
AI/ML for Network Security: The Emperor has no Clothes
https://trusteeml.github.io/

Arthur S. Jacobs
UFRGS, Brazil

asjacobs@inf.ufrgs.br

Roman Beltiukov
UCSB, USA

rbeltiukov@ucsb.edu

Walter Willinger
NIKSUN Inc., USA

wwillinger@niksun.com

Ronaldo A. Ferreira
UFMS, Brazil

raf@facom.ufms.br

Arpit Gupta
UCSB, USA

arpitgupta@ucsb.edu

Lisandro Z. Granville
UFRGS, Brazil

granville@inf.ufrgs.br

ABSTRACT

Several recent research efforts have proposed Machine Learning

(ML)-based solutions that can detect complex patterns in network

traffic for a wide range of network security problems. However,

without understanding how these black-box models are making

their decisions, network operators are reluctant to trust and deploy

them in their production settings. One key reason for this reluctance

is that these models are prone to the problem of underspecification,

defined here as the failure to specify a model in adequate detail.

Not unique to the network security domain, this problem manifests

itself in ML models that exhibit unexpectedly poor behavior when

deployed in real-world settings and has prompted growing interest

in developing interpretable ML solutions (e.g., decision trees) for

łexplainingž to humans how a given black-box model makes its deci-

sions. However, synthesizing such explainable models that capture

a given black-box model’s decisions with high fidelity while also be-

ing practical (i.e., small enough in size for humans to comprehend)

is challenging.

In this paper, we focus on synthesizing high-fidelity and low-

complexity decision trees to help network operators determine if

their ML models suffer from the problem of underspecification. To

this end, we present Trustee, a framework that takes an existing

MLmodel and training dataset as input and generates a high-fidelity,

easy-to-interpret decision tree and associated trust report as out-

put. Using published ML models that are fully reproducible, we

show how practitioners can use Trustee to identify three common

instances of model underspecification; i.e., evidence of shortcut

learning, presence of spurious correlations, and vulnerability to

out-of-distribution samples.

CCS CONCEPTS

• Networks→ Network security; • Computing methodologies

→Machine learning; • Security and privacy;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA.

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3560609

ACM Reference Format:

Arthur S. Jacobs, Roman Beltiukov, Walter Willinger, Ronaldo A. Ferreira,

Arpit Gupta, and Lisandro Z. Granville. 2022. AI/ML for Network Secu-

rity: The Emperor has no Clothes. In Proceedings of the 2022 ACM SIGSAC

Conference on Computer and Communications Security (CCS ’22), Novem-

ber 7ś11, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3548606.3560609

KEYWORDS

Network Security; Artificial Intelligence; Machine Learning; Ex-

plainability; Interpretability; Trust;

1 INTRODUCTION

In the last few years, we have witnessed a growing tension in the

network-security community. Recent research has demonstrated

the benefits of Artificial Intelligence (AI) and Machine Learning

(ML) models over simpler rule-based heuristics in identifying com-

plex network traffic patterns for a wide range of network security

problems (see recent survey articles such as [9, 46, 55, 62]). At

the same time, we have seen reluctance among network security

researchers and practitioners when it comes to adopting these ML-

based research artifacts in production settings (e.g., see [2, 4, 58]).

The black-box nature of most of these proposed solutions is the

primary reason for this cautionary attitude and overall hesitance.

More concretely, the inability to explain how and why these models

make their decisions renders them a hard sell compared to existing

simpler but typically less effective rule-based approaches.

This tension is not unique to network security problems but ap-

plies more generally to any learning models, especially when their

decision-making can have serious societal implications (e.g., health-

care, credit rating, job applications, and criminal justice system).

At the same time, this basic tension has also driven recent efforts

to łcrack openž the black-box learning models, explaining why

and how they make their decisions (e.g., łinterpretable MLž [51],

łexplainable AI (XAI)ž [59], and łtrustworthy AIž [12]). However,

to ensure that these efforts are of practical use in particular applica-

tion domains of AI/ML such as network security is challenging and

requires further qualifying notions such as (model) interpretability

or trust (in a model) [40] and also demands solving a number of

fundamental research problems in these new areas of AI/ML.

In this paper, we first provide such a qualification that is moti-

vated by the needs of the field of network security as application

domain of AI/ML and equates łan end user having trust in an AI/ML

modelž with łan end user being comfortable with relinquishing con-

trol to the modelž [40]. Given this specific definition of what it

1537

https://trusteeml.github.io/
https://doi.org/10.1145/3548606.3560609
https://doi.org/10.1145/3548606.3560609

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Arthur S. Jacobs et al.

Select Model

Collect Data

x y

Train

x y

Test

Model Evaluation

Explain Analyze

High-fidelity &
Low-complexity

DT Extraction

Trust Report
Generation

Model design
and training

Evaluate model
with test data

TRUSTEE

Figure 1: Trustee overview.

means for an AI/ML model to engender trust, we next address a

number of fundamental research challenges related to the problem

of quantitatively deciding when an end user is comfortable with

relinquishing control to a given AI/ML model. To this end, a partic-

ular focus of this paper is on determining whether or not a given

AI/ML model suffers from the problem of underspecification [17].

Here, the problem of underspecification in modern AI/ML refers

to determining whether the success of a trained model (e.g., high

accuracy) is indeed due to its innate ability to encode some essential

structure of the underlying system or data or is simply the result

of some inductive biases that the trained model happens to en-

code. In practice, inductive biases typically manifest themselves in

instances of shortcut learning strategies [28], signs of spurious cor-

relations [3], or an inherent inability for out-of-distribution (o.o.d.)

generalizations (i.e., test data distribution is different from training

data distribution). The implication of such inductive biases is that

their presence in trained AI/ML models prevents these models from

being credible or trustworthy; that is, generalize as expected in

deployment scenarios. Thus, for establishing the specific type of

trust in an ML model considered in this paper, it is critical to be

able to identify these inductive biases, and this paper takes a first

step towards achieving this ambitious goal.

To detect underspecification issues in learning models for net-

work security problems, we develop Trustee (TRUSt-oriented

decision TreE Extraction). This framework provides a means for

carefully inspecting black-box learning models for the presence

of inductive biases. Figure 1 shows how Trustee augments the

traditional ML pipeline to examine the trustworthiness of a given

ML model. Specifically developed with the application domain of

network security in mind, Trustee takes a given black-box model

and the dataset that has been used to train that model as input and

outputs a łwhite-boxž model in the form of a high-quality decision

tree (DT) explanation.

Importantly, in synthesizing this DT, Trustee’s focus is first

and foremost on ensuring its practical use which, in turn, requires

leveraging domain-specific observations to strike a balance between

model fidelity (i.e., accuracy of the DT with respect to the black-

box model),model complexity, andmodel stability. Here, complexity

refers to both the size of the DT and to aspects of the tree’s branches.

In particular, when viewing the tree’s branches as decision rules,

we are concerned with their explicitness and intelligibility; that is,

we require these rules to be readily recognizable by domain experts

and be largely in agreement with the experts’ domain knowledge.

Model stability, on the other hand, is concernedwith the correctness,

coverage and stability of the decision rules; that is, we require

them to correctly describe how the given black-box model makes a

significant number of its decisions and also want them to be largely

insensitive to the particular data samples that Trustee used in

the process of selecting its final DT explanation. We achieve this

insensitivity or stability by implementing a heuristic method that

selects from among a number of different candidate DTs the one

that has the highest mean agreement. Here, the agreement between

two different DTs is a measure of how often the two DTs will make

the same decision for the same input data [30, 60]. In practical terms,

implementing this heuristic reduces the likelihood that Trustee

outputs a misleading DT explanation.

Trustee also outputs a trust report associated with the DT ex-

planation, which operators can consult to determine whether there

is evidence that the given black-box model suffers from the problem

of underspecification. If such evidence is found, the information

provided in the trust report can be used to identify components of

the traditional ML pipeline (e.g., training data and model selection)

that need to be modified in an effort to improve upon an ML model

that Trustee has found to be untrustworthy.

While our work contributes to the rapidly growing ML literature

on model explainability/interpretability and is inspired by ongoing

developments in this area, our efforts and objectives differ

from existing approaches in a number of significant ways. For

one, given the inherent complexity of learning problems for

networking, existing approaches for replacing black-box models

with łwhite-boxž models that are inherently explainable in the first

place (e.g., decisions trees) are in general impractical. Moreover,

local interpretability methods [31, 48, 53] are not suitable for

examining the various instances of the underspecification problem.

At the same time, although our effort is motivated by prior studies

that focus on global interpretability [6, 7, 37], these works are

either only applicable to a specific class of learning models (e.g.,

reinforcement learning) or suffer from poor fidelity.

Through various case studies, we illustrate in Section 7 how op-

erators can use Trustee’s DTs and associated trust reports to detect

the presence of inductive biases. More specifically, we use published

ML models that are reproducible (i.e., code base and datasets are

publicly available) to show how network operators can use the

information provided by Trustee to detect instances of shortcut

learning strategies, obtain evidence of overfitting and/or whether

the model relies on spurious correlations to make its decisions, or

determine the model’s inability to generalize to out-of-distribution

data.

2 BACKGROUND AND RELATEDWORK

The application domain of AI/ML considered in this paper is the

area of network security. In this section, we first discuss the unique

challenges that this area poses for utilizing the latest advances in

AI/ML. In particular, we focus on important recent AI/ML concepts

such as łinterpretable MLž and łexplainable AIž and discuss their

relevance for our work.

2.1 Challenges in ML for Network Security

Beyond the already-mentioned trust issue, there are a number of

other reasons why the area of network security is a particularly

challenging application domain for AI/ML. Networking-related

datasets in general and cybersecurity-specific datasets in particular

typically contain information about what is being communicated

1538

AI/ML for Network Security: The Emperor has no Clothes CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

over a network (e.g., packet-level traffic traces) or provide insight

into how networks enable such information exchanges. As such,

the datasets often raise serious end user-specific privacy concerns

or reveal provider-specific details that many companies consider to

be proprietary in nature and are therefore unwilling to share. The

result is a general paucity of publicly available datasets. Moreover,

the datasets that are publicly available generally lack the complexity

of real-world settings, either because they have been synthetically

generated, have been obtained from small-scale testbed environ-

ments, or have been anonymized to the point where their general

utility has been severely curtailed.

The scarcity of carefully labeled data poses an even bigger prob-

lem. Networking or cybersecurity datasets do not come in the form

of images that humans can recognize but typically consist of se-

mantically rich content, and unpacking that content and properly

labeling it often requires substantial domain knowledge (e.g., net-

work architecture, protocols, and standards). This need for domain

knowledge rules out labeling approaches that have been used suc-

cessfully in other domains and include crowdsourcing (e.g., for

labeling images that are part of open-source databases such as Ima-

geNet [18]) or outsourcing (e.g., for labeling datasets that have been

curated and open-sourced by commercial self-driving car compa-

nies for the benefit of researchers [14, 15]).

2.2 Interpretable ML and Explainable AI

As the scientific community continues to develop sophisticated

AI/ML-based tools for high stakes decision-making throughout

society, there has been a growing awareness about their actual or

potential misuses and negative implications. As a result, calls for

starting to study łtrustworthy AIž, łresponsible AIž, łethical AIž and

related topics have intensified in recent years and have identified

model interpretability/explainability as a critically important but

also highly elusive concept for facilitating these studies [40].

Interpretable ML: Ex-ante Interpretability. The application

of modern AI/ML has resulted in a myriad of different learning

models that are łblack-boxž in nature; that is, provide no insight

in or understanding about why the black-box model makes certain

decisions (and not some other decisions) or what decision-making

process gives rise to these decisions. This development has resulted

in a recent explosion of work on łExplainable AI,ž where a second

(post-hoc) model is created to explain the originally obtained black-

box model [59]. This pursuit of explainable AI has been criticized

in the recent AI/ML literature and called łproblematicž (see, for

example [51]), mainly because such post-hoc explanations are often

not reliable and can be misleading [29, 37]. An alternative approach

that has been advocated in [51] argues for using learning mod-

els such as linear models or DTs that are inherently (i.e., ex-ante)

interpretable.

