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Abstract

We integrate a number of new and recent advances
in heuristic search, and apply them to the four-
peg Towers of Hanoi problem. These include fron-
tier search, disk-based search, parallel processing,
multiple, compressed, disjoint, and additive pat-
tern database heuristics, and breadth-first heuristic
search. New ideas include pattern database heuris-
tics based on multiple goal states, a method to re-
duce coordination among multiple parallel threads,
and a method for reducing the number of heuris-
tic calculations. We perform the first complete
breadth-first searches of the 21 and 22-disc four-
peg Towers of Hanoi problems, and extend the ver-
ification of “presumed optimal solutions” to this
problem from 24 to 30 discs. Verification of the
31-disc problem is in progress.

1 Towers of Hanoi Problems

The standard Towers of Hanoi problem consists of three pegs,
and n different sized discs, initially stacked in decreasing or-
der of size on one peg. The task is to transfer all the discs
from the initial peg to a goal peg, by only moving one disc at
any time, and never placing a larger disc on top of a smaller
disc. To move the largest disc from the initial peg to the goal
peg, none of the smaller discs can be on either peg, but must
all be on the remaining auxiliary peg.' This generates a sub-
problem of the same form as the original problem, allowing a
simple recursive solution. It is easily proven that the shortest
solution to this problem requires 2" — 1 moves.

The problem becomes more interesting if we add another
peg (see Figure 1). While the four-peg Towers of Hanoi
problem is 117 years old [Hinz, 1997], the optimal solu-
tion length is not known in general. The difficulty is that
moving the largest disc from the initial to the goal peg re-
quires that the remaining discs be distributed over the two
auxiliary pegs, but we don’t know a priori how to distribute
them in an optimal solution. In 1941, a recursive strategy
was proposed that constructs a valid solution [Frame, 1941;
Stewart, 19411, and optimality proofs of this “presumed op-
timal solution” were offered, but they contained an unproven

! An auxiliary peg is any peg other than the initial or goal peg.
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assumption [Dunkel, 1941], and the conjecture remains un-
proven. Absent a proof, the only way to verify optimality of
this solution for a given number of discs is by a systematic
search for shorter solutions. Previously this had been done
for up to 24 discs [Korf, 2004], and we extend it here to 30
discs. The size of the problem space is 4™, where n is the
number of discs, since each disc can be on any of four pegs,
and the discs on any peg must be in sorted order. Thus, each
new disc multiplies the size of the problem space by four.

Figure 1: Four-Peg Towers of Hanoi Problem

2 Prior Work on Four-Peg Towers of Hanoi

The simplest search is a brute-force search, with no heuristics.
Complete breadth-first searches, generating all states from a
given initial state, have previously been done for up to 20
discs [Korf, 2004].

There are two different symmetries that can be used to
speed up this search. The first is that transferring the discs
from an initial peg to any of the other three pegs are equiva-
lent problems. Thus, given any state, we sort the three non-
initial pegs in order of their largest disc, reducing the number
of states by almost a factor of six [Bode & Hinz, 1999]. The
reduction is slightly less than six because if two non-initial
pegs are empty, permuting them has no effect.

The other is a symmetry of the solution path [Bode & Hinz,
1999]. Assume that we find a path to a middle state, where
all discs but the largest are distributed over the two auxiliary
pegs. We can then move the largest disc from the initial to
the goal peg. If we then execute the moves made to reach
the middle state in reverse order, we will return all but the
largest disc to the initial peg. If, however, while executing
these moves, we interchange the initial and goal pegs, we will
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move all but the largest disc to the goal peg, completing the
solution. Thus, once we reach a middle state, we can generate
a complete solution, and a shortest path to a middle state gen-
erates a shortest solution path. In practice, this cuts the search
depth in half, and we refer to this as a half-depth search.

[Korf, 2004] used both these symmetries in a brute-force
half-depth search to verify the presumed optimal solution
lengths for up to 24 discs. Additional techniques he used,
such as frontier search, storing nodes on magnetic disk2, and
parallel processing, are discussed below.

