area. The RBF model captures a small amount of
it, 1.3 mm (which is still in the high range of RBF), but
BLP misses it completely. After this the situation
relaxes for Potsdam.

One might object that the RBF results might have no
influence at all on the partitioning of phase-space. But
it turns out that, in fact, the patterns become quite dif-
ferent when we merely consider, for example, the
cases BLP = 0 and BLP > 0. Nevertheless, that parti-
tioning is significant as well.

This example throws some light on the linear model
BLP and one of its caveats: if BLP were able to produce
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Fig. 2. Distribution of the Mahalanobis distance, d2, of 2 point clouds that are randomly chosen, together with the value corre-
sponding to the actual choice as determined through the BLP-dry (d) and BLP-wet days (w) (vertical black bars). The value is 

significantly non-random at the 5% level for all seasons except fall. For further details see text



Clim Res 10: 83–93, 1998

rainfall for this specific pattern, the opposite situation
— that is the one with reversed signs — will inevitably
show less or no rain. Yet that situation would be a
northwesterly weather regime, which has a well-
known strong tendency toward wet conditions for cen-
tral Europe that would outweigh the pattern of 1 Sep-
tember. While the nonlinear model, RBF, captures this
by just adding the circulation pattern to its set of clus-
ters, nothing similar is possible for the linear model: as
mentioned in Section 2, linear models are restricted to
dealing with a single pattern only.

Summarizing, we might say that, while the nonlinear
model does not produce significantly larger amounts of
rain than the linear model—and these are much too
low—it seems to have a greater sensitivity for the
occurrence of rain. And, strangely enough, the combi-
nation ‘RBF-wet’ and ‘BLP-dry’ seems to occur prefer-
ably on specific days: days with little precipitation,

probably snow, in winter and heavy rainfall events in
spring and summer.

4. CONCLUSIONS

In an overall effort to improve the modeling of ex-
treme events for downscaling purposes, this study was
meant to deepen our understanding of various obsta-
cles. We have focused on the improvement that nonlin-
ear methods yield in comparison to linear ones. As this
is a more theoretical undertaking, we have kept the 2
participating models as simple as possible; each one of
them can certainly be improved. Using daily values of
3 crucial meteorological quantities, mean temperature,
TAV, precipitation, PRC, and vapor pressure, HPR, the
linear model, which is based on the best linear predic-
tor, BLP, is compared to the neural network that uses
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Fig. 3. (a) Difference pattern for winter between the 2 clusters of forcing fields for PRC modeling (see text); ‘STP’ and ‘GPH’ cor-
respond to T85 and z50, respectively. Positive STP anomalies dominate the entire area, with the exception of 2 negative cells in the
Central Northern Atlantic and over Central Europe. The pressure field shows a large dipole with a positive cell over southern
Norway and a negative cell off the coast of Spain. This pattern represents a typical cold weather type associated with small
amounts of precipitation in the form of snow. (b) Same as (a), but for summer. Anomalously hot conditions over Poland and an 

approaching disturbance from the southwest favor convective activity over the area of interest, with heavy showers

a b
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radial basis functions, RBF. The comparison is done in
a normalized space since precipitation, in particular, is
a highly non-normal quantity while the global predic-
tor variables are fairly normal. The seasonal cycle is
incorporated only in the normalization, which itself is
based upon a generalization of the probit transforma-
tion. The models themselves do not contain any exter-
nal seasonal parameters.

Since the RBF model is more general than the BLP
model, it can only improve the overall performance.
This is verified in the context of our study through the
most simple model-observation correlations, all of
which are slightly higher for the RBF. This has the con-
sequence that the modeled variability is larger for this
model, but it is still too small to produce realistic
extreme events. Although there were some indications
that the models are sensitive to different scales, this
claim cannot be made consistently and reliably.

For the most crucial variable, precipitation, modeling
is very poor for both models. In the normalized space,
one finds a correlation of about 39% for BLP and 42%
for RBF. Hence, on this basis, there is no essential dif-
ference between the linear and nonlinear approaches.
However, by going back to the original forcing fields
and local quantities and systematically tracing back
the model errors, one finds surprisingly clear differ-
ences between the 2 models. As it turns out, these dif-

ferences are statistically significant for each individual
season except fall. In summer, for example, heavy rain-
fall events which mainly occur during convective
storms and which are predominantly nonlinear are
often detected by the nonlinear model RBF, while the
linear model, BLP, misses them completely. Neverthe-
less, once detected, the modeling of the shower’s rain-
fall amount is still very poor for the RBF model, rarely
reaching more than a few millimeters. This renders the
model and all related models—in its current form—
basically useless for hydrological impact studies which
are based on a short time resolution. On the other
hand, the RBF performance is very likely to be close to
the theoretical limit of all deterministic models, i.e.
models that simulate complex dynamical processes by
using a few parameters fitted to observations; such
models suffer from correlations between the acting
fields that are too low, and these models are inherently
unable to produce sufficient variability. This can only
be remedied by incorporating greater regional detail
about the state of the atmosphere, such as humidity
and turbulence, into the models.

We do not close without a more optimistic conclusion
that focuses on 2 things which are related. First, even if
the intensification of amplitudes is small it has a
greater influence, especially in the long run, for which
even a small climate trend can have considerable con-
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Fig. 4. Histogram of the d and w days, for each season, in relative units (each adding up to 1). For winter, d days show smaller
amounts compared to w days. In contrast, any other season shows relatively large amounts for d days. This indicates that BLP is 

inherently unable to model heavy rainfall events
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sequences. The second optimistic aspect applies to
quantities whose appearance can be categorized by
occurrence and amount, such as precipitation as in our
example. We found that the nonlinear model mainly
improves the occurrence prediction. Moreover, the
above partitioning of the phase-space can be used as
an additional forecasting and downscaling scheme; for
spring and summer in particular, it should have a cer-
tain skill for predicting heavy rainfall events.

Since the performance of deterministic regression
models is hopeless regarding the magnitude of extreme
events, one has to rely on analogue or stochastic meth-
ods. As for the latter, the phenomenon of extreme events
is best described by skewed distributions. In our opinion,
the probit transformation represents the most general
method of dealing with such distributions, and it usually
needs no more than 2 or 3 parameters to describe the
probit mathematically. However, the transformation de-
pends very heavily on those parameters, and only small
changes in them can have a huge impact, easily turning
an event of 100 mm into one of 200 mm. Hence, for safe
estimation one needs a considerable empirical basis. Un-
fortunately, under climate change, exactly those para-
meters are affected, so that a local assessment with re-
spect to extreme events is a highly risky undertaking.
This is the problem of all currently applied downscaling
schemes, mentioned in the introduction, which utilize
stochastic elements. Analogue schemes are not in dan-
ger of producing unrealistic events as they simply re-
arrange events that have happened already. There is,
however, no guarantee that climatic change happens
this way and does not bring about new and unforeseen
scenarios. The best future downscaling approach might
lie somewhere between the more ‘conservative’, ana-
logue methods and the more ‘progressive’ schemes
which employ stochastic elements.
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Fig. 5. Illustration of a typical d day, 31 August 1977 (data shown as yymmdd). The sequence 30 August through 2 September
depicts the development of a cold cyclone southwest of a strong high-pressure system over the Baltic, yielding warmer tempera-
tures. On 31 August, the heating at Potsdam is maximum, with a STP (= T85) anomaly of 5 to 6°C, and the cold front is at its 

closest. After this, both the front and the high-pressure cell retreat and the conditions in Potsdam return to normal
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