Unfortunately, because of the rich semantic content of the data

in the network security domain, uncovering the types of patterns

in the data that matter has become increasingly the responsibility

of trained łblack-boxž models rather than painstakingly-designed

inherently explainable models. However, instead of considering

this development as being łproblematic,ž we view it as an unique

opportunity to ultimately achieve the vision of interpretable ML, en-

suring that AI/ML models used for high stakes decision-making are

fully comprehensible by their end users and interested third parties.

Explainable AI: Post-hoc Interpretability. A commonly-

made argument in favor of using black-box models such as deep

neural networks or random forests is that they typically achieve

higher accuracy compared to their interpretable counterparts (e.g.,

DTs) and are therefore often more desirable when used in practice.

Although this argument is not universally shared (e.g., see [51]), it

nevertheless has been a driving force behind the recent efforts on

the topic of łexplainable AI.ž Also referred to XAI [59], explainable

AI describes efforts where the development of a trained black-box

model is followed up with additional activities that are intended

to help łexplainž the originally obtained black-box model. These

efforts can be divided into two disjoint categories, namely local

explainability and global explainability.

Methods for providing local explanations aim at illuminating

how a black-box model makes individual decisions (or decisions

in a local region near a particular data point) and include well-

known techniques such as LIME [48], SHAP [41], and LEMNA [31].

Since these methods limit their attention to only a subset of in-

dividual decisions, they are prone to providing misleading expla-

nations [40, 45, 64], depending on the subset of samples analyzed.

Related methods such as Partial Dependence Plots (PDP) [27] and

Accumulated Local Effect (ALE) plots [1] suffer from similar short-

comings. As such, these methods are of limited use when we seek

explanations that we can trust in the sense that they accurately

describe how a given black-box model makes decisions holistically.

In turn, methods that provide global explanations aim at

describing how a given black-box model makes its decisions łas

a wholež and not one data sample at a time. Extracted from the

black-box model in a second step (i.e., post-hoc), such explanations

typically take the form of an inherently interpretable model such

as a rule set or a DT [6, 38] and become the main vehicles for

studying the decision-making process of the original black-box

model and examining its properties. However, existing approaches

for such post-hoc extractions of global explanations are known

to produce at times too low of a fidelity to be useful in practice [6],

target only a very specific set of black-box models [7], be difficult

to reproduce [37, 38], and be possibly unreliable to the point of

being misleading [29, 37]. To achieve the level of explainability

required in high-stakes application domains such as network

security, we seek to generate high-fidelity global explanations that

are capable of accurately and faithfully describing a majority of

the decisions made by any given black-box model.

3 TRUSTEE OVERVIEW

Our focus in this paper is on post-hoc global model interpretability

for the application domain of network security problems. The idea

of using DTs for investigating global model interpretability for a

given black-box model is not novel. However, the set of require-

ments that we impose on the DT explanations is non-standard and

makes this a challenging problem, which motivated us to develop

Trustee.

For one, we require that our newDT extractionmethod be model-

agnostic; that is, applicable to any given black-box model. Second,

we also demand that the method produces high-fidelity DT expla-

nations; that is, DTs whose expected predictive performance is

similar to that of the black-box model. To quantify the fidelity of

1539

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Arthur S. Jacobs et al.

DTs, we rely on well-known metrics; for example, while for classi-

fication problems we measure fidelity using the F1-score between

classifications from the black-box model and the DT, for regression

problems, we measure fidelity in terms of the R-squared value be-

tween the predictions from the black-box and the DT. The third

requirement we impose is that the extraction method also results

in low-complexity DT explanations such that selected parts of the

DTs are intelligible and comprehensible (i.e., easy to understand by

domain experts) and accurately describe how the black-box model

makes most of its decisions. The fourth and last requirement con-

cerns a stability property that we want our new DT extraction

method to have. In particular, to reduce the chances that this output

provides a misleading DT explanation, we require that most of the

final DT’s decisions should be insensitive to the minute details of

how this final DT explanation has been determined.

For a DT that Trustee extracts from a given black-boxmodel and

satisfies this set of requirements, our next goal is to summarize the

pertinent aspects of this synthesized tree in a trust report. This trust

report is intended to help end users determine whether the given

black-box model suffers from the problem of underspecification

and cannot be trusted. To achieve this goal, we look for ways to

exploit the extracted DT explanation for the purpose of enabling the

end users to investigate the black-box model for likely indications

of the presence of inductive biases. In particular, in this paper

we consider the following three instances of inductive biases: (i)

instances of shortcut learning, (ii) signs of spurious correlations,

and (iii) problems with out-of-distribution samples.

Note that the presence of any of these inductive biases proves

that the given black-box model suffers from the underspecification

problem and cannot be trusted. At the same time, the absence of

these instances does not mean that the black-box model can be

trusted. In fact, while proving for an arbitrary black-box model

that the model does not suffer from the underspecification problem

is hard and remains an unsolved problem, showing that the model

does suffer from the underspecification problem only requires

demonstrating the presence of a single instance of an inductive

bias, and our design of Trustee is an initial effort that simplifies

demonstrating that certain biases are present in a given model.

After describing Trustee’s design in detail in Section 4, we

illustrate the end-to-end application of Trustee, including the use

of the extracted DT explanation and resulting trust report with

a number of illustrative examples in Section 7.

4 EXTRACTING DECISION TREES

The first step to realize the agenda detailed in Section 3 consists of

generating high-fidelity and inherently interpretable (i.e., łwhite-

boxž) counterparts for any given black-box model, regardless of

the learning method used by the black-box. To this end, we first

discuss existing approaches to this problem and their limitations.

We then present Trustee, an original and practical framework that

end users can apply to extract high-fidelity DT explanations from

an arbitrary black-box learning model.

4.1 Existing approaches

Global white-box explanations extracted from a black-box model

can often describe in detail the reasoning behind the model’s

behavior, provided they achieve a good enough fidelity. Earlier

works [6, 7, 16, 43] have proposed different approaches to extract-

ing DT explanations from black-box models, but these DTs typically

do not satisfy all the above-listed requirements and are therefore

ill-suited for end users who want to gauge their level of trust in a

given black-box model. We list a number of relevant prior efforts

and their pertinent features in Table 1. Note that some of these exist-

ing methods [7, 43] are not model-agnostic but have been designed

for specific learning paradigms and models, such as Reinforcement

Learning. As such, they typically rely on assumptions that are spe-

cific to the learning paradigm or model that their designs focus on.

On the other hand, prior efforts that do propose model-agnostic ap-

proaches [6, 16] tend to produce DT explanations that don’t satisfy

the fidelity requirement that we demand for realizing our objective

(see our technical report [34] for empirical evidence).

Table 1: Existing approaches to extract decision trees.

Method
Optimization

Objective

Stopping

Criterion

Model

Agnostic

High

Fidelity

Domain-specific

Pruning

Trepan [16] Fidelity Max Nodes ✓ - -

dtextract [6] Accuracy Max Nodes ✓ - -

VIPER [7] RL Reward Max Iterations - - -

Metis [43] RL Reward Max Iterations - - -

Trustee Fidelity Max Iterations ✓ ✓ ✓

Another important aspect of many of these existing efforts

is the stopping criterion they use to obtain their extracted DT

explanations. For example, prior efforts such as [6, 16] require

specifying the maximum size (i.e., number of nodes) that the

extracted DT can have and use this input parameter as stopping cri-

terion. Such approaches are convenient for obtaining explanations

that are guaranteed to be of a certain size, but this convenience

typically comes at the cost of low fidelity, implying that important

decision-making rules may be missing from the resulting DT. Other

methods such as [7] and [43] extract DT explanations in an iterative

fashion, require specifying the maximum number of iterations, and

use this user-specified input parameter as stopping criterion. Even

though these methods do not explicitly optimize for fidelity, they

typically produce high-fidelity explanations, but at the cost of high

complexity (i.e., the large size of the resulting explanations makes

interpreting cumbersome if not impractical). To overcome this

problem, the authors of [43] rely on a commonly-used technique

called Cost-Complexity Pruning (CCP) [27]. Similar to other

pruning methods [25], CCP succeeds in striking a balance between

the overall fidelity of the extracted DTs and their size. However,

from an interpretability perspective, CCP tends to be oblivious to

what role each decision-making rule plays as part of the resulting

DT explanations. Because of this observed trade-off between model

complexity and model interpretability, these methods are ill-suited

for our purpose where we strive to shed light on the decision-

making rules that are key to interpreting black-box models that

arise in the context of solving network security-related problems.

4.2 Model-Agnostic Decision Tree Extraction

Given the absence of readily available model-agnostic methods for

extracting high-fidelity, low-complexity, and stable DTs from black-

box ML models, we present in the following Trustee. Algorithm 1

describes the steps that Trustee takes to achieve its objective.

1540

AI/ML for Network Security: The Emperor has no Clothes CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

At a high level, these steps are executed as part of an outer loop

(lines 4-16) that is executed a total of 𝑆 times. Each iteration of this

outer loop involves an inner loop (Lines 5-12) that is performed 𝑁

times. Here, this inner loop is designed to generate different high-

fidelity DT explanations, one per iteration. It does so by applying a

teacher-student dynamic derived from imitation learning [33] that

uses 𝜋∗ as an oracle in conjunction with a carefully curated dataset

D’ to guide the training of a surrogate łwhite-boxž model in the

form of a DT that imitates the black-box’s decisions. In contrast,

the purpose of the outer loop is (i) to select from among the 𝑁 high-

fidelity DTs that have been generated in the process of executing

the inner loop the DT with the highest fidelity, (ii) to transform this

resulting DT into a high-fidelity and low-complexity DT by means

of a post-processing step that consists of applying a purposefully-

developed pruning method (see Section 5 for details), and (iii) to

consider all 𝑆 high-fidelity and low-complexity DTs that have been

generated in the process of executing the outer loop and output the

one that is the most stable in the sense of having the highest mean

agreement among these 𝑆 DTs.

Algorithm 1 takes as input a given black-box model 𝜋∗ that we

desire to explain and the original dataset D0 that was used to train

𝜋∗. Other parameters that the algorithm requires as input are the

number of iterations 𝑆 for the outer loop, the number of iterations

𝑁 for the inner loop, the number of samples𝑀 to select fromD0 to

use when training the surrogate DTs as part of each iteration of the

inner loop, and a parameter 𝑘 that is required by the tree pruning

method used in Line 14 and is discussed in more detail in Section

5 below. The algorithm starts by initializing the training dataset

D (Line 2) using the given black-box 𝜋∗ to predict the expected

outcomes from the given input data D0. It then initializes a set of

DTs (Line 3) from which, at the end (Line 17), the most stable DT

explanation will be selected and returned as output by Trustee

(Line 18).

To execute the inner loop as part of an iteration of the outer loop,

the steps that the algorithm performs during the 𝑗-th (1 ≤ 𝑗 ≤ 𝑁)

iteration of the inner loop consist of (i) selecting𝑀 training samples

uniformly at random from the optimal prediction dataset D (Line

6) to initialize a training datasetD ′; (ii) splitting the datasetD ′ for

training and testing (Line 7); (iii) training a DT student 𝜋𝑖 onD
′
𝑡𝑟𝑎𝑖𝑛

(Line 8) by using the well-known CARTmethod [11]; (iv) testing the

DT explanation usingD ′𝑡𝑒𝑠𝑡 , collecting the samples that the DT clas-

sifier wrongly classifies into the set D ′𝑒 (Line 9), and querying the

black-box model for the expected results forD ′𝑒 (Line 7) to produce

a correction dataset D𝑗 (Line 10); and (v) augmenting the optimal

dataset D ′ with this correction dataset (Line 11) to reinforce the

correct decisions during the subsequent iterations of the inner loop.