Verifying the optimal solution length for more discs re-
quires a heuristic search. Previously, the largest four-peg
Towers of Hanoi problem that had been solved optimally with
heuristic search was 19 discs [Zhou & Hansen, 2006], com-
pared to 24 discs for brute-force half-depth search. The rea-
son is because the heuristic search was a full-depth search,
computing the heuristic to the single goal state.

The most important new idea in this paper is how to com-
pute a heuristic that estimates the length of a shortest path
to any of a number of goal states. This allows us to imple-
ment a heuristic half-depth search, by estimating the length
of a shortest path to a middle state. The naive approach of
computing a heuristic to each middle state, and taking the
minimum of these values for each state of the search, is im-
practical with a large number of middle states. For the n-disc,
four-peg problem, there are 2"~ ! possible middle states, one
for each way to distribute the n — 1 smallest discs over the two
auxiliary pegs. This can be reduced to 2”2, by assigning the
second-largest disk to one of the auxiliary pegs.

3 Pattern Database Heuristics

Pattern databases lookup tables stored in memory [Culber-
son & Schaeffer, 1998], and are the most effective heuris-
tics known for many problems, including Rubik’s cube [Korf,
1997] and the sliding-tile puzzles [Korf & Felner, 2002]. A
pattern database for the Towers of Hanoi contains an entry for
each possible configuration of a subset of the discs, the pat-
tern discs. The value of each entry is the number of moves
required to move the pattern discs from their given configura-
tion to the goal peg, ignoring all other discs [Felner, Korf, &
Hanan, 2004]. Given a problem instance, for each state in the
search, we use the configuration of the pattern discs to com-
pute an index into the database. The corresponding value is
then used as a lower-bound estimate of the number of moves
needed to move all the discs to the goal peg.

The size of a pattern database depends on the number of
pattern discs. We can represent any configuration of n discs
by a unique index in the range O to 4™ — 1, by encoding
the location of each disc with two bits, and using the result-
ing 2n-bit binary number as the index. Thus, we only store
the heuristic values and not the corresponding states in the
database. If the values are less than 256, each value is stored
in a single byte. Thus, a pattern database of 15 discs requires
415 = 230 bytes, or a gigabyte of memory.

To construct such a pattern database, we perform a breadth-
first search starting with all 15 discs on the goal peg. As each

>Throughout this paper we use “disc” to refer to a Tower of
Hanoi disc, and “disk” to refer to a magnetic storage disk.

new configuration of discs is first encountered, we store the
corresponding search depth in the database. This search con-
tinues until all configurations have been generated. A pattern
database is only constructed once, and can be used to solve
any problem instances with the same goal state. Note that
any set of 15 different-sized discs generate exactly the same
pattern database, regardless of their actual sizes.

4 Multiple-Goal Pattern Databases

Our main new contribution is pattern databases for multiple
goal states. Rather than initializing the breadth-first search
queue with one goal state, we seed it with all the goal states
at depth zero. Then, the depth of any state in the breadth-first
search is the length of a shortest path to any goal state.

For example, to construct a pattern database of the number
of moves needed to transfer 15 discs to two auxiliary pegs, we
initialize the search queue with all 25 states in which the 15
discs are distributed among the two auxiliary pegs, and assign
each a value of zero in the database. The breadth-first search
runs until all configurations of 15 discs have been generated,
recording their depths in the database. Thus, for any state,
the database value is the minimum number of moves needed
to move all the discs to the two auxiliary pegs.

While this may appear obvious in hindsight, it escaped the
attention of at least three groups of researchers working on the
Towers of Hanoi. [Felner, Korf, & Hanan, 2004] used heuris-
tic search with additive pattern database heuristics to solve
up to 17 discs. [Felner et al., 2004] used compressed pattern
databases to solve up to 18 discs. [Zhou & Hansen, 2006]
solved up to 19 discs, using breadth-first heuristic search
with pattern databases. All of these were full-depth heuristic
searches to a single goal state, using pattern database heuris-
tics. At the same time, all of these researchers knew that
brute-force half-depth searches to multiple goal states could
solve larger problems [Korf, 2004], but didn’t see how to
combine the two together.

