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Abstract— A new family of methods, named PEP (Phase
Estimation using Polyspectrum slices), for the reconstruction of
the Fourier phase of a complex LTI system excited by a white
non-Gaussian input is proposed. More precisely, we propose two
subfamilies of methods, theq-PEP (q ≥ 