The steps that the algorithm executes during the 𝑖-th (1 ≤ 𝑖 ≤

𝑆) iteration of the outer loop are (i) perform 𝑁 iterations of the

inner loop (Lines 6-11), (ii) select from among the 𝑁 generated

different student models the one DT explanation with the highest

fidelity (Line 13), and (iii) apply a special pruning method to this

highest-fidelity DT to obtain a high-fidelity and low-complexity

DT explanation candidate. Finally, after 𝑆 iterations of this outer

loop, the algorithm selects from among the 𝑆 obtained different

high-fidelity and low-complexity DT explanation candidates the

one that has the highest mean agreement (i.e., is the most stable)

and returns this łbest of the bestž DT as final output of Trustee.

In the following, we provide a more detailed description of the

main design choices we made for Trustee and further evaluate

some of these design choices as part of an ablation study in Section 8.

Algorithm 1 Model agnostic decision tree explanation extraction.

1: procedure Trustee(

𝜋∗: Black-box model,

D0: Initial training dataset,

𝑀 : Number of samples to train the decision tree,

𝑁 : Number of iterations of inner loop,

𝑆 : Number of iterations of outer loop,

𝑘 : Parameter for Top-𝑘 Pruning),

2: Initialize dataset using black-box D ← 𝜋∗ (∀𝑥 ∈ D0)

3: Initialize stabilization set of DTs R ← ∅

4: for 𝑖 ← 1 . . . 𝑆 do

5: for 𝑗 ← 1 . . . 𝑁 do

6: Sample𝑀 training cases uniformly from D

D′ ← {(𝑥, 𝑦)
i.i.d.
∼ 𝑈 (D) }

7: Split sampled dataset for training and testing

D′𝑡𝑟𝑎𝑖𝑛,D
′
𝑡𝑒𝑠𝑡 ← TrainTestSplit(D′)

8: Train DT

𝜋 𝑗 ← TrainDecisionTree(D′𝑡𝑟𝑎𝑖𝑛)

9: Test and get samples DT misclassifies

D′𝑒 ← {∀(𝑥, 𝑦) ∈ D
′
𝑡𝑒𝑠𝑡 | 𝜋 𝑗 (𝑥) ≠ 𝜋∗ (𝑥)}

10: Get correct outcome from black-box

D𝑗 ← 𝜋∗ (∀𝑥 ∈ D′𝑒)

11: Augment dataset D ← D ∪ D𝑗

12: end for

13: Select tree with highest fidelity

𝜋𝑚𝑎𝑥 ← 𝜋 ∈ {𝜋1, ..., 𝜋𝑁 }

14: Prune selected tree 𝜋𝑖 ← TopKPrune(𝜋𝑚𝑎𝑥 , 𝑘)

15: Add tree to the stabilization set R ← R ∪ 𝜋𝑖
16: end for

17: Select tree with highest mean agreement with others

𝜋𝑎𝑔𝑟𝑒𝑒 ← 𝜋 ∈ R

18: return 𝜋𝑎𝑔𝑟𝑒𝑒
19: end procedure

Multiple iterations and uniform sub-sampling. The CART

algorithm that is traditionally used to train DT models relies on a

greedy approach for finding the best splits in the given training

dataset. This greedy approach ensures that for a given training

dataset, the resulting DT will be largely insensitive to the order

in which the input samples are processed. At the same time, this

greedy approach is prone to produce over-fitted DTs [10]. While

using this approach without further constraints (e.g., stopping crite-

rion) to train a DT results in perfect fidelity, being over-fitted makes

the resulting DT ill-suited for providing an intelligible explanation

for how the given black-box model makes its decisions. Instead, the

resulting DT explanation is largely an artifact of the method used

to generate the explanation. To overcome this problem, Trustee

implements an iterative approach to train multiple student models

on the expert model predictions. This iterative approach is imple-

mented as the inner loop in Algorithm 1, where at each iteration, we

select a fraction𝑀 of the input data by uniform sub-sampling from

the original training dataset (Lines 5-11). This approach differs from

existing efforts [7] in that by requiring the uniform sub-sampling

step at each iteration, we ensure that each DT explanation will

have only a limited view of the entire data, akin to a k-fold cross

1541

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Arthur S. Jacobs et al.

validation [52]. Incorporating this sub-sampling step allows us to

stress-test how different features and/or feature values contribute

to the decision-making of the black-box model and then select the

ones that best fit our overall objective. In practical terms, uniform

sub-sampling from the original training dataset assumes each sam-

ple has the same probability of being selected (i.e., balanced dataset).

While it is well known that using imbalanced datasets to train ML

models leads to biases towards the majority classes, the existing

ML literature provides several approaches that resolve this problem

through proper pre-processing of the original training data [36].

Dataset augmentation. An important design choice for

Trustee involves a dataset augmentation step (Line 9), where in

each iteration of the inner loop, the algorithm uses the optimal

predictions from the black-box model on the sampled dataset 𝐷 ′

to augment the original training dataset 𝐷 . The purpose of this

step is to over-correct for data samples for which the student DT

model makes wrong decisions. Leveraging results from the existing

literature on imitation learning [7, 50], performing this step can

not only increase the overall accuracy of the trained student model

but also reduce the overall number of leaf nodes in the resulting

tree.

Fidelity as objective function.When selecting from among

the different student models that Trustee extracts from a given

black-box model, it uses model fidelity as objective function and

picks the student model with the highest fidelity (Line 11). This

design choice implies that while the final DT explanation produced

by Trustee is not necessarily the most accurate DT for the given

classification problem, it is the DT that is the most faithful one in

terms of explaining how the black-box model makes its decisions.

Intuitively, it is by insisting on this high-fidelity aspect of the DTs

that Trustee considers that we are able to post-process the result-

ing DT explanation in ways that will help end users with varying

degrees of domain knowledge to gauge their trust in the given

black-box model. We provide evidence in support of this intuition

in Section 5 where we describe the type of post-processing that we

perform as part of Trustee so the final DT explanation it outputs

can serve as an inherently practical means for faithfully explaining

most of the given black-box model’s decisions.

Model stability. Since the inner loop of Algorithm 1 (Lines 6-11)

uses a different random subset of the entire dataset each time it

trains a DT explanation, it is possible for Trustee to output a mis-

leading explanation because of the particular subset of data that was

used to train that final DT explanation. To minimize the chances

for such scenarios to occur, we add an outer loop in Algorithm 1

(Lines 4-16). This addition results in the extraction of 𝑆 different

high-quality DT explanations from the given black-box model and

allows us to measure the agreement among these 𝑆 different DT

explanations. The agreement of DTs is a well-known measure of

how often a pair of DTs will make the same decisions for the same

input data and is a metric that has been used in previous studies

that concern assessing the stability of different DTs [30, 60]. Here,

to select the final DT explanation that is returned as output of

Trustee (Line 18), Line 17 in Algorithm 1 computes the pair-wise

agreement among all 𝑆 DT explanations and selects the one with

highest mean agreement. While implementing this outer loop pre-

vents Trustee from generating obviously misleading explanations

and gives domain experts confidence that they can trust the expla-

nations produced by Trustee’s output, rigorously proving that a

łwhite-boxž model extracted from a given black-box model does

not provide misleading explanations is an active area of current

research [37].

5 PROCESSING DECISION TREES

When using Trustee to synthesize a high-fidelity DT explanation

for a given black-box model, realizing the agenda outlined in Sec-

tion 3 requires performing an additional step in Algorithm 1 (Line

14) each time 𝑁 iterations of the inner loop have completed and

the algorithm has selected the highest-fidelity DT from among the

resulting 𝑁 different high-fidelity DT candidates (Line 13). The pur-

pose of this step is to transform this selected highest-fidelity DT into

a DT explanation for the given black-box model that is inherently

practical in the sense of having low complexity and at the same

time high fidelity. Here, low complexity of a DT explanation refers

to small trees but also, and more importantly, trees whose main

branches (i.e., decision rules ranked by number of input samples

they classify) explicitly, intelligibly, and accurately describe how

the black-box model makes most of its decision. Effectively, when

generating this low-complexity and high-fidelity DT explanation

as a result of this post-processing step, we tolerate some loss of

fidelity in return for achieving low complexity. In the following, we

examine different aspects of this fidelity-complexity trade-off and

introduce a simple tree pruning method that we call Top-𝑘 Pruning

and that comprises the required post-processing step. We design

this method for the explicit purpose of ensuring that any final DT

explanation that Trustee outputs can be readily processed and

understood by domain experts.

5.1 Decision Tree Pruning: Trade-offs

One of the main disadvantages of CART models is that CART’s

greedy algorithm is known to be prone to overfitting, often pro-

ducing high-fidelity DTs that can have thousands of nodes [25].

Clearly, such large trees are detrimental to our ultimate goal; that

is, presenting end users with inherently practical explanations that

they can readily inspect and understand with their available domain

knowledge. In designing Trustee, we similarly focused on first

obtaining largely unconstrained DT explanations with the best pos-

sible fidelity (Line 13). However, our reasoning for doing so is that

we explicitly require that any DT explanation that Trustee outputs

will have undergone a post-processing phase for the purpose of

making this final DT explanation intelligible and comprehensible

for end users. Our intuition behind obtaining a high-fidelity DT

explanation first and addressing its complexity later is that manip-

ulating a high-fidelity explanation with an eye towards reducing

its complexity is more likely to result in explanations that, while

experiencing some decrease in their fidelity, still will have higher

fidelity than their counterparts that had lower fidelity to start with.

A commonly-used approach to transforming large DTs into trees

of smaller sizes is pruning, and the existing literature describes

several pruning methods for DTs [25, 27], many of which are

highly effective in obtaining DTs that have small complexity, at

least as far as the sizes of the trees are concerned. Among the

most widely-used approaches to pruning are (i) pre-pruning which

limits either the total number of nodes or the overall depth of

1542

AI/ML for Network Security: The Emperor has no Clothes CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

the tree and (ii) post-pruning, such as Cost-Complexity Pruning

(CCP) [27]. On the one hand, by explicitly constraining either

the number of tree nodes or the tree’s depth, the pre-pruning

approaches allow for direct control over the size of the resulting

DT. However, this control over tree size typically comes at the cost

of reduced fidelity, mainly because the obtained small trees run the

risk of missing important decision branches as they prevent the

consideration of any further decision branches once the stopping

criterion is reached. On the other hand, using post-pruning such

as CCP often results in a better trade-off between fidelity and

size. However, this better trade-off comes at the cost of reduced

interpretability, mainly because CCP relies on a parameter that

is indirectly responsible for how many nodes of a tree get pruned.

Lack of a more direct control makes it difficult to decide which

tree branches to include in the pruned tree and which to exclude.

5.2 Top-𝑘 Pruning Method

Each branch in any of the highest-fidelity DTs that are selected in

the process of executing an iteration of Algorithm 1’s outer loop

(i.e., Line 13) represents a decision łrulež; that is, a combination of

individual decisions on features that results in labeling the input

data as belonging to a specific class (e.g.,malware vs. benign). Since

each of these łrulesž accounts for a certain percentage of all samples

in the input dataset, the different rules also contribute differently

to the overall model fidelity, and as the complexity of the DT grows

(i.e., larger number of branches), so does the DT’s fidelity.