Multiple-goal pattern databases also have real-world appli-
cations. Consider a car navigation system that must quickly
plan a route to the nearest hospital. We first run Dijkstra’s
algorithm [Dijkstra, 1959] in a preprocessing step, initially
seeded with all hospital locations, storing with each map lo-
cation the distance to the closest hospital. For this search, the
direction of any one-way streets is reversed. Then, when the
user requests a route from his current location to the nearest
hospital, A* will find an optimal path in linear time, since the
heuristic is exact. As another application, suppose we want to
label each address in a city with the identity of the closest fire
station, to aid in dispatching fire trucks. We run Dijkstra’s al-
gorithm, initially seeded with the location of all fire stations,
but modified so that each node also includes the identity of
the closest fire station, in addition to its distance. In this case,
we don’t reverse one-way streets, because we are traveling
from the fire station to the address.

In addition to multiple-goal pattern databases, verifying the
presumed optimal solution of the 30-disc problem required
integrating a number of additional recent and new research
results in heuristic search, which we discuss below.

I[JCAI-07
2325



5 Frontier Search

The limiting resource for both breadth-first search to gener-
ate pattern databases, and heuristic search to verify optimal
solutions, is storage for search nodes. Linear-space depth-
first searches are completely impractical for this problem, be-
cause they generate too many duplicate nodes representing
the same state. To reduce the number of stored nodes, we
use frontier search [Korf et al., 2005]. For simplicity, we de-
scribe breadth-first frontier search. A standard breadth-first
search stores all nodes generated in either a Closed list of
expanded nodes, or an Open list of nodes generated but not
yet expanded. Frontier search saves only the Open list, and
not the Closed list, reducing the nodes stored from the total
number of nodes in the problem, to the maximum number of
nodes at any depth, or the width of the problem. For example,
the total number of states of of the 22-disc, four-peg Towers
of Hanoi problem is 42 or 17.6 trillion, while the width of
the problem is only 278 billion states, a savings of a factor of
63. It also saves with each node the operators used to gener-
ate it, to avoid regenerating the parent of a node as one of its
children. Additional work is required to generate the solution
path. In our case, however, we don’t need the solution path,
but simply the depth of a given node, both to generate pattern
databases, and to verify presumed optimal solutions.

6 Storing Nodes on Disk

Unfortunately, 278 billion nodes is too many to store in mem-
ory. One solution is to store nodes on magnetic disk [Korf,
2003; 2004; Korf & Shultze, 2005]. The challenge is to de-
sign algorithms that rely on sequential access, since random
access of a byte on disk takes about five milliseconds.

The main reason to store nodes is to detect duplicates,
which are nodes representing the same state, but reached via
different paths. This is normally done with a hash table,
which is randomly accessed whenever a node is generated.
On disk, however, duplicates nodes are not checked for im-
mediately, but merged later in a sequential pass through the
disk. When this delayed duplicate detection is combined with
frontier search in a problem such as the Towers of Hanoi, two
levels of the search tree must be stored at once [Korf, 2004].

The algorithm expands one level of the search space at a
time. There are two types of files: expansion files that contain
no duplicate nodes, and merge files that contain duplicates.
All nodes in a file are at the same depth. When expansion
files are expanded, their children are written to merge files at
the next depth. For fault tolerance, and ease of interrupting
and resuming the program, we save all expansion files at the
current depth, until completing the iteration to the next depth.

All nodes in the same file have their largest discs in the
same positions. The nodes within a file specify the positions
of the 14 smallest discs. The 28 bits needed to specify 14
discs, plus four used-operator bits, equals 32 bits or a single
word. For example, the 30-disc problem requires storing the
positions of 29 discs. The positions of the 14 smallest discs
are stored with each node, and the positions of the remain-
ing 15 discs are encoded in the file name, generating up to
4% /6 ~ 179 million file names.

