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ABSTRACT 

This paper describes the application of data farming tech-
niques (Brandstein and Horne 1998) to explore various as-
pects of coevolutionary dynamics (McKelvey 2002) in or-
ganization science.  Data farming is an iterative process 
using high-performance computing to execute and vary 
agent-based models, collect and explore statistical results, 
and integrate these results for the purposes of growing 
more data by virtue of generative analysis.  The tool of 
choice for creating these agent-based models is the Univer-
sity of Chicago's Social Science Research Computing’s 
(2004) REcursive Porous Agent Simulation Toolkit (Re-
Past).  The paper concludes with a brief description of Tiv-
nan’s (2004) Coevolutionary model of Boundary-spanning 
Agents and Strategic Networks (C-BASN), an extension of 
Hazy and Tivnan’s (2004) Model of Organization, Struc-
tural Emergence, and Sustainability (MOSES).  

1 DATA FARMING 

The following discussion provides a general overview of data 
farming.  For in-depth reviews of data farming, the reader 
should refer to Horne (2001) and Horne and Meyer (2004). 
Broadly defined, data farming is an iterative process using 
high-performance computing to execute and vary distilla-
tions, collect and explore statistical results, and integrate 
these results for the purposes of growing more data by virtue 
of generative analysis.  Figure 1 depicts the iterative process 
of data farming.    

To clarify this definition of data farming, two addi-
tional definitions are required.  Distillations are fast, ro-
bust, transparent simulations that use agent-based model-
ing to focus attention on specific aspects of a research 
problem.  Generative analysis consists of automated meth-
odologies to drive parameter and rule variations in the it-
erative data farming process. 

1.1 Motivation Behind Data Farming 

Brandstein and Horne (1998) describe the motivation for 
developing the data farming process.  Records of historical 
  

 

 

 
 
events are often rich in detail and fascinating to examine, 
but each is essentially only one data point on the landscape 
of possible outcomes.  Large, twentieth-century computer 
models are used by the analytic community to run specific 
scenarios with many details.  But they take many hours to 
set up for what again essentially amounts to one data point 
on the landscape of possible outcomes.  Thus, what if we 
want to take a look at questions of interest from the per-
spective of many data points?  Have not the recent ad-
vances in complexity theory shown that the insight gleaned 
from the analysis of large data sets can possibly differ sig-
nificantly from that of smaller samples of the same solu-
tion space?  The meta-technique of data farming provides a 
framework to perform the analyses of complexity theory. 

1.2 Designing Simulation Experiments 

At this point, the reader will likely be asking the question: 
“How can the techniques of data farming be efficiently and 
effectively applied?”  The answer: The orthogonal Latin-
Hypercube (OLH) design.  The OLH design provides an 
efficient alternative to the full factorial design (Cioppa and 

 

Figure 1: Data Farming Loop 
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Lucas 2004; Kleijnen, Sanchez, Lucas, and Cioppa Forth-
coming).  For example, a full factorial design with seven 
parameters (i.e., design factors) with at least 10 levels (e.g., 
10, 20, 30, …, 100) for each parameter generates at least 
107 or 10 million parametric combinations (i.e., design 
points).  In order to assume a normal distribution for the 
measured data, the Central Limit Theorem (Larsen and 
Marx 1986, Larson 1995) requires at least 30 independ-
ently seeded replications of the simulation for each design 
point.  Hence, the full factorial design requires at least 300 
million runs of the simulation!   
 However, an OLH design requires only 17 independ-
ent design points to comprehensively explore up to a 
seven-dimensional parameter space (i.e., no correlation be-
tween any of the parameters for each of the design points).  
Hence, the OLH design requires only 510 runs of the simu-
lation (i.e., 17 design points multiplied by 30 independ-
ently seeded replications of the simulation for each design 
point) – clearly an efficient and effective exploration of the 
parameter space. 