The idea behind our Top-𝑘 Pruning method is that to detect signs

of the presence of inductive biases in a given black-box model, it

often suffices to carefully scrutinize only the top-𝑘 branches of an

extracted high-fidelity DT, ranked by the number of input samples a

branch classifies, especially in cases where the branches intelligibly

describe how the black-box makes most of its decisions. In partic-

ular, we argue that the łtailž end of the branches of an extracted

high-fidelity DT (i.e., branches that are not in the top-𝑘 for some

large value of 𝑘) often reflects specific decisions of the black-box

model that are overfitted to the training dataset and can, for all

practical purposes, be ignored when trying to explain the most

important decisions of the black-box model. However, since the

trade-offs between model fidelity and model complexity are typi-

cally model dependent,Top-𝑘 Pruning requires a parameter 𝑘 , and

specifying a value for 𝑘 gives end users complete control over how

many branches they want to consider in their attempt to under-

stand the trade-offs for a given model. Also note that even though

selecting smaller 𝑘 values can possibly result in poor fidelity, it does

not mean that we cannot draw potentially important conclusions

from the resulting explanation. For instance, one specific branch

can sometimes cover most samples of a particular class, resulting

in an apparent poor overall fidelity but still indicating a potential

underspecification issue related to that specific class. In short, the

user-specified parameter 𝑘 determines the complexity of the final

DT explanation that Trustee presents to the end user. If, at any

point, a user wants to inspect more branches of the tree, they can

simply choose a larger 𝑘 and rerun our algorithm. Note, however,

that due to its probabilistic nature, re-running our algorithm will

typically result in applying the Top-𝑘 Pruning method to a high-

fidelity DT explanation that differs from the original one. We leave

a careful investigation of this aspect of Trustee and its deeper

implications for detecting instances of inductive biases in a given

black-box model for future work.

5.3 Generating Trust Reports

We use the DT explanation that Trustee outputs as basis for popu-

lating a trust report that simplifies the task of end users of a given

black-box model to gauge their trust in that model. In the following,

we provide details on how we build this trust report so it helps

end users spot signs that point to possible instances of inductive

biases in the given black-box model. If upon further scrutiny of

these signs the presence of such an inductive bias is confirmed, it

would be proof for the end users that they cannot trust the given

model. To this end, we leverage the fact that any DT explanation

that Trustee outputs has been pruned with the help of our Top-𝑘

Pruning method and is therefore typically a small tree comprised

of 𝑘 branches. As part of the trust report, we present the details of

the generated small DT to the end users so they can examine these

details with an eye towards three common ways an underspecified

ML model can be recognized. More precisely, we intend the trust

report to be the main source of information that end users can con-

sult when checking for inductive biases that manifest themselves

as instances of shortcut learning strategies, through the presence

of spurious correlations, or in an inability to generalize for realistic

out-of-distribution data.

Importantly, by itself, the information contained in the trust

report is in general insufficient to diagnose underspecification

issues; instead, it points to potentially attention-worthy aspects

of the model or the data that require further attention. As such,

detecting and diagnosing underspecification issues is not a task

that is currently automated but requires domain knowledge and

great familiarity with the learning problem at hand. Consequently,

the effort demands a (human) domain expert to actively inspect and

check if the trust report-provided information points to possible

problems in the data or in the model, or indicates that there are

no problems with either the model or the data. In the following,

we briefly describe how the generated trust report helps with

checking for each of these three inductive biases.

Shortcut learning. Presenting a visual depiction of the small

DT explanation that forms the output of Trustee and annotating it

with pertinent information (e.g., features used, splitting conditions

or clauses present at the different nodes of the tree, number of input

samples associated with each branch segment) allows for quick

and intelligible perusing and inspection of the tree. In particular,

observing that less than a handful of input features are required to

accurately classify most of the input data (or a specific class of input

samples) is often a strong indication of a shortcut that the black-box

model learned and that can in general quickly be confirmed with

readily available domain knowledge. Note however that a small

number of features in the output of Trusteemay also indicate that

the learning problem for which the black-box was designed for in

the first place is in fact simple and may not require any ML at all.

Spurious correlations. A more involved investigation of the

information provided in the trust report concerns studying the

impact of removing the identified most important feature(s) from

the provided dataset. Upon removing such feature(s), we can then

retrain the black-box model using this altered dataset, proceed

1543

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Arthur S. Jacobs et al.

to use Trustee to extract a new DT explanation, and repeat this

process a number of different times. In general, the impact of

removing important features from the training dataset is that the

accuracy of the black-box model decreases. However, especially

in situations where the data include a large number of features, it

is often the case that the black-box model is able to find alternative

features so that removing the most important feature(s) leaves the

overall model accuracy essentially unchanged. We take this as a

strong indication of the presence of spurious correlations in the

data that can subsequently be easily confirmed via an analysis of

the original feature set.

Out-of-distribution samples. The annotated version of the

output of Trustee that is shown as part of the trust report can

also be used to uncover the individual features in each of the most

important tree branches, allowing us to plot the distribution of

the values that each of those features can take in the provided

dataset. Inspecting the resulting distributions affords end users an

opportunity to reason whether or not the observed distributions

of feature values are consistent with those encountered in data

collected from actual production settings. Such an inspection is

especially informative when the provided datasets consist of net-

work traffic measurements, where feature value distributions are

typically dictated by the dominant protocols in use, where artifacts

can often be easily identified (e.g., due to simple testbed experi-

mentations), and where generating meaningful out-of-distribution

samples is in general feasible because the expected behavior across

the full TCP/IP protocol stack is either known or well documented.

6 USING TRUSTEE IN PRACTICE

The following step-by-step instructions are intended to help end

users who want to use Trustee and associated trust reports to

check if a given trained ML model is credible or not by inspecting

it for possible underspecification issues.

Step 1 (Getting started): Select the ML model that needs to

be analyzed and the dataset of the input samples that is used to

examine the model’s decisions and decision-making process. The

only requirement for the selected ML model is that it provides a

predict interface that Trustee can use to query the model for

its prediction for a given input sample. As for the input dataset,

Trustee also accepts datasets that differ from the dataset used to

train the ML model, but we recommend using the training dataset

for a basic analysis of the selected ML model.

Step 2 (Selecting hyperparameters): Trustee requires select-

ing values for four hyperparameters: 𝑆 and 𝑁 (number of iterations

of the outer loop and inner loop in Algorithm 1, respectively),

𝑀 (sampling rate), and 𝑘 (number of branches to keep as part of

our Top-𝑘 Pruning method). Although highly model- and data-

dependent, we found that in the context of the different use cases

we analyzed, choosing 𝑆 = 10,𝑁 = 50,𝑀 = 30% of the input dataset,

and 𝑘 = 10 is a good starting point and allows for subsequent modi-

fications should the need arise. In general, we recommend selecting

suitable values for𝑀 , 𝑆 ,and 𝑁 by qualitatively comparing the learn-

ing curves [52, Section 18.3.3] and checking the DT fidelity between

training and test data for different hyperparameter values, but more

quantitative methods such as grid search [8] or Bayesian Optimiza-

tion [57] could be used as well. However, the number of samples

𝑀 is highly dependant on the size and type of the available data;

setting a sampling rate too high increases the risk of over-fitting,

setting the sampling rate too low increases the risk of under-fitting

and is likely to require a higher number 𝑆 of iterations of the outer

loop of Algorithm 1. In turn, selecting the parameter 𝑘 (i.e., number

of top-𝑘 branches) depends first and foremost on the amount of

information a domain expert is willing to analyze when presented

with Trustee’s output.

Step 3 (Detecting underspecification issues): Identifying the

presence and/or nature of underspecification issues in a model

currently requires manual inspection by a domain expert. The main

vehicle for performing this manual task is the DT explanation

produced by Trustee in conjunction with the information provided

in the corresponding trust report. Relying on basic trust report-

provided information can often point to potential biases, but it

typically invites further scrutiny at the level of individual decision

rules (i.e., tree branches) where, for example, certain deficiencies in

the training dataset (e.g., missing samples of real-world patterns or

behavior) can be identified.

Step 4 (Validating DT explanations): Validating a DT explana-

tion that forms the output of Trustee typically requires tinkering

with the ML model itself, with the feature engineering as part of the

model’s design, or with the provided dataset. Unfortunately, a gen-

eral inability to easily collect new or different data severely limits

the validation efforts that require modified data. In such cases, we

found that tampering with the original data (e.g., removing certain

features or artificially modifying packet headers in a trace) can

be a viable option but has to be done with care to ensure that the

tampered dataset consists of realistic input samples that the ML

model ought to be able to handle.

7 RESULTS

In this section, we illustrate with different use cases how Trustee

can be used in practice. Each use case concerns a recently published

black-box model that has been developed for a particular network

security-related problem and is accompanied by open-sourced arti-

facts (e.g., code base, dataset) that are required for reproducing the

reported findings and assessing whether the ML model is credible.

7.1 Summary

Table 2 summarizes the use cases we analyze. The first use case

(ğ7.2) illustrates how an apparently high-performant neural net-

work learns simple shortcuts to distinguish between two types of

traffic (VPN vs. Non-VPN). It highlights the importance of having

an in-depth understanding of the data used to train a model. The

second use case (ğ7.3) analyzes a black-box model trained using a

synthetic dataset and shows that the developed model is vulnerable

to o.o.d. samples. This use case cautions against an over-reliance

on synthetic datasets because they often include measurement

artifacts that commonly-considered black-box models exploit to

achieve high accuracy. The third use case (ğ7.4) analyzes a recent

approach that advocates using bit-level feature representations of

the input data instead of carefully engineered and semantically

meaningful features [32]. It shows that the indiscriminate use of

the high-dimensional feature spaces that result from such repre-

sentations can be problematic because it allows black-box models

to identify and exploit spurious correlations between features to

achieve high accuracy. The remaining use cases listed in Table 2 are

1544

AI/ML for Network Security: The Emperor has no Clothes CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

analyzed in detail in our technical report [34]. All relevant research

artifacts are publicly available at [35].

7.2 Detecting VPN vs. non-VPN Traffic

Problem setup. We consider the paper [61], which presents an

AI/ML-based framework for encrypted traffic classification that

integrates feature design, feature extraction, and feature selection.

It uses one-dimensional convolutional neural networks (1D-CNN)

to automatically learn the relationships between raw packets and

the output labels. For classifying VPN vs. Non-VPN traffic, the

authors train a 1D-CNN learning model with the PCAPs of the ISCX

VPN-nonVPN dataset [21], treating the packets of each session as

a 2D image of size 28x28. As a result, the proposed model views

the input traffic samples as discrete byte streams of fixed length

(i.e., 784 bytes) and treats each byte as a łfeature.ž The paper [61]

reports outstanding performance (i.e., 100% (99.9%) precision and

99.9% (100%) recall for Non-VPN (VPN) traffic). All AI/ML research

artifacts [61] and datasets [21] are available online, allowing full

reproducibility of the described models and reported findings.

Explanation. We first reproduced the black-box model (i.e., 1D-

CNN) and the results presented in [61, Table VI] for classifying

VPN vs. Non-VPN traffic. Next, we used Trustee to extract a DT

from the black-box 1D-CNN model (Figure 2) and note that due

to the small tree sizes, there was no need for Trustee to apply

the Top-𝑘 Pruning method. To assess how well the extracted DT

reproduces the black-box model, we used it to classify the test cases

from [61] and compared the results with the classification from

the black-box, measuring precision, recall, and F1. To our surprise,

this simple and small white-box model accurately reproduced all

black-box decisions, achieving a perfect F1-score.

FalseTrue B49 ≤ 17

VPNNon VPN Non VPN VPN

B47 ≤ 251B43 ≤ 1
33% 67%

66% 1%32%1%

Figure 2: Decision tree for 1D-CNNmodel. The percentage of

samples that follow each branch is presented above eachnode.

Line widths are proportional to the percentage of samples.

Correctly interpreting this extracted DT requires understanding

the structure of the input data. Because the DT makes a decision

based only on three bytes in the initial segment of each input sample

(i.e., bytes 𝐵49, 𝐵43, and 𝐵47), we analyzed samples of VPN and Non-

VPN test cases to uncover the łmeaningž of those bytes. Figure 3

shows a schematic view of the first 80 bytes of actual input data

used in [61]. We notice that each input sample consists of an initial

set of bytes representing PCAP metadata, Ethernet header, and IP

header. Importantly, none of these initial bytes say anything about

actual VPN or Non-VPN traffic.

