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Abstract

A finite load, large buffer model for the WLAN medium access protocol IEEE 802.11 is devel-

oped that gives throughput and delay predictions. This enables us to investigate the impact of

buffering on resource allocation. In the presence of heterogeneous loads, 802.11 does not allocate

transmission opportunities equally. It is shown that increased buffering can help this inequity,

but only at the expense of possibly significantly increased delays.
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1 Introduction

By design, in a network of equally loaded stations the IEEE 802.11 Distributed Coordination Function
(DCF) Medium Access Controller (MAC) gives, in the long run, symmetric access. Each station gets
an approximately equal number of access opportunities. However, in most deployments offered loads
are asymmetric. For example consider the typical usage case: an infrastructure mode network where
the Access Point (AP) has a wired back-haul. Load at the AP is approximately proportional to the
number of stations in the network.

Using a finite load analytic model of 802.11 it is reported by Malone et al. [1] that in the presence of
heterogeneous loads there is long-term inequity, with heavily loaded stations gaining more than their
“fair share” of the bandwidth. For example, a 64kbps two-way voice conversation is considered in the
presence of stations that always have a packet to send. With as few as 5 heavily loaded stations, the
voice conversation’s throughput is less than 32kbps. This inequity is due to the asymmetric nature of
typical offered loads: data traffic, such as web and email, is typically bursty in nature while streaming
traffic operates at relatively low rates and often in an on-off manner. To capture this analytically we
require a finite load model. Note that short-term unfairness in 802.11 has previously reported (for
example, see [2, 3, 4]), but it is fundamentally different to this long-term unfairness.

Stations with short buffers are treated in [1]. Here we extend the modeling paradigm developed in
[5, 1] to give expressions for stations with large buffers and Poisson arrivals. This enables us to consider
the impact of buffering on bandwidth-share inequity. With large buffers one expects that the inability
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to win access to the medium results in a backlog of packets awaiting transmission. This leads to an
effectively higher offered load (in comparison to a short buffer where traffic that arrives while a packet
awaiting access to the medium is lost) and thus a return towards a more equitable bandwidth share.
With a short buffer packet loss is a good quality-of-service indicator and delay is less important. With
large buffers total delay (MAC plus queueing delay) is the most important performance indicator, so
we provide an estimate of it. Note that these large buffer expressions for throughput and delay can
be used in conjunction with the mesh network model proposed in [6].

2 Preliminaries

As we extend the methodology in [5, 1] to treat an infinite buffer with Poisson arrivals, we start with
a brief overview of the model. It is a mean-field Markov model of the sort introduced by Bianchi [7].
With a network of N stations we assume that each station n ∈ {1, . . . , N} has a fixed probability pn of
collision given it is attempting transmission, irrespective of its back-off stage. We describe the offered
load of each station n by two probabilities, qn and rn, that are internal to the model. We will relate
these to real-world offered load. When a station is in post-backoff or its count-down has completed
and it is awaiting a packet, qn denotes the probability a packet arrives to the MAC during an average
slot time on the medium (which can be occupied by no station transmitting, a station successfully
transmitting or a collision). The parameter rn corresponds to the probability that immediately after
a successful transmission a packet is available to the MAC. This is a generalization from [5, 1] where
qn = rn, as when a station has no buffer these are the same, but in the presence of buffers they differ.

Under these assumptions, the back-off procedure forms an embedded (non real-time) Markov chain.
Its stationary distribution can be calculated explicitly by the derivation described in [1] to give an
expression for τn := τ(pn, qn, rn), the stationary probability that station n is attempting transmission
in a slot. Temporarily dropping the n subscript,

τ :=
1

η

1

1 − r

(

q2W0
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− rq(1 − p)

)

, (1)
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,

W0 is the station’s minimum contention window and W02
m is the station’s maximum window size.

For given probabilities {(qn, rn)}, the conditional collision probabilities {pn} and transmission proba-
bilities {τn} are completely determined by the solution of the fixed point equations that say that the
probability a station doesn’t experience a collision given it is attempting transmission is the probability
that no-one else is attempting transmission:

1 − pn =
∏

i6=n

(1 − τi(pi, qi, ri)) for n ∈ {1, . . . , N}. (2)

As the Markov chain doesn’t evolve in real-time, to make real-time predictions we must determine the
expected time between counter decrements (as given in [7]):

T := (1 − Ptr)σ + PtrPsTs + Ptr(1 − Ps)Tc, (3)
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where Ptr = 1−
∏

n(1−τn), Ps =
∑n

i=1 τn

∏

j 6=i(1−τj)/Ptr, E is the time spent transmitting payload
data (which for simplicity we assume is the same for packets from all stations; general expressions can
be found in [1]), σ is the time for the counter to decrement, Ts is the time for a successful transmission
and Tc is the time for a collision. For example, the throughput of station n is then Sn = τn(1−pn)E/T .