2 COEVOLUTIONARY DYNAMICS  

This section describes empirical and theoretical research to 
support the application of coevolutionary dynamics to or-
ganization science.  The support stems from the following 
logical progression: (a) organization science theorists have 
explored, and in many instances, acknowledged the applica-
bility of complexity theory to organization science research; 
(b) much of the acceptance for complexity science applica-
tions follows from the conceptualization of an organization 
as a Complex Adaptive System (CAS); (c) complexity sci-
ence offers a robust explanation of order in natural and so-
cial systems; (d) coevolutionary dynamics provide the 
mechanisms with the highest explanatory power for describ-
ing order-creation in social systems.  The discussion in this 
section supporting the assumption of coevolutionary dynam-
ics continues with an overview of the literature for each 
element of the preceding logical progression.                       

2.1 Complexity Applications  
to Organization Science 

As complexity theory extends the scientific frontiers in 
many other disciplines such as physics, chemistry, biology 
and other natural sciences; the concept of the applicability 
of complexity theory to organization science has recently 
generated much debate.  Specifically, many theorists (for 
example, Anderson (1999), Brown and Eisenhardt (1997), 
Carley and Prietula (1994), Gell-Mann (1994), Gersick 
(1991), Lissack (1999), Mainzer (1997), McKelvey (1997; 
1999b), Stacey (1995), and Thietart and Forgues (1995)) 
have argued convincingly in support of the applicability of 
complexity theory to organization science.  In addition to 
this support for the theoretical efficacy of complexity sci-
ence applications to organization science, other theorists 
(Carley 1997, Carley and Svoboda 1996, Dooley 1997, 
Kauffman and Macready 1995, Levinthal 1997, Levinthal 
and Warglien 1999, McKelvey 2002, Siggelkow 2001 and 
2002, Sorensen 1997) have detailed the non-linear adaptive 
capacity of organizations and the non-linear complexity of 
organizational dynamics (Dooley and Van de Ven 1999). 

2.2 An Organization as a CAS 

Central to the research exploring the non-linear adaptive 
capacity of organizations and the non-linear complexity of 
organizational dynamics lays the conceptualization of an 
organization as a Complex Adaptive System (CAS).  For 
simplicity in introducing the reader to this study, an earlier 
consideration of CAS (i.e., Chapter 1 – Complexity of Or-
ganizational Dynamics) described it as a system: (a) con-
sisting of many interacting components, (b) constituting 
more than the sum of these interacting components and (c) 
possessing some capacity to adapt to its external environ-
ment.  To facilitate a more comprehensive analysis, the 
subsequent discussion first describes Holland’s (1995) 
widely held definition of CAS in greater detail and then 
identifies the direct correlation between his definition and 
the organization science theories supporting this research.  

2.3 Holland’s Complex Adaptive System  

Holland (1995) describes a CAS according to what he re-
fers to as the “seven basics” - four properties and three 
mechanisms; when simultaneously occurring, this set of 
seven basics constitutes the necessary and sufficient condi-
tions of all CAS.  The four properties consist of (a) aggre-
gation, (b) nonlinearity, (c) flows, and (d) diversity.  The 
three mechanisms consist of (a) tagging, (b) internal mod-
els, and (c) building blocks.  More than their distinction as 
properties or mechanisms, Holland emphasizes the impor-
tance of the interrelations between the seven basics. 

Aggregation represents both the standard process in 
modeling of focusing on the salient issues and simplifying 
all other aspects of the system, as well as, the behavior of 
CAS: namely, the emergence of large-scale behaviors from 
the aggregate interactions of less complex agents.  Tagging, 
the mechanism for aggregation and boundary formation in 
CAS, facilitates selective interaction among agents which 
ultimately leads to hierarchical organization.  CAS possess 
nonlinear properties, in that agent interactions make the be-
haviors of the aggregate more complex than can be predicted 
by summing “typical” agent behavior (i.e., a linear assump-
tion would hold if system behavior was fully deducible from 
summing or averaging the behavior of the system’s compo-
nents).  Flows describe CAS as a network representation of 
processing nodes (i.e., agents) and connectors (i.e., possible 
interactions).  Two properties of economic flows are impor-
tant to all CAS: (a) a multiplicative effect – if an agent in-
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jects additional resources at a particular node and (b) a re-
cycling effect – the effect of cycles in the network, espe-
cially those that extend the utility of resources.   

Diversity describes the many different types of 
agents within a CAS.  Each type of agent is intended to 
fill a unique niche which is defined by the interactions 
centering on that focal agent.  Diversity also arises from 
the emergence of a new niche to be exploited by adapta-
tions of competing agents.  Agents that increase recycling 
flows discover and exploit new niches, which therefore 
enhances diversity and leads to perpetual novelty - the 
hallmark of all CAS. 