Upon further scrutiny of the public dataset [21], we noticed that

Non-VPN traffic samples always contain Ethernet headers while

roughly 90% of the VPN traffic samples do not (Figure 3). Thus,

if 𝐵𝑘 denotes the byte in position 𝑘 , then for 𝑘 ≥ 40, there is a

misalignment in the features of the two types of traffic, resulting

in completely different semantics for the byte 𝑘 . In Figure 2, we see

Eth

Pcap

Meta

IPv4

20

0

60

40

0 9 10 19

161 178 195 212 0 2 0 4 0 0 0 0 0 0 0 0 0 0 255 255

0 0 0 1 85 65 69 0 5 80 24 0 0 0 64 0 0 64010

01 0 94 0 0 252 184 172 111 54 28 162 8 69 0 0 50 22865

0 0 1 17 185 131 202 87 224 0 0 252 201 86 20 235240 0 ...34

Destination MAC Address Source MAC Address

UDP

Pcap
Meta

IPv4

20

0

40

0 9 10 19

60

161 178 195 212 0 2 0 4 0 0 0 0 0 0 0 0 0 0 255 255

0 0 0 101 85 45 91 0 0 111 11 0 0 0 56 0 0 560101

869 0 0 56 199 213 64 0 64 17 35 254 10 0 10 69 171 36255

146 214 13 150 36 120 43 1 0 8 33 18 164 66 52 1670 9 ...0

Total Length Frag.Off. Protocol

Figure 3: First 80 bytes from the training dataset.

that the DT uses feature 𝐵49 as the splitting criterion at the root

node. Due to the feature misalignment, 𝐵49 is the IPv4 protocol field

in VPN samples or the fourth byte of the Ethernet source address

in Non-VPN samples. Because the VPN traffic in the dataset uses

either UDP (𝐵49 = 17) or TCP (𝐵49 = 6), the root node of the DT

splits almost all the samples by comparing the IP protocol field in

the VPN traffic with a random byte of the Ethernet addresses of

the machines used to generate the Non-VPN traffic trace, making

feature 𝐵49 a classical łshortcutž to classify the traffic. However, the

split is not perfect because, coincidentally, two machines used for

generating Non-VPN traces had the fourth byte of their Ethernet

source addresses less than or equal to 17 (54:9f:35:0d:e9:c2 and

2c:44:fd:02:16:ef).

The left branch of the DT classifies most samples as VPNs. How-

ever, to weed out a few remaining samples of Non-VPN traffic,

the DT uses feature 𝐵43. In this case, 𝐵43 corresponds to the To-

tal Length IP field in most VPN samples or the fourth byte of the

Ethernet destination address in Non-VPN samples. Once again, the

black-box model takes a shortcut to distinguish between the two

classes. A similar analysis applies to the right branch, which clas-

sifies most samples as Non-VPN and uses 𝐵47 (Fragment Offset in

Non-VPN vs. second byte of Ethernet source address in VPN) to

weed out the few VPN samples.

Validation. Even though the DT extracted by Trustee is a high-

fidelity proxy for the 1D-CNN black-box model, it is unreasonable

to expect that a simple 3-node structure encompasses the model’s

entire decision-making process. We verify this intuition by gen-

erating a tampered validation dataset for the black-box model. In

particular, we changed bytes 43, 47, and 49 in the VPN samples

to mimic random Non-VPN samples. By following the logic of the

decision tree branches, the black-box model would mis-classify all

VPN samples. The first two rows of Table 3 give the average preci-

sion, recall, and F1-score for both classes (VPN vs. Non-VPN) for

original and tampered datasets. The results show that tampering

with only these three features out of 748 had no significant impact

on the classification accuracy of the black-box model. However, by

performing detective work similar to the one described above, we

observed that the black-box model succeeds in finding alternative

łshortcutsž that are as easy to identify and explain as the one we

described earlier.

To further demonstrate that the black-box model described

in [61] and claimed to be highly successful in learning to clas-

sify encrypted VPN and Non-VPN traffic is not a credible predictor,

we tampered with entire ranges of bytes instead of individual bytes.

As Table 3 shows, tampering with byte ranges of 32-64, 0-64, and

0-128 makes it increasingly more difficult for the black-box model

1545

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Arthur S. Jacobs et al.

Table 2: Case Studies.

Analyzed in Problem Dataset(s) Model(s) Trustee Fidelity Type of inferred inductive bias

Section 7.2 Detect VPN traffic ISCX VPN-nonVPN [21] 1-D CNN [61] 1.00 Shortcut learning
Section 7.3 Detect Heartbleed traffic CIC-IDS-2017 [54] RF Classifier [54] 0.99 Out-of-distribution samples
Section 7.4 Detect Malicious traffic (IDS) CIC-IDS-2017 [54], Campus dataset nPrintML [32] 0.99 Spurious correlations

Tech Report [34] Anomaly Detection Mirai dataset [44] Kitsune [44] 0.99 Out-of-distribution samples
Tech Report [34] OS Fingerprinting CIC-IDS-2017 [54] nPrintML [32] 0.99 Potential out-of-distribution samples
Tech Report [34] IoT Device Fingerprinting UNSW-IoT [56] Iisy [63] 0.99 Likely shortcut learning
Tech Report [34] Adaptive Bit-rate HSDPA Norway [49] Pensieve [42] 0.99 Potential out-of-distribution samples

Table 3: Accuracy of black-box classifier.

Validation dataset Avg. Precision Avg. Recall Avg. F1

Untampered 0.959 0.956 0.955

Tampered-43-47-49 0.959 0.956 0.955

Tampered-32-to-63 0.889 0.861 0.856

Tampered-0-to-63 0.831 0.757 0.734

Tampered-0-to-127 0.753 0.555 0.398

to identify alternative shortcut predictors, and not surprisingly, the

model’s performance (i.e., accuracy) gets worse and quickly reaches

the point where, without being able to resort to shortcut learning

(i.e., randomly altering the first 128 bytes, which is less than 18%

of the features), the model’s performance becomes comparable to

that of flipping a fair coin.

7.3 Detecting Heartbleed Traffic

Problem Setup.We consider the paper [54], which presents the

public dataset CIC-IDS-2017 with labeled attack traces and lists pub-

lications that rely on this dataset to propose ML-based intrusion de-

tection systems. The dataset contains traces of benign background

traffic and 13 different attacks, such as Heartbleed, DDoS, and

PortScans. The dataset also includes 78 pre-computed flow features,

such as flow duration and mean Inter Arrival Time (IAT). Several re-

search efforts report excellent classification results (e.g., average pre-

cision and recall above 99% for all classes) of learningmodels trained

on the pre-computed features of this dataset [13, 20, 23, 54, 64].

Explanation. We again started by reproducing the reported

classification results using the pre-computed features from the

dataset to train amulti-class Random Forest Classifier to identify the

13 attacks and benign traffic, with a 75%-25% train-test split of the

data. We could reproduce the excellent results reported by several

publications, but, in doing so, we noticed that the dataset in question

is highly imbalanced, having as few as 3 Heartbleed samples and as

many as 680,000 DDoS samples in the 25% test split. Hence, we used

a Random Over Sampler [36, 39] to produce a balanced training

dataset to re-train the Random Forest Classifier and then used

Trustee to extract a DT explanation. Without applying our Top-𝑘

pruning method, the high-fidelity DT extracted by Trustee from

the classifier contained 899 nodes, making it largely impossible to

understand the decision-making process of the black-box model.

However, when running Trustee with the Top-𝑘 Pruning method

and setting𝑘 = 3, we obtain the small-sized and therefore inherently

manageable DT shown in Figure 4.

Despite the likely shortcut the model takes by using TCP ports

to classify SSH and FTP-Patator attacks, the root node of Figure 4

shows that the black-box model correctly classifies all samples

of Heartbleed attacks based only on the maximum packet size of

FalseTrue

Heartbleed

Bwd Packet
Length Max

 ≤ 12k

Dest.
Port

≤ 21.5

FTP-Patator

SSH-Patator

Dest.
Port

≤ 22.5

...

7%93%

7%

7% 86%

79%

Figure 4: Decision tree for Random Forest Classifier.

the victim server responses (i.e., łBwd Packet Length Maxž). In

Heartbleed, an attacker sends a TLS heartbeat message with a

value in the size field that is bigger than the message. A vulnerable

server responds with a message with a size equal to the value

specified in the size field and reviews information stored locally in

its memory [22]. Prompted by this observation, we further inspect

the DT to identify other features that appear as the most dominant

features after we remove the łBwd Packet LengthMaxž feature from

the dataset. The results showed that the total backward inter-arrival

time (i.e., łBwd IAT Totalž) also almost perfectly splits all Heartbleed

samples. The distributions displayed in the trust report for both

features (Figure 5) reveal a very telling pattern. To understand this

behavior, we inspected the PCAP files and noticed that the TCP

connections of the Heartbleed attacks were never closed between

heartbeat messages, resulting in high values for the features łBwd

IAT Totalž and łBwd Packet Length Maxž.

C
la

ss
 S

a
m

p
le

s
(%

)
C

la
ss

 S
a

m
p

le
s

(%
)

Figure 5: Data distribution of feature łBwd Packet Length

Maxž (top) and łBwd IAT Totalž (bottom) comparing values

in the Heartbleed class to all Others.

1546

AI/ML for Network Security: The Emperor has no Clothes CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Validation. Considering that the dataset contained just one

obvious pattern for the Heartbleed attack, it is not surprising that

classifiers trained on this dataset have high accuracy when tested

with i.i.d. samples. However, to demonstrate that a model is credible

and generalizes as expected in deployment scenarios, we need to

validate it with alternate but realistic test cases, i.e., o.o.d. samples.

We generated 1,000 new test cases of Heartbleed attacks using the

same tool described in [54], but we closed the connection after the

heartbeat request triggered a response with compromised data. This

change resulted in Heartbleed flows with much smaller backward

total IAT but with similar backward maximum packet length, as we

use the same packet sizes as for the original trace.We then evaluated

the Random Forest Classifier using the newly generated Heartbleed

flows as test data. Table 4 shows that with just a simple change in

the attack pattern, the classifier could not correctly classify a single

one of the 1,000 new Heartbleed attacks, resulting in an F1-score

of 0. This experiment demonstrates that the considered black-box

learning model overfits on the i.i.d. cases, is not a credible predictor

of realistic o.o.d. cases, and does not learn anything that readily

available domain knowledge tells us about Heartbleed attacks.

Table 4: Black-box classifier’s accuracy.

Class Precision Recall F1

Heartbleed (i.i.d.) 1.000 1.000 1.000

Heartbleed (o.o.d.) 0.000 0.000 0.000

7.4 Inferring Malicious Traffic for IDS

Problem setup.We consider the paper [32], which proposes nPrint

and the stable bit-level representation of network packets for auto-

matically training learning models using AutoML [24]. The idea is

to use a sequence of ordered features with values -1, 0, or 1 where

each feature represents a bit of a set of pre-established protocol

headers. The value -1 represents bits that are not present in a packet,

while the values 1 and 0 are the actual values of present bits. The

paper shows excellent results for an AutoML IDS model (called

nPrintML) with 4,480 features trained using raw PCAP files from

the CIC-IDS-2017 dataset [54].

Explanation.We successfully reproduced the reported results

using the same configurations as those used in [32], obtaining a

model with a 0.999 F1-score. To investigate this high-performance

model, we used Trustee (with 𝑘 = 4 for our Top-𝑘 Pruning method)

to extract a high-fidelity (0.999) DT and show the top-4 branches in

Figure 6. We can see that the top nodes rely on bits of the IP TTL

field of the packets to separate the Benign class from the others.

To understand the reason behind this observation, we inspect the

description of the setup used to generate the CIC-IDS-2017 dataset.