3 Relating offered load to (q, r)

To make the model predictive we relate the internal load parameters {(qn, rn)} to real-world offered
load. In [5, 1], a relation is given in the absence of buffers, so that qn = rn. With i.i.d. inter-arrivals
with exponential distribution tn of rate λn, the probability that no packet arrives during an average
transition time in the Markov chain is 1−qn = P(tn > T ) = exp(−λnT ), where T is given in equation
(3). Thus for a given collection of arrival rates {λn}, one solves (2) for a range of {qn}, identifying a
collection such that qn = 1− exp(λnT ) for all n.

Here we give a new relation based on an infinite buffer with Poisson arrivals. We relate the probability
qn to λn as above, but rn no longer equals qn. We treat each station as an M/G/1 queue, where the
service time distribution G is the MAC delay to successful transmission. From the well known formula
for the steady state probability that there is a packet in an M/G/1 queue after a packet transmission
we determine rn as a function of qn and pn. This reduces τ(pn, qn, rn) to be a function of pn and qn.
We must determine E(G). To do this we first consider the distribution B(p) of the number of states
in the Markov chain that pass for each packet prior to successful transmission given the conditional
collision probability is p, which is approximately equal in distribution to

X0 + Y1X1 + Y1Y2X2 + . . . (4)

where {Xn} forms an independent sequence with Xn uniformly distributed on [1, 2min(n,m)W0] and
{Yn} is an i.i.d. sequence of Bernoulli random variables with P(Y1 = 1) = p = 1 − P(Y1 = 0).
We say approximately as (4) is an upper bound that ignores post-back off and assumes every packet
experiences at least one count-down. It is shown in [1] that this is a good approximation. From (4) it
is possible to show that

E(B(p)) =
W0

2(1 − 2p)(1− p)
(1 − p − p(2p)m). (5)

The steady state probability that an M/G/1 queue has packet after a transmission is min(1, λE(G)),
and E(G) = E(B(p))T . Hence rn = min(1,−E(B(pn)) log(1−qn)) and τ(pn, qn, rn) is only a function
of pn and qn. Thus, again, for a given collection of arrival rates {λn}, one solves (2) for a range of
{qn}, identifying those for which qn = 1 − exp(λnT ) for all n. Let {p?

n} denote this solution of (2).
Once we know {p?

n} it is possible to estimate the average queueing delay at station n by a standard
formula (e.g. pg 237 of [8]). Using (4) a lengthy calculation gives
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Then, if λnE(B(p?
n))T < 1, the average delay is

λnE(B(p?
n)2)T 2

2(1 − λnE(B(p?
n))T )

.

If λnE(B(p?
n))T > 1, the queue is unstable and the average delay is infinite. The mean MAC delay

at station n is E(B(p?
n))T .

4 Model Validation
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Figure 1: Symmetric network throughput. Model predictions and NS simulation.

Although it is not possible to present extensive validation due to space constraints, Figure 1 gives
a good indication of the model’s throughput accuracy. All stations have 560 byte packets and we
use standard 11Mbps 802.11b parameterization, chosen so that direct comparison is possible with the
short buffer results in [5]. The pre-saturation peak reported in [5] for short buffers, although present,
is less pronounced and slightly overestimated by the model for large number of stations. For a network
with 10 stations, Figure 2 plots throughput and delay predictions versus simulation results. Note the
sudden, sharp climb in delay as a function of offered load, which takes place near peak throughput.
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Figure 2: Symmetric network throughput and delay. Model predictions and NS simulations.
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5 Fairness
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Figure 3: Asymmetric network throughput and loss. Small buffer predictions.
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Figure 4: Asymmetric network throughput and delay. Big buffer predictions.

Figure 3 shows throughput and loss versus offered load in an asymmetric network with one saturated
station and one with finite load, where the finite load station has a short buffer. The finite load station
fails to get its fair share, except at high loads and experiences massive loss even at low loads. Figure
4 shows station throughput and mean queueing delay for the same scenario, but with the finite load
station having a large buffer. It is clear that buffering is a significant factor in enabling the lower-load
station to grab its share of the bandwidth. However, increased buffering leads to a dramatic ramp up
in delay near the point at which loss in the short buffer model is becoming unacceptable. We have
seen qualitatively similar results for larger numbers of saturated stations.

Extra buffer space is not a panacea due to the possibility of delay sensitive traffic. For example,
consider a two-way voice conversation with each half on a distinct stations that transmits at 64k when
active. We model the voice by a pair of stations with 100 byte packet Poisson traffic streams whose
rate gives a 32k offered load. We model data stations as saturated, always having 1500 byte packets
to send. Figure 5 shows model predictions of throughput for the voice call and a data station, as a
function of the number of data stations, for both large and small buffers. Average delay for the voice
is shown for the large buffer. Buffering increases the throughput of the voice conversation, but with
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Figure 5: Throughput and delay for VoIP/TCP network. Model predictions.

as few as five data stations the delay is unmanageable for a real-time application. For delay sensitive
traffic, prioritization using the faculties of 802.11e seems more appropriate.

6 Conclusions

Increasing buffering to enable a station grab its “fair” share of the bandwidth in an asymmetrically
loaded network is a double-edged sword. It aids with bandwidth share, but does so at the penalty
of significantly increased delays. Thus increased buffering is probably not a suitable solution for
time-constrained traffic such as VoIP and it is necessary to use the feature set of 802.11e.
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