Another source of diversity within a CAS stems from 
the idiosyncrasy of agent’s internal models.  Virtually syn-
onymous with Gell-Mann’s (1994) “schema,” internal mod-
els provide the CAS with a mechanism for anticipation.  By 
eliminating details so that selected patterns are emphasized, 
internal models provide an agent with a mechanism with 
which it can detect and then “select patterns in the torrent of 
input which it receives and then convert those patterns into 
changes in its internal structure (Holland 1995, p. 31).” 

But an agent develops its internal model based only 
upon its unique experience in a “perpetually novel envi-
ronment (p. 34).”  Therefore, an agent reduces the com-
plexity of a given situation by searching for familiar ele-
ments that it is has learned through experience or by 
natural selection to be effective in similar situations.  Hol-
land refers to these familiar elements as building blocks 
and argues that “this use of building blocks to generate in-
ternal models is a pervasive feature of CAS (p. 37).”    

2.4 Complexity Science as  
Order Creation Science 

The research of the pioneers in complexity theory has led 
to the modern understanding of order as an emergent phe-
nomena stemming from complex, seemingly random 
events (Holland 1995, Kauffman 1993, Prigogine and 
Stengers 1984).  Building on the conceptualization of an 
organization as a CAS, several organization scientists 
(Mainzer 1997, McKelvey 2001 and Forthcoming, Stacey 
1993) have explored the emergence of order within as well 
as between organizations.  Most notably, McKelvey 
(2001b, p. 137) argues that complexity theory is “really or-
der-creation science” by first recounting the literary per-
spectives and definitions of order and then detailing the re-
cent scientific advances in understanding order and its root 
causes.  The discussion of complexity theory as order-
creation science continues with a brief summary of 
McKelvey’s (2001b and Forthcoming) analysis.   

Following in the Darwin-Wallace model (Darwin 1859) 
of natural selection and its explanation of speciation in the 
biological world, order first came to be understood as the 
emergence of differentiated entities (Durkheim  1893, 
Spencer 1898).  More than half of a century later, Ashby 
(1956) extends the understanding of order with his concept 
of requisite variety.   

Ashby (1956) does not define order as the emergence 
of entities but in terms of the connections between those 
entities.  He describes his “law of requisite variety” in 
terms of the connection between two entities (e.g., A and 
B).  Order exists between A and B, if and only if, the con-
nection between A and B is “conditioned” by a third en-
tity, C, which is external to the connection between A and 
B.  Therefore, an entity can only adapt effectively when 
the variety of its internal order matches the variety of its 
environmental constraints (Ashby 1956).  Of particular 
note, Ashby’s description of order as a function of envi-
ronmental context fits with Prigogine’s (1955) research 
and the work of other physicists to be described below.  

But as McKelvey (2001b and Forthcoming) high-
lights, Ashby (1956) describes the phenomenon of order 
but says nothing about what causes order to emerge.  
McKelvey (Forthcoming, p. 3) describes mature science, 
“Orthodoxy,” as being founded on the equilibrium princi-
ple at the core of the 1st Law of Thermodynamics.  The 1st 
Law states that energy itself cannot be created nor de-
stroyed; though its forms may change, the sum of all en-
ergy remains fixed (Chaisson 2001).  McKelvey 
(Forthcoming) asserts that since “normal science [or Or-
thodoxy] accepts order as a given in the universe…this 
leaves the thermodynamics of order translation as the de-
fining dynamic of science (p. 3).”  However, the Nobel-
Laureate, Ilya Prigogine, has shown that the 1st and 2nd 
Laws of Thermodynamics differ on the aspect of reversi-
bility (Prigogine 1955, Prigogine and Stengers 1984). 

Prigogine demonstrated that the 1st Law is time-
reversible (i.e., the Newtonian processes of classical physics 
are bi-directional and thus reversible), while also demon-
strating the irreversibility of the 2nd Law.  The 2nd Law states 
that any system not in a state of equilibrium will expend en-
ergy in an attempt to move toward equilibrium and this loss 
of energy is called entropy production (Bar-Yam 1997).  
Prigogine along with his colleagues (1989, 1984, 1997) ar-
gues that entropy production is an irreversible process.  The 
foundation of Prigogine’s argument rests on Eddington’s 
(1930) “arrow of time” - that nowhere in the Universe can 
we observe randomness dissipate into order; whereas, we 
frequently observe order dissipate into randomness. 