While all attacks were generated using hosts outside of the network

in which the dataset was collected, the benign traffic was from

hosts inside the network, creating a strong correlation between

the packets’ TTL value and traffic type. Also, most attacks were

generated by a host running Kali Linux, which sets the initial value

for TTL to 64 (i.e., 00100000). Similarly, the DDoS attack traffic was

generated using a host running Windows 8.1, which sets the initial

TTL value to 128 (i.e., 01000000). This setup where the traffic was

generated makes it easy for the model to separate all DDoS attacks

using only the second and third most significant bits of the TTL

field.

FalseTrue pkt_0_
ipv4_ttl_2

 ≤ 0.5

DDoS

Port Scan

...

Benign
pkt_1_

ipv4_ttl_1
 ≤ 0.5

pkt_1_tcp
_opt_9

 ≤ -0.5

pkt_1_tcp
_opt_52

 ≤ 0.5

Infiltration

16% 84%

69% 15%

14% 55%

14% 41%

Figure 6: Decision tree for nPrintML IDS model.

We used the extracted DT to further investigate the model’s be-

havior. We iteratively removed (assigned -1 to) the bits of the TTL

field and other prominent features from the nPrint representation

and retrained the model on the same dataset until the single tcp_-

opt field remained, representing bits of options of the TCP header.

Given only these bits, the black-box nPrintML model still separates

the attacks in the CIC-IDS-2017 dataset almost perfectly, reaching a

F1-score of 0.990. In these cases, the DT explanations produced by

Trustee showed that the model still used single bits of packets to

divide the traffic perfectly. These experiments demonstrate that the

model succeeds in exploiting spurious correlations in the dataset,

finding shortcuts due to the vast feature space where each bit is

a feature. This issue is also known as the łcurse of dimensional-

ityž [52] and concerns cases where amodel faces a high-dimensional

feature space (e.g., 4,480 features per sample in the case of nPrintML

IDS) and not a diverse and dense enough data distribution to avoid

occurrences of spurious correlations, which in turn a model can

exploit to learn various shortcuts.

Validation. To examine the ability of the nPrintML IDS model

to generalize to other deployment environments, we deployed the

Suricata Intrusion Detection System [26] in the UCSB campus net-

work and mirrored all the traffic before the firewall to produce a

real-world dataset of network attacks. We captured about 12 hours

of user traffic and the associated Suricata IDS alerts (see technical

report [34] for details). We found 1,344 flows of DoS attempts. Also,

we randomly sampled 1,366 port scan flows (out of 9 million) and

1,337 flows that didn’t trigger any alert, which we labeled as be-

nign traffic. Finally, we used nPrint to create a test dataset from

that traffic to validate the trained model of [32]. Table 5 shows

the classification results of the model for the trace of our campus

network.

Table 5: Accuracy for black-box model trained in [32] and

tested with traffic captured in our campus network.

Class Precision Recall F1

Benign 0.653 0.806 0.722

DoS 0.000 0.000 0.000

Port Scan 0.120 0.143 0.130

Average 0.256 0.315 0.282

We notice that the model classified most of the traffic as benign,

a few samples as port-scan attacks, and none as DoS attacks. While

1547

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Arthur S. Jacobs et al.

we did not expect the model to generalize to real-world settings, we

were intrigued that it correctly classified some port scans. Inspect-

ing the decision presented in Figure 6, we can see that the ancestor

of the Port Scan node splits most port scan attacks by checking

𝑝𝑘𝑡_1_𝑖𝑝𝑣4_𝑜𝑝𝑡_9 ≤ −0.5. Since the nPrintML model builds its

feature vector using the first five packets of a flow (896 features

for each packet and 4,480 in total), when a flow has fewer than

five packets, it fills the remaining features with -1 values. Hence,

to identify port scan attacks, the nPrintML model simply recog-

nizes the absence of the second packet of the flow. To confirm this

hypothesis, we carefully investigated the dataset published by the

authors of nPrint [32] and noticed that most of the port scans in

their dataset have only 1 SYN packet from the attacker to the target

(differently from the original PCAPs in [54]). Thus the simple rule

that the second packet of a flow is missing would be enough to

find all port scans. However, in the case of our campus network

traffic, most port-scan attacks also contain a second packet, which

prevented the black-box model from classifying this type of traf-

fic. This second packet is a TCP RST packet that attackers send to

prevent the target from triggering the TCP SYN Cookie protection

used to deal with TCP SYN flooding attacks.

7.5 Additional Use Cases

As summarized in Table 2, we applied Trustee to analyze four addi-

tional use cases. Here, we briefly describe these additional use cases

and report on the main findings that result from analyzing them

with the help of Trustee. A detailed account of each of these addi-

tional use cases can be found in our technical report [34]. The first

additional use case concerns Kitsune, an unsupervised ML classifier

in the form of a complex ensemble of neural networks that was

proposed in [44] to perform traffic anomaly detection (e.g.,Mirai

attack). Using Trustee, we show that Kitsune is vulnerable to o.o.d.

samples, thus corroborating previously-reported criticism of this

model [4] and substantiating it with additional concrete evidence.

For our second additional use case, we applied Trustee to scruti-

nize the OS fingerprinting application of nPrintML described in [32].

While Trustee’s DT explanation confirms most of the results and

claims obtained by nPrintML (e.g., the model relies on TTL and

window size header values to distinguish between Windows, Linux

andMacOS OSes), it also provides evidence that the trained model is

vulnerable to o.o.d. samples (e.g., due to the limited set of operating

systems in the dataset used). As third additional use case, we used

Trustee to analyze the Random Forest Classifier that was proposed

in [63] and trained with the UNSW-IoT dataset [56] to distinguish

between different classes of IoT devices (i.e., video, audio, etc.). In

this case, Trustee’s DT explanation identified clear instances of

shortcut learning, mainly as a result of extracted features such as

source and destination TCP and UDP ports that were used to train

the model. The fourth and last additional use case deals with a

network performance-related problem and concerns an application

of Trustee to analyse Pensieve, a RL-based learning model for

adaptive bit-rate video streaming [42]. Trustee’s DT explanation

not only corroborates most of the previously-reported Pensieve-

specific results [19, 43], but it also achieves higher fidelity compared

to reward-based optimization approaches such as Metis [43] (i.e., F1

score = 0.90) and suggests that Pensieve may not be generalizable

because the proposed model is vulnerable to o.o.d. samples.

8 ABLATION STUDY

In this section, we evaluate key design choices wemade for Trustee

and that we motivated in Section 4.2.

Data augmentation and optimizing for fidelity. We first

assess the impact of data augmentation (Line 11 in Algorithm 1) on

the size and fidelity of the DT explanations generated by Trustee

and at the same time consider the impact of using accuracy (i.e.,

how well the DT classifies the data) rather than fidelity (i.e., how

well the DT mimics black-box classifications) as the optimization

goal for Trustee. To this end, for the first three use cases described

in Section 7, we use Trustee to extract DT explanations for four

different settings (i.e., with and without data augmentation, using

either accuracy or fidelity), with all four settings using the same set

of hyperparameter values. The results are shown in Figure 7 where

the top plot depicts the (normalized) DT size and the bottom plot

shows fidelity. We observe that in cases of small-sized extracted

DTs (e.g., maximum tree size for VPN vs. NonVPN and nPrintML

IDS is 7 nodes and 47 nodes, respectively), data augmentation is

not necessary. However, for extracted DTs that are more complex

(e.g., maximum tree size for Heartbleed is 1,491 nodes), the data

augmentation step results in a significant reduction in DT size

(roughly 20%, and especially for imbalanced datasets) and also

improves the DT’s fidelity (although only slightly, about 2-3%).

In terms of optimizing for fidelity vs. accuracy, we observe no

significant differences, mainly because all the analyzed use cases

have excellent accuracy to start with. However, we expect that for

models that have lower accuracy, optimizing for fidelity may help

end users identify reasons for why the model accuracy is low.

Figure 7: Ablation study results for data augmentation and

optimization for fidelity/accuracy.

Pruning methods. We next evaluate and compare the trade-

offs between fidelity and complexity of the DT explanations that

Trustee generates when using a tree pruning method other than

our proposed Top-𝑘 Pruning method (Line 14 in Algorithm 1). In

particular, we consider the three pruning methods mentioned in

Section 5.1: Max Leaves (pre-pruning), Max Depth (pre-pruning)

and CCP (post-pruning). Figure 8 (top) depicts the results for the

Heartbleed use case and shows the number of branches (x-axis) and

fidelity (y-axis) that are achievable by each of these three methods

as well as by our Top-𝑘 Pruning method. We observe that except

1548

AI/ML for Network Security: The Emperor has no Clothes CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

for the Max Depth method, all other methods show similar perfor-

mance, with the two post-pruning methods (i.e., CCP and Top-𝑘

Pruning) outperforming the competitive pre-pruning method Max

Leaves, especially for high-fidelity DTs (e.g., fidelity of 0.9 and

above). In view of such minimal differences in their overall perfor-

mance, choosing between CCP and Top-𝑘 Pruning boils down to

practical considerations. In particular, while the CCP method relies

on an implicit parameter 𝛼 to determine how much post-pruning is

necessary, our Top-𝑘 Pruning method gives end users direct control

by means of the parameter 𝑘 that explicitly reflects the amount

of effort an end user is willing or capable to spend inspecting and

analyzing Trustee’s output.

Figure 8: Ablation study results: pruning methods for Heart-

bleed use case (top), and model stability for Heartbleed use

case with Top-10 Pruning (bottom)

Model stability. The last design choice we evaluate concerns the

inclusion of an outer loop as part of Algorithm 1 (Lines 4-16). Given

that Trustee only analyzes a subset of the input data to generate

its output in the form of a DT explanation, it is fully expected

that running Trustee under identical conditions (i.e., same set

of hyperparameter values) multiple times will result in different

DT explanations. However, for an end user to trust the output of

Trustee, it should be the case that the different DT explanations

are stable in the sense that they make in general identical decisions

when presented with the same input samples. We quantify this

stability aspect of the output of Trustee by using the notion of

agreement between DTs that measures how often the DTs will make

the same decision for the same input data. To examine this aspect

of Trustee, we consider the Heartbleed use case and ran Trustee

(with 𝑆=1, thus effectively disabling the outer loop; number of

samples𝑀 = 593, 123 (i.e., 30% of 𝐷0); 𝑁 = 50; and 𝑘 = 10) a total

of 50 different times. The results are presented in Figure 8 (bottom)

and show an overall high mean agreement and fidelity for each of

the resulting 50 different DT explanations. However, in a few cases

(e.g., iterations 16, 28, 31), the mean agreement of the obtained DT

explanations is as low as about 80%. This observation motivated us

to include the outer loop in Algorithm 1 that ensures that Trustee

outputs a DT explanation that has been selected so as to avoid

obviously łbadž (i.e., low mean agreement) and possibly misleading

DT explanations for the given black-box model.

9 CONCLUSIONS AND DISCUSSIONS

In this paper, we present Trustee, a new framework that enables

end users ofML-based solutions to gauge their trust in the black-box

models that underlie these solutions. To demonstrate how Trustee

works in practice, we consider several use cases of published ML-

based solutions from the existing literature, examine whether end

users can trust them, and discuss our findings and lessons learned.

First, we emphasize that our Trustee-based analyses of the con-

sidered use cases rely critically on the work of researchers who have

made their ML-related artifacts publicly available. In recent years,

the scientific community and the network research community, in

particular, have argued strongly for more reproducibility [5, 47],

and we second this effort. However, for the time being, network

security researchers interested in using ML have to accept the lack

of open-source datasets and a general reluctance for widespread

data sharing due to privacy concerns as faits accomplis.

Second, given that the vast majority of published ML models

that have been developed for a range of different network security

problems are not fully reproducible, our reported findings based

on a handful of use cases that are fully reproducible are in no way

representative of the existing literature on applications of ML in the

field of network security. However, the problematic nature of our

findings for the few analyzed use cases should serve as a cautionary

tale as far as the popular use of standard ML pipelines in the field

is concerned. In this sense, our work contributes to existing efforts

that argue for looking at developments in this area with a critical

eye (e.g., see [2, 4, 58] and references therein) and identifies specific

pitfalls that prevent end users from trusting proposed ML-based

solutions and deploying them in production networks.