Previous implementations of this algorithm [Korf, 2003;
2004; Korf & Shultze, 2005] have stored in memory an array
entry for each possible file name, but this doesn’t scale to very
large name spaces. Instead, we maintain in memory a hash ta-
ble with the names of the files that exist at any point in time.
For each file name, we store whether a corresponding expan-
sion file exists at the current and/or next depth, whether the
former has been expanded, whether a merge file exists, and a
list of the expansion file names that could contribute children
to this merge file. To conserve disk space, we merge merge
files as soon as all such expansion files have been expanded.

7 Parallel Processing

Any I/O intensive algorithm must be parallelized to utilize the
CPU(s) while a process blocks waiting for I/O. Furthermore,
increasingly common multi-processor systems, and multiple-
core CPUs, offer further opportunities for parallelism. Our
algorithm is multi-threaded, with different threads expanding
or merging different files in parallel. Merging eligible files
takes priority over file expansions.

Since all nodes in a given file have their largest discs in
the same positions, any duplicate nodes are confined to the
same file, and duplicate merging of different files can be
done independently. When expanding nodes, however, any
children generated by moving the large disks will be writ-
ten to different merge files, and the expansion of two dif-
ferent files can send children to the same merge file. Pre-
vious implementations of this algorithm [Korf, 2003; 2004;
Korf & Shultze, 2005] have coordinated multiple threads so
that files that can write children to the same merge file are
not expanded at the same time. In our implementation, we
remove this restriction. Two different threads may indepen-
dently write children to the same merge file, as long as the
files are opened in append mode. This both simplifies the
code and speeds it up, since it requires almost no coordina-
tion among multiple threads.

8 Compressed Pattern Databases

A pattern database heuristic that includes more components
of a problem is more accurate, since the database reflects in-
teractions between the included components. In the case of
the Towers of Hanoi, the more discs that are included, the
more accurate the heuristic. The limitation is the memory
to store the database. For example, a full pattern database
based on the 22-disc four-peg problem would require 422 or
about 17.6 trillion entries. We can “compress” such a pat-
tern database into a smaller database that will fit in memory,
however, with only a modest lost of accuracy, as follows.

We generate the entire 22-disc problem space in about 11
days, using disk storage. As each state is generated, we use
the configuration of say the 15 largest discs as an index into a
pattern database, and store in that entry the shallowest depth
at which that configuration of 15 discs occurs. That entry is
the minimum number of moves required to move all 22 discs
to their goal peg, where the minimization is over all possi-
ble configurations of the remaining seven smallest discs. The
values in this pattern database are significantly larger than the
corresponding entries in a simple 15-disc pattern database,

I[JCAI-07
2326



because the latter values ignore any smaller discs. This is
called a compressed pattern database [Felner er al., 2004],
and occupies only a gigabyte of memory in this case.

To use this compressed pattern database in a search of a
problem with at least 22 discs, for each state we look up the
position of the 15 largest discs, and use the corresponding
table value as the heuristic for that state.

9 Disjoint Additive Pattern Databases

Consider a Towers of Hanoi problem with 29 discs, a simple
22-disc pattern database, and an seven-disc pattern database.
A move only moves a single disc. Thus, given any config-
uration of the 29 discs, we can divide them into any two
disjoint groups of 22 and seven discs each. We look up
the configuration of the 22 discs in the 22-disc database,
look up the configuration of the seven discs in the eight-
disc database, and sum the resulting values to get an ad-
missible heuristic for the 29-disc problem. This is called
a disjoint additive pattern database [Korf & Felner, 2002;
Felner, Korf, & Hanan, 2004]. There is nothing special about
this 22-7 split, but maximizing the size of the largest database
gives the most accurate heuristic values.

We can add values from a compressed database the same
way. Again assume a problem with 29 discs, a 22-disc pattern
database compressed to the size of a 15-disc database, and
a simple seven-disc database. Given a state, we use the 15
largest discs to represent the 22 largest discs, and look up the
corresponding entry in the compressed pattern database. We
also look up the configuration of the seven smallest discs in
the eight-disc database, and add these two heuristic values
together, to get an admissible heuristic for all 29 discs.