With Prigogine’s research at its core, McKelvey 
(Forthcoming) references several advances in physics, par-
ticularly thermodynamics, as well as biology that contrib-
ute meaningfully to our understanding of and support his 
assertion for Complexity Science as order-creation.  Table 
1 provides a brief overview of McKelvey’s (Forthcoming) 
assessment of the supporting, order-creation literature.   
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2.5 Coevolution as the Mechanism  
of Order-Creation 

As the concept of coevolution continues to draw more and 
more attention from organization scientists as evidenced by 
a dedicated issue in Organization Science (Lewin and Vol-
berda 1999), several leading researchers consider coevolu-
tion as a principal mechanism of order-creation in organ-
izational ecology (e.g., Baum and Singh (1994), Lewin and 
Volberda (1999), and McKelvey (1997, 1999a, 2002)).  
This discussion of coevolution as the mechanism for order-
creation continues with a description of the properties, 
types and damping mechanisms of coevolution.   

2.5.1 Essential Properties of Coevolution 

While arguing for coevolution as a unifying framework for 
research in strategy and organization science, Lewin and Vol-
berda (1999) list the essential properties of coevolution as: (a) 
multi-levelness / embeddedness, (b) multi-directional causal-
ity, (c) nonlinearity, (d) positive feedback, (e) path and history 
dependence.  A brief summary of these properties follows. 

McKelvey (1997, 1999a, 2002) asserts that coevolu-
tionary dynamics occur at multiple levels of analysis; 
within an organization (i.e., microcoevolution) and be-
tween organizations and their respective environments 
(i.e., macrocoevolution) which is similar to Granovetter’s 
(1985) notion of embeddedness.  McKelvey (2002, p. 3) 
asserts that an organization’s ability to macrocoevolve with 
its competitors depends on its microcoevolutionary proc-
esses.  An excellent example of this multi-level nature is 
March’s (1991) study of environmental turbulence and the 
corresponding adaptation at the levels of the organization 
and the organizational microstate. 

Because organizations coevolve with each other and 
with a perpetually altering environment (Holland 1995, 
Kauffman 1995, McKelvey 1997), the distinction between 
dependent and independent variables becomes problematic 
since variables are sensitive to endogenous effects (i.e., 
multi-directional causality).  Consistent with Holland’s 
(1995) description of the nonlinear properties of CAS, 
Lewin and Volberda (1999) describe the nonlinear proper-
ties of coevolution as producing counter-intuitive changes in 
one variable from presumably insignificant changes in an-
other variable.  Similar to Weick’s (1979) concept of enact-
ment, an organization influences its environment and is in-
fluenced by its environment; these recursive interactions and 
the resulting interdependency are summarized as positive 
feedback.  Unlike the population ecologists (e.g., Hannan 
and Freeman (1984)) who point to variations in the envi-
ronment, coevolutionary theorists (e.g., McKelvey 
(2002) and Lewin and Volberda (1999)) point to an ini-
tial heterogeneity between the organizations to explain 
the varying effectiveness of organizational adaptability 
(i.e., path dependence). 
2.5.2 Types of Coevolution 

After describing the similar properties of all coevolutionary 
processes, the discussion now briefly shifts to a description 
of the kinds of coevolutionary dynamics. Maruyama (1963) 
described four kinds; namely, (a) mutation rate and the envi-
ronment, (b) predator / prey, (c) supernormal, and (d) in-
breeding and population size.   McKelvey (2002) offers an-
other kind of coevolution: symbiotic. 