Last but not least, we purposefully designed Trustee to aid end

users’ efforts to check whether a given black-box model suffers

from the problem of underspecification and can therefore not be

trusted. While underspecification is a known and common problem

in modernML pipelines [17], this paper takes a first step towards de-

tecting the presence and identifying the type of underspecification

in a given black-box model. However, in the context of Trustee,

these detection and identification tasks are currently not automated

and depend critically on the help of domain experts who can use

Trustee as-is to assert if a given black-box model makes decisions

in accordance with existing domain knowledge or is even capable

of teaching the domain experts new decision-making strategies. To

realize the goal of automating these tasks, much work remains. In

particular, we need to involve network operators and security ex-

perts in carefully designed user studies for quantitatively assessing

their level of trust in a given black-box ML model that drives a pro-

posed ML-based solution for a specific network security problem.

ACKNOWLEDGEMENTS

We thank our shepherd Fabio Pierazzi and the ACM CCS reviewers

for their constructive feedback. This work was supported in part

by the Brazilian National Council for Scientific and Technological

Development (CNPq) procs. 142089/2018-4 (Arthur Selle Jacobs’

grant) and 465446/2014-0 (InterSCity), by FAPESP proc. 2020/05152-

7 (PROFISSA), 2020/05183-0 (SkyNet), 14/50937-1 and 15/24485-9,

and by CAPES Finance Code 001 (InterSCity). Researchers at UCSB

were supported by NSF Awards CNS-2003257, OAC-2126327, and

OAC-2126281.

1549

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Arthur S. Jacobs et al.

REFERENCES
[1] D. W. Apley and J. Zhu. 2020. Visualizing the effects of predictor variables in

black box supervised learning models. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 82, 4 (2020), 1059ś1086. https://doi.org/10.1111/
rssb.12377 arXiv:https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/rssb.12377

[2] G. Apruzzese, L. Pajola, and M. Conti. 2022. The Cross-evaluation of Machine
Learning-based Network Intrusion Detection Systems. IEEE Transactions on
Network and Service Management (2022), 1ś1. https://doi.org/10.1109/TNSM.2022.
3157344

[3] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz. 2020. Invariant Risk
Minimization. arXiv preprint arXiv:1907.02893 (2020). arXiv:stat.ML/1907.02893

[4] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi, C. Wressnegger, L.
Cavallaro, and K. Rieck. 2022. Dos and Dont’s of Machine Learning in Computer
Security. In 31st USENIX Security Symposium (USENIX Security 22). USENIX
Association, Boston, MA. https://www.usenix.org/conference/usenixsecurity22/
presentation/arp

[5] V. Bajpai, A. Brunstrom, A. Feldmann, W. Kellerer, A. Pras, H. Schulzrinne, G.
Smaragdakis, M. Wählisch, and K. Wehrle. 2019. The Dagstuhl Beginners Guide
to Reproducibility for Experimental Networking Research. SIGCOMM Comput.
Commun. Rev. 49, 1 (Feb. 2019), 24ś30. https://doi.org/10.1145/3314212.3314217

[6] O. Bastani, C. Kim, and H. Bastani. 2017. Interpreting Blackbox Models via
Model Extraction. arXiv preprint arXiv:1705.08504 (2017). arXiv:1705.08504
http://arxiv.org/abs/1705.08504

[7] O. Bastani, Y. Pu, and A. Solar-Lezama. 2018. Verifiable Reinforcement Learning
via Policy Extraction. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems (NIPS’18). Curran Associates Inc., Red Hook, NY,
USA, 2499ś2509.

[8] J. Bergstra and Y. Bengio. 2012. Random Search for Hyper-Parameter Optimiza-
tion. J. Mach. Learn. Res. 13, null (feb 2012), 281ś305.

[9] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar, F. Estrada-
Solano, and O. M. Caicedo. 2018. A comprehensive survey on machine learning
for networking: evolution, applications and research opportunities. Journal of
Internet Services and Applications 9, 1 (2018), 16. https://doi.org/10.1186/s13174-
018-0087-2

[10] M. Bramer. 2007. Avoiding Overfitting of Decision Trees. Springer London, London,
119ś134. https://doi.org/10.1007/978-1-84628-766-4_8

[11] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification and
Regression Trees. Wadsworth and Brooks, Monterey, CA.

[12] M. Brundage, S. Avin, J. Wang, et al. 2020. Toward Trustworthy AI Development:
Mechanisms for Supporting Verifiable Claims. arXiv preprint arXiv:1705.08504
(2020). https://doi.org/10.48550/ARXIV.2004.07213

[13] C. Busse-Grawitz, R. Meier, A. Dietmüller, T. Bühler, and L. Vanbever. 2019. pFor-
est: In-Network Inference with Random Forests. arXiv preprint arXiv:1909.05680
(2019). arXiv:1909.05680 http://arxiv.org/abs/1909.05680

[14] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y.
Pan, G. Baldan, and O. Beijbom. 2019. nuScenes: A multimodal dataset for
autonomous driving. arXiv preprint arXiv:1903.11027 (2019). Available at https:
//www.nuscenes.org.

[15] M. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang, P. Carr,
S. Lucey, D. Ramanan, and J. Hays. 2019. Argoverse: 3D Tracking and Forecasting
With Rich Maps. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). Available at https://www.argoverse.org/.

[16] M.W. Craven and J. W. Shavlik. 1995. Extracting Tree-Structured Representations
of Trained Networks. In Proceedings of the 8th International Conference on Neural
Information Processing Systems (NIPS’95). MIT Press, Cambridge, MA, USA, 24ś30.

[17] A. D’Amour, K. Heller, D. Moldovan, et al. 2020. Underspecification Presents
Challenges for Credibility in Modern Machine Learning. arXiv preprint
arXiv:2011.03395 (2020). arXiv:cs.LG/2011.03395

[18] J. Deng, W. Dong, R. Socher, L. Li a, K. Li, and L. Fei-Fei. 2009. ImageNet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition. 248ś255. https://doi.org/10.1109/CVPR.2009.5206848

[19] A. Dethise, M. Canini, and S. Kandula. 2019. Cracking Open the Black Box: What
Observations Can Tell Us About Reinforcement Learning Agents. In Proceedings
of the 2019 Workshop on Network Meets AI & ML (NetAI’19). Association for
Computing Machinery, New York, NY, USA, 29ś36. https://doi.org/10.1145/
3341216.3342210

[20] R. Doriguzzi-Corin, S. Millar, S. Scott-Hayward, J. Martínez del Rincón, and D.
Siracusa. 2020. Lucid: A Practical, Lightweight Deep Learning Solution for DDoS
Attack Detection. IEEE Transactions on Network and Service Management 17, 2
(2020), 876ś889. https://doi.org/10.1109/TNSM.2020.2971776

[21] G. Draper-Gil., A. H. Lashkari., M. S. I. Mamun, and A. A. Ghorbani. 2016. Char-
acterization of Encrypted and VPN Traffic using Time-related Features. In Pro-
ceedings of the 2nd International Conference on Information Systems Security
and Privacy - ICISSP,. INSTICC, SciTePress, 407ś414. https://doi.org/10.5220/
0005740704070414

[22] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver, D.
Adrian, V. Paxson, M. Bailey, and J. A. Halderman. 2014. The Matter of Heartbleed.
In Proceedings of the 2014 Conference on Internet Measurement Conference (IMC

’14). Association for Computing Machinery, 475ś488.
[23] S. Dwivedi, M. Vardhan, and S. Tripathi. 2020. An effect of chaos grasshopper

optimization algorithm for protection of network infrastructure. Computer
Networks 176 (2020), 107251. https://doi.org/10.1016/j.comnet.2020.107251

[24] N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, and A. Smola. 2020.
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data. arXiv
preprint arXiv:2003.06505 (2020). https://doi.org/10.48550/ARXIV.2003.06505

[25] F. Esposito, D. Malerba, G. Semeraro, and J. Kay. 1997. A comparative analysis of
methods for pruning decision trees. IEEE Transactions on Pattern Analysis and
Machine Intelligence 19, 5 (1997), 476ś491. https://doi.org/10.1109/34.589207

[26] The Open Information Security Foundation. 2018. Project Clearwater. (Jan. 2018).
https://suricata-ids.org/

[27] J. H. Friedman. 2001. Greedy function approximation: A gradient boosting
machine. The Annals of Statistics 29, 5 (2001), 1189 ś 1232. https://doi.org/10.
1214/aos/1013203451

[28] R. Geirhos, J. Jacobsen, C. Michaelis, R. Zemel, W. Brendel, M. Bethge, and F. A.
Wichmann. 2020. Shortcut learning in deep neural networks. Nature Machine
Intelligence 2, 11 (01 Nov 2020), 665ś673. https://doi.org/10.1038/s42256-020-
00257-z

[29] A. Ghorbani, A. Abid, and J. Zou. 2019. Interpretation of Neural Networks Is
Fragile. Proceedings of the AAAI Conference on Artificial Intelligence 33, 01 (Jul.
2019), 3681ś3688. https://doi.org/10.1609/aaai.v33i01.33013681

[30] R. Guidotti and R. Ruggieri. 2019. On The Stability of Interpretable Models.
In 2019 International Joint Conference on Neural Networks (IJCNN). 1ś8. https:
//doi.org/10.1109/IJCNN.2019.8852158

[31] W. Guo, D. Mu, J. Xu, P. Su, G.Wang, and X. Xing. 2018. LEMNA: Explaining Deep
Learning Based Security Applications. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’18). Association for
Computing Machinery, New York, NY, USA, 364ś379. https://doi.org/10.1145/
3243734.3243792

[32] J. Holland, P. Schmitt, N. Feamster, and P. Mittal. 2021. New Directions in
Automated Traffic Analysis. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’21). Association for Computing
Machinery, New York, NY, USA, 3366ś3383. https://doi.org/10.1145/3460120.
3484758

[33] A. Hussein, M. Gaber Medhat, E. Elyan, and C. Jayne. 2017. Imitation Learning:
A Survey of Learning Methods. ACM Comput. Surv. 50, 2, Article 21 (April 2017),
35 pages. https://doi.org/10.1145/3054912

[34] A. S. Jacobs, R. Beltiukov,W.Willinger, R. A. Ferreira, A. Gupta, and L. Z. Granville.
2022. AI/ML and Network Security: The Emperor has no Clothes (Extended
Version). Technical Report. (May 2022). https://github.com/TrusteeML/emperor
Available at https://github.com/TrusteeML/emperor.

[35] A. S. Jacobs, R. Beltiukov,W.Willinger, R. A. Ferreira, A. Gupta, and L. Z. Granville.
2022. Paper supplemental material. (May 2022). https://github.com/TrusteeML/
emperor Reproducibility artifacts available at https://github.com/TrusteeML/
emperor. The Trustee framework was implemented in a separate Python library
for ease of use, available at https://github.com/TrusteeML/trustee.