10 Multiple Pattern Databases

In order to sum the values from two different pattern
databases, the corresponding sets of elements must be dis-
joint, and every move must move only a single element. How-
ever, given any two admissible heuristic functions, their max-
imum is also admissible. Furthermore, the maximum of sev-
eral different pattern database heuristics is often more accu-
rate than the value from a single pattern database of the same
total size, and more than compensates for the overhead of the
additional lookups [Holte er al., 2004].

Continuing our example with 29 discs, we can construct
two different admissible heuristics as follows: One divides
the 29 discs into the 22 largest and seven smallest discs,
adding their pattern database values, and the other divides
them into the seven largest and 22 smallest discs, again
adding their database values. Finally, we take the maximum
of these two values as the overall heuristic value. We can use
the same two databases for both heuristics.

11 Breadth-First Heuristic Search

Frontier search with delayed duplicate detection can be com-
bined with a best-first heuristic search such as A* [Hart, Nils-
son, & Raphael, 1968], but a best-first search frontier in-
cludes nodes at different depths, and is usually larger than
a breadth-first search frontier, with all nodes at the same

depth. A better solution to this problem is breadth-first
heuristic search (BFHS) [Zhou & Hansen, 2006]. (BFHS)
is given a cost threshold, and searches for solutions whose
cost does not exceed that threshold. The cost of a node n is
f(n) = g(n) + h(n), where g(n) is the cost from the initial
state to node n, and h(n) is the heuristic estimate of the cost
of reaching the goal from node n. BFHS is a breadth-first
search, but any node whose total cost exceeds the cost thresh-
old is deleted. BFHS is also a form of frontier search, and
only stores a few levels of the search at a time. Thus, once a
solution is found, additional work is required to construct the
solution path. If the optimal solution cost is not known in ad-
vance, breadth-first iterative-deepening-A* [Zhou & Hansen,
2006] performs a series of iterations with successively in-
creasing cost thresholds, until an optimal solution is found.

BFHS is ideally suited to the Towers of Hanoi for several
reasons. One is that to verify optimality of the presumed op-
timal solutions, we don’t need to construct the solution paths,
but simply show that no shorter solutions exist. If we were
to find a shorter solution, however, we would need to gener-
ate it to verify its correctness. Secondly, since we know the
presumed optimal solution length in advance, we could set
the cost threshold to one less than this value, and perform a
single iteration, eliminating iterative deepening.

12 Minimizing Heuristic Calculations

For many search problems, the time to compute heuristic
evaluations is a significant fraction of the running time. This
is particularly true of large pattern databases, since they are
randomly accessed, resulting in poor cache performance.

For pattern database heuristics, we can determine the max-
imum possible heuristic value from the maximum values
in each database. For search algorithms such as BFHS or
iterative-deepening-A* (IDA*) [Korf, 1985], pruning occurs
by comparison to a given cost threshold. We can speed up
these searches by only computing heuristics for nodes that
can possibly be pruned. In particular, if ¢ is the cost threshold,
and m is the maximum possible heuristic value, then we don’t
compute heuristics for those nodes n for which g(n)+m < ¢,
since they can’t possibly be pruned. We don’t need to com-
pute the heuristic at the shallowest possible depth that prun-
ing could occur either, since the cost of additional node ex-
pansions may be compensated for by the faster speed of a
brute-force search. Since BFHS searches breadth-first, we
don’t even need to load the pattern databases until the depth
at which we start computing heuristics, saving the memory
for additional parallel threads.

13 Brute-Force Search Experiments

We first ran complete brute-force searches of the four-peg
Towers of Hanoi, both to compute pattern databases, and for
another reason as well. For the three-peg problem, a breadth-
first search to depth 2”1, starting with all discs on one peg,
will generate all states of the problem at least once. Thus,
2"~ 1is the radius of the problem space from this initial state.
For the three-peg problem, this radius is the same as the opti-
mal solution length to move all discs from one peg to another.
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It was believed that this was true of the four-peg problem as
well. However, [Korf, 2004] showed that this is not true for
the 15-disc and 20-disc four-peg problems. For the 15-disc
problem, 129 moves are needed to move all discs from one
peg to another, but there exist 588 states that are 130 moves
from the standard initial state. For the 20-disc problem, the
optimal solution is 289 moves, but the radius of the problem
from the standard initial state is 294 moves. What happens
for larger problems was unknown.