The coevolution of mutation rate and the environment 
addresses the interdependence between the rates of change 
of an organism and its environment.  Similarly, predator / 
prey coevolution describes the respective rates of change 
of competing populations.  Supernormal coevolution de-
scribes the “snowballing” (i.e., nonlinear) effect of a fa-
vored characteristic as a tag governing the interaction of 
agents within a population (e.g., McKelvey (2002) relates 
this to the propensity for good-looking, intelligent people 
to attract other good-looking, intelligent people and pro-
duce still more good-looking, intelligent people).  Inbreed-
ing within a small population rapidly leads to the isolation 
of the small population from other populations (i.e., dimin-
ished embeddedness and few, if any, structural holes); the 
more isolated the population, the more likely inbreeding 
will occur and lead to further differentiation.  Symbiotic 
coevolution describes the cooperative and mutually benefi-
cial interdependence of two dissimilar agents. 

3 OVERVIEW OF REPAST 

An agent based simulation is required to fully explore the 
coevolutionary dynamics described above.  The University 
of Chicago's Social Science Research Computing (2004) 
developed the  REcursive Porous Agent Simulation Toolkit 
(RePast) as a software framework for creating agent based 
simulations in JAVA.  The goal of RePast “is to move be-
yond the representation of agents as discrete, self-
contained entities in favor of a view of social actors as 
permeable, interleaved and mutually defining, with cascad-
ing and recombinant motives (Computing 2004).”  
 Borrowing much from other simulation toolkits such 
as SWARM (Group 2004) and ASCAPE (Institution 
2000), RePast essentially consists of a compilation (i.e., 
library) of computer programs (i.e., classes) that enable a 
researcher to create, run, display and collecting data from 
agent-based models.  Figure 2 demonstrates some of the 
features RePast (clockwise from the top right): namely, a 
toolbar for running RePast, a graphical user interface for 
manipulating the parameters of the model, some sample 
output data in the form of a histogram,  a display of the 
agents interacting on the model surface, and another output 
example in the form of a chart of time-series data.  

Researchers interested in agent-based modeling bene-
fit from RePast’s vibrant user-community (e.g., the devel-
opers at University of Chicago Social Science Research  
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Figure 2.  Screenshot of RePast (Computing 2004) 

 
Computing and fellow researchers) and the enhancements 
to the framework that the community develops.  In its ef-
forts to expand both the reach and the capabilities of Re-
Past, the RePast user-community continues to produce 
helpful RePast tutorials (e.g., (Murphy 2004)) to comple-
ment that of the RePast homepage. 

4 CURRENT MODELING EFFORTS 

At present, the author is using RePast to data farm over dif-
ferent aspects of coevolutionary dynamics between firms 
collaborating and competing within the same resource 
niche (Tivnan 2004).  This study extends the model of 
boundary-spanning activity of a single organization (Hazy 
and Tivnan 2003, Hazy and Tivnan 2004, Hazy, Tivnan, 
and Schwandt 2003) to a model that will permit the explo-
ration of the collaborative efforts of organizations in a 
competitive, coevolutionary context; namely, the emer-
gence of strategic networks.  This new model is called the 
Coevolutionary model of Boundary-spanning Agents and 
Strategic Networks (C-BASN; pronounced “Sea Basin”). 

The type of coevolution that C-BASN will explore is 
the coevolution of mutation rate and the environment.  All 
the more applicable in high-velocity environments 
(Eisenhardt 1989) and hypercompetitive contexts (D'Aveni 
1994), what an organization has learned (Schwandt and  
Marquardt 1999) and the rate at which it learns (McKelvey 
2002) offer the organization its best source of sustainable, 
competitive advantage (McKelvey 2001a).  That is, an or-
ganization must learn faster and more effectively than its 
competitors to establish an initial competitive advantage, 
and then that same organization must continue to learn faster 
still if it is to sustain its competitive advantage.  This dy-
namic is known as an “arms race” or the “Red Queen ef-
fect”, adopted from Carroll’s (1946) Red Queen when she 
says to Alice, “[i]t takes all the running you can do, to keep 
in the same place.” 

To take advantage of the strengths of RePast and its abil-
ity to data farm over coevolutionary dynamics such as the 
previously mentioned Red Queen effect, the author and a col-
league, Stephen Upton, have recently undertaken a modeling 
effort to simulate two opposing military forces (i.e., warring 
armies), each employing new tactics to counter those of its 
enemy (Holland, Michelsen, Powell, Upton, and Thompson 
1999).  This effort will employ the techniques of data farm-
ing over an OLH design of a RePast model to explore the  
predator / prey coevolutionary dynamics of this scenario.   
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