[36] H. Kaur, H. S. Pannu, and A. K. Malhi. 2019. A Systematic Review on Imbalanced
Data Challenges in Machine Learning: Applications and Solutions. ACM Comput.
Surv. 52, 4, Article 79 (aug 2019), 36 pages. https://doi.org/10.1145/3343440

[37] H. Lakkaraju and O. Bastani. 2020. "HowDo I Fool You?": Manipulating User Trust
via Misleading Black Box Explanations. In Proceedings of the AAAI/ACM Confer-
ence on AI, Ethics, and Society (AIES ’20). Association for Computing Machinery,
New York, NY, USA, 79ś85. https://doi.org/10.1145/3375627.3375833

[38] H. Lakkaraju, E. Kamar, R. Caruana, and J. Leskovec. 2017. Interpretable &
Explorable Approximations of Black Box Models. arXiv preprint arXiv:1707.01154
(2017). arXiv:cs.AI/1707.01154

[39] Guillaume Lemaître, Fernando Nogueira, and Christos K. Aridas. 2017.
Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets
in Machine Learning. Journal of Machine Learning Research 18, 17 (2017), 1ś5.
http://jmlr.org/papers/v18/16-365.html

[40] Z. C. Lipton. 2018. The Mythos of Model Interpretability: In Machine Learning,
the Concept of Interpretability is Both Important and Slippery. Queue 16, 3 (June
2018), 31ś57. https://doi.org/10.1145/3236386.3241340

[41] S. M Lundberg and S. Lee. 2017. A Unified Approach to Interpreting Model
Predictions. In Advances in Neural Information Processing Systems 30, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(Eds.). Curran Associates, Inc., 4765ś4774. http://papers.nips.cc/paper/7062-a-
unified-approach-to-interpreting-model-predictions.pdf

[42] H. Mao, R. Netravali, and M. Alizadeh. 2017. Neural Adaptive Video Streaming
with Pensieve. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM ’17). Association for Computing Machinery,
New York, NY, USA, 197ś210. https://doi.org/10.1145/3098822.3098843 Code
available at GitHub repository at https://github.com/hongzimao/pensieve.

[43] Z. Meng, M. Wang, J. Bai, M. Xu, H. Mao, and H. Hu. 2020. Interpreting Deep
Learning-Based Networking Systems. In Proceedings of the Annual Conference
of the ACM SIGCOMM (SIGCOMM ’20). Association for Computing Machinery,
New York, NY, USA, 154ś171. https://doi.org/10.1145/3387514.3405859

1550

https://doi.org/10.1111/rssb.12377
https://doi.org/10.1111/rssb.12377
https://arxiv.org/abs/https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/rssb.12377
https://doi.org/10.1109/TNSM.2022.3157344
https://doi.org/10.1109/TNSM.2022.3157344
https://arxiv.org/abs/stat.ML/1907.02893
https://www.usenix.org/conference/usenixsecurity22/presentation/arp
https://www.usenix.org/conference/usenixsecurity22/presentation/arp
https://doi.org/10.1145/3314212.3314217
https://arxiv.org/abs/1705.08504
http://arxiv.org/abs/1705.08504
https://doi.org/10.1186/s13174-018-0087-2
https://doi.org/10.1186/s13174-018-0087-2
https://doi.org/10.1007/978-1-84628-766-4_8
https://doi.org/10.48550/ARXIV.2004.07213
https://arxiv.org/abs/1909.05680
http://arxiv.org/abs/1909.05680
https://www.nuscenes.org
https://www.nuscenes.org
https://www.argoverse.org/
https://arxiv.org/abs/cs.LG/2011.03395
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1145/3341216.3342210
https://doi.org/10.1145/3341216.3342210
https://doi.org/10.1109/TNSM.2020.2971776
https://doi.org/10.5220/0005740704070414
https://doi.org/10.5220/0005740704070414
https://doi.org/10.1016/j.comnet.2020.107251
https://doi.org/10.48550/ARXIV.2003.06505
https://doi.org/10.1109/34.589207
https://suricata-ids.org/
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1038/s42256-020-00257-z
https://doi.org/10.1038/s42256-020-00257-z
https://doi.org/10.1609/aaai.v33i01.33013681
https://doi.org/10.1109/IJCNN.2019.8852158
https://doi.org/10.1109/IJCNN.2019.8852158
https://doi.org/10.1145/3243734.3243792
https://doi.org/10.1145/3243734.3243792
https://doi.org/10.1145/3460120.3484758
https://doi.org/10.1145/3460120.3484758
https://doi.org/10.1145/3054912
https://github.com/TrusteeML/emperor
https://github.com/TrusteeML/emperor
https://github.com/TrusteeML/emperor
https://github.com/TrusteeML/emperor
https://github.com/TrusteeML/emperor
https://github.com/TrusteeML/emperor
https://github.com/TrusteeML/trustee
https://doi.org/10.1145/3343440
https://doi.org/10.1145/3375627.3375833
https://arxiv.org/abs/cs.AI/1707.01154
http://jmlr.org/papers/v18/16-365.html
https://doi.org/10.1145/3236386.3241340
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://doi.org/10.1145/3098822.3098843
https://github.com/hongzimao/pensieve.
https://doi.org/10.1145/3387514.3405859

AI/ML for Network Security: The Emperor has no Clothes CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

[44] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai. 2018. Kitsune: An Ensemble of
Autoencoders for Online Network Intrusion Detection. InNetwork and Distributed
System Security Symposium 2018 (NDSS‘18). https://doi.org/10.48550/ARXIV.1802.
09089

[45] C. Molnar, G. König, J. Herbinger, T. Freiesleben, S. Dandl, C. A. Scholbeck, G.
Casalicchio, M. Grosse-Wentrup, and B. Bischl. 2020. Pitfalls to Avoid when
Interpreting Machine Learning Models. arXiv preprint arXiv:2007.04131 (2020).
arXiv:stat.ML/2007.04131

[46] National Academies of Sciences Engineering and Medicine. 2019. Implications of
Artificial Intelligence for Cybersecurity: Proceedings of a Workshop. The National
Academies Press, Washington, DC. https://doi.org/10.17226/25488

[47] B. A. Nosek, G. Alter, G. C. Banks, et al. 2015. Promoting an open research culture.
Science 348, 6242 (2015), 1422ś1425. https://doi.org/10.1126/science.aab2374
arXiv:https://www.science.org/doi/pdf/10.1126/science.aab2374

[48] M. Ribeiro, S. Singh, and C. Guestrin. 2016. łWhy Should I Trust You?ž: Explaining
the Predictions of Any Classifier. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Demonstrations.
Association for Computational Linguistics, San Diego, California, 97ś101. https:
//doi.org/10.18653/v1/N16-3020

[49] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen. 2013. Commute path
bandwidth traces from 3G networks: analysis and applications. In Proceedings of
the 4th ACM Multimedia Systems Conference. 114ś118.

[50] S. Ross, G. J. Gordon, and J. A. Bagnell. 2011. A Reduction of Imitation Learn-
ing and Structured Prediction to No-Regret Online Learning. arXiv preprint
arXiv:1011.0686 (2011). arXiv:cs.LG/1011.0686

[51] C. Rudin. 2019. Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead. Nature Machine Intelligence
1, 5 (01 May 2019), 206ś215. https://doi.org/10.1038/s42256-019-0048-x

[52] S. Russell and P. Norvig. 2020. Artificial Intelligence: A Modern Approach (4rd ed.).
Pearson, USA.

[53] L. S. Shapley. 2016. 17. A Value for n-Person Games. Princeton University Press,
307ś318. https://doi.org/doi:10.1515/9781400881970-018

[54] I. Sharafaldin., A. H. Lashkari., and A. A. Ghorbani. 2018. Toward Generating
a New Intrusion Detection Dataset and Intrusion Traffic Characterization. In
Proceedings of the 4th International Conference on Information Systems Security
and Privacy - ICISSP,. INSTICC, SciTePress, 108ś116. https://doi.org/10.5220/
0006639801080116

[55] K. Shaukat, S. Luo, V. Varadharajan, I. A. Hameed, and M. Xu. 2020. A Survey
on Machine Learning Techniques for Cyber Security in the Last Decade. IEEE
Access 8 (2020), 222310ś222354. https://doi.org/10.1109/ACCESS.2020.3041951

[56] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake, A. Vish-
wanath, and V. Sivaraman. 2019. Classifying IoT Devices in Smart Environments
Using Network Traffic Characteristics. IEEE Transactions on Mobile Computing
18, 8 (2019), 1745ś1759. https://doi.org/10.1109/TMC.2018.2866249

[57] J. Snoek, H. Larochelle, and R. P. Adams. 2012. Practical Bayesian Optimiza-
tion of Machine Learning Algorithms. In Advances in Neural Information Pro-
cessing Systems, F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger (Eds.),
Vol. 25. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2012/file/
05311655a15b75fab86956663e1819cd-Paper.pdf

[58] R. Sommer and V. Paxson. 2010. Outside the Closed World: On Using Machine
Learning for Network Intrusion Detection. In 2010 IEEE Symposium on Security
and Privacy. 305ś316. https://doi.org/10.1109/SP.2010.25

[59] M. Turek. 2016. (2016). https://www.darpa.mil/program/explainable-artificial-
intelligence Available at https://www.darpa.mil/program/explainable-artificial-
intelligence. Accessed on May 25th, 2021.

[60] P. Turney. 1995. Technical Note: Bias and the Quantification of Stability. Machine
Learning 20, 1 (1995), 23ś33. https://doi.org/10.1023/A:1022682001417

[61] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang. 2017. End-to-end encrypted
traffic classification with one-dimensional convolution neural networks. In 2017
IEEE International Conference on Intelligence and Security Informatics (ISI). 43ś48.
https://doi.org/10.1109/ISI.2017.8004872 Code available at GitHub repository
https://github.com/echowei/DeepTraffic.

[62] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, and C. Wang. 2018.
Machine Learning and Deep Learning Methods for Cybersecurity. IEEE Access 6
(2018), 35365ś35381. https://doi.org/10.1109/ACCESS.2018.2836950

[63] Z. Xiong and N. Zilberman. 2019. Do Switches Dream of Machine Learning?
Toward In-Network Classification. In Proceedings of the 18th ACM Workshop on
Hot Topics in Networks (HotNets ’19). Association for Computing Machinery, New
York, NY, USA, 25ś33. https://doi.org/10.1145/3365609.3365864

[64] H. Zhang, L. Huang, C. Q. Wu, and Z. Li. 2020. An effective convolutional
neural network based on SMOTE and Gaussian mixture model for intrusion
detection in imbalanced dataset. Computer Networks 177 (2020), 107315. https:
//doi.org/10.1016/j.comnet.2020.107315

1551

https://doi.org/10.48550/ARXIV.1802.09089
https://doi.org/10.48550/ARXIV.1802.09089
https://arxiv.org/abs/stat.ML/2007.04131
https://doi.org/10.17226/25488
https://doi.org/10.1126/science.aab2374
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.aab2374
https://doi.org/10.18653/v1/N16-3020
https://doi.org/10.18653/v1/N16-3020
https://arxiv.org/abs/cs.LG/1011.0686
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/doi:10.1515/9781400881970-018
https://doi.org/10.5220/0006639801080116
https://doi.org/10.5220/0006639801080116
https://doi.org/10.1109/ACCESS.2020.3041951
https://doi.org/10.1109/TMC.2018.2866249
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://doi.org/10.1109/SP.2010.25
https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence
https://doi.org/10.1023/A:1022682001417
https://doi.org/10.1109/ISI.2017.8004872
https://github.com/echowei/DeepTraffic.
https://doi.org/10.1109/ACCESS.2018.2836950
https://doi.org/10.1145/3365609.3365864
https://doi.org/10.1016/j.comnet.2020.107315
https://doi.org/10.1016/j.comnet.2020.107315

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Challenges in ML for Network Security
	2.2 Interpretable ML and Explainable AI

	3 Trustee Overview
	4 Extracting Decision Trees
	4.1 Existing approaches
	4.2 Model-Agnostic Decision Tree Extraction

	5 Processing Decision Trees
	5.1 Decision Tree Pruning: Trade-offs
	5.2 Top-k Pruning Method
	5.3 Generating Trust Reports

	6 Using Trustee in Practice
	7 Results
	7.1 Summary
	7.2 Detecting VPN vs. non-VPN Traffic
	7.3 Detecting Heartbleed Traffic
	7.4 Inferring Malicious Traffic for IDS
	7.5 Additional Use Cases

	8 Ablation Study
	9 Conclusions and Discussions
	References