We ran the first complete breadth-first searches of the 21-
and 22-disc four-peg Towers of Hanoi problems, starting with
all discs on one peg. The machine we used is an IBM Intellis-
tation A Pro, with dual two gigahertz AMD Opteron proces-
sors, and two gigabytes of memory, running CentOS Linux.
We have three terabytes of disk storage available, consisting
of four 500 gigabyte Firewire external drives, and a 400 and
two 300 gigabyte internal Serial ATA drives.

Table 2 shows our results. The first column shows the num-
ber of discs, the second column the optimal solution length
to transfer all discs from one peg to another, the third column
the radius of the problem space from the standard initial state,
the fourth column the width of the problem space, which is
the maximum number of unique states at any depth from the
standard initial state, and the last column the running time
in days:hours:minutes:seconds, running six parallel threads.
Note that for both problems, the radius from the standard ini-
tial state exceeds the optimal solution depth, and we conjec-
ture that this is true for all problems with 20 or more discs.

D | Optimal | Radius width time
21 321 341 | 77,536,421,184 | 2:10:25:39
22 385 395 | 278,269,428,090 | 9:18:02:53

Table 1: Complete Search Results for Towers of Hanoi

14 Heuristic Search Experiments

We next ran heuristic searches of the four-peg Towers of
Hanoi. As explained above, there exists a solution strategy
that moves all discs from one peg to another, and a conjec-
ture that it is optimal, but the conjecture is unproven. Prior to
this work, the conjecture had been verified for up to 24 discs
[Korf, 2004]. We extended this verification to 30 discs.

We first built a 22-disc pattern database, compressed to
the size of a 15-disc database, or one gigabyte of memory.
This was done with a complete breadth-first search of the
22-disc problem, seeded with all states in which all discs
were distributed over two pegs. We used the 6-fold symme-
try described above to generate the database, since all non-
initial pegs are equivalent. The database itself did not use this
symmetry, however, but contained an entry for all 4> possi-
ble configurations of the 15 largest discs, to make database
lookups more efficient. It took almost 11 days to construct
the pattern database, and required a maximum of 392 giga-
bytes of disk storage. The reason that this is longer than the
time for the complete search of the 22-disc problem described
above is that we had to access the pattern database for each
node expanded, and were only able to run five parallel threads

instead of six. We also built simple pattern databases for up
to seven discs, essentially instantaneously.

We then ran breadth-first heuristic search, starting with all
discs on the initial peg, searching for a middle state in which
all but the largest disc are distributed over the two auxiliary
pegs. For example, in the 30-disc problem, a middle state is
one where the 29 smallest discs have moved off the initial peg
to two auxiliary pegs. Thus, the largest disc is not represented
at all. This search also used the six-fold symmetry.

If a middle state is found in k£ moves, then a complete solu-
tion of 2k + 1 moves exists, utilizing the symmetry between
the initial and goal states. Breadth-first heuristic search was
run with the cost threshold set to (p — 1)/2, where p is the
presumed optimal solution depth. It would be more efficient
to set the cost threshold to one move less, checking only for
the existence of shorter solutions. To increase our confidence
in our results, however, we used the (p — 1)/2 cost threshold,
and checked that an actual solution was found. A search with
a given cost threshold will find all solutions whose cost is less
than or equal to that threshold.

For each problem, we took the maximum of two heuristics.
For the 30-disc problem, which only uses 29 discs, one value
was the compressed pattern database value for the 22 largest
discs, plus the complete pattern database value for the seven
smallest discs, and the other was the compressed database
value for the 22 smallest discs, plus the complete database
value for the seven largest discs. For the smaller problems,
we also used the 22-disc compressed database, and looked up
the remaining discs in a complete pattern database.

We implemented our parallel search algorithm using multi-
ple threads. The number of threads is limited by the available
memory, since each thread needs it own local storage. The
pattern databases are shared, however, since they are read-
only. In our experiments we ran five parallel threads on two
processors. We used all seven disks, evenly dividing the files
among the disks, to maximize I/0 parallelism.

The results are shown in Table 1, for all problems not pre-
viously verified. The first column gives the number of discs,
the second column the length of the optimal solution, the third
column the running time in days:hours:minutes:seconds, the
fourth column the number of unique states expanded, and
the last column the maximum amount of storage needed in
megabytes. In all cases, the presumed optimal solution depth
was verified. The 30-disc problem took over 17 days to run,
generated a total of over 4.3 trillion unique nodes, and re-
quired a maximum of 398 gigabytes of disk storage. Even
with two processors, the limiting resource is CPU time.

D | Opt. time unique states space
25 | 577 2:37 443,870,346 43
26 | 641 14:17 2,948,283,951 263
27 | 705 1:08:15 12,107,649,475 1,079
28 | 769 4:01:02 38,707,832,296 4,698
29 | 897 | 2:05:09:02 547,627,072,734 | 56,298
30 | 1025 | 17:07:37:47 | 4,357,730,168,514 | 397,929

Table 2: Heuristic Search Results for Towers of Hanoi

A search of the 31-disc problem is in progress at press time.
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It has been running for three months, and is expected to finish
in a couple weeks. It required two terabytes of disk storage.
For comparison purposes, we also ran a brute-force half-
depth search of the 25-disc problem using substantially the
same program with no heuristics. This took 100 hours, com-
pared with 2.6 minutes for the heuristic half-depth search.

15 Future Work: Perimeter Search

Multiple-goal pattern databases also provide a way to signif-
icantly improve the efficiency of a technique called perime-
ter search [Dillenburg & Nelson, 1994; Manzini, 1995]. The
idea is to perform a small breadth-first search backward from
the goal state, and store a perimeter of nodes surrounding the
goal state at a fixed distance d. Then, in the forward search,
instead of computing a heuristic to the single goal state, we
compute a heuristic to each of the perimeter states, and take
the minimum of these distances, plus d, as the heuristic es-
timate of the cost to the goal state. The drawback of this
technique is that it requires for each state as many heuristic
calculations as there are perimeter nodes. If we use a pattern
database heuristic, however, and seed the breadth-first search
used to construct the pattern database with all the perimeter
nodes, then a single database lookup gives us the minimum
heuristic value to any of the perimeter nodes. If we add d
to this value, we get the improved accuracy of the perimeter-
based heuristic, with no additional overhead. Integrating this
technique with multiple and/or additive pattern databases is
non-trivial, however, and the subject of future work.

16 Conclusions

We show how to efficiently perform a heuristic search for a
shortest path to any of a large number of explicit goal states,
using a pattern database heuristic. It is constructed by initially
seeding the breadth-first search queue with all the goal states
at depth zero. Multiple-goal pattern databases allow us to per-
form heuristic searches to any of a large number of “middle
states” at half the solution depth in the Towers of Hanoi. This
idea also has applications to real-world multiple-goal prob-
lems, such as, “take me to the nearest hospital”. We also inte-
grated a large number of recent advances in heuristic search,
including frontier search, parallel disk-based search, breadth-
first heuristic search, multiple pattern databases, disjoint ad-
ditive pattern databases, and compressed pattern databases.
Additional new improvements we introduce include simplify-
ing and speeding up our parallel search algorithm by reducing
coordination between different threads, and a method to elim-
inate many heuristic calculations, based on a maximum pos-
sible heuristic value. By combining all these techniques, we
were able to verify the presumed optimal solution depth for
the four-peg Towers of Hanoi problem with up to 30 discs, a
problem 4096 times larger than the 24-disc previous state of
the art. A search of the 31-disc problem is still in progress
at press time. We also performed the first complete breadth-
first searches of the 21 and 22-disc problems, showing that
the radius of the problem space from the standard initial state
exceeds the optimal solution length. We conjecture that this
will be true of all larger problems as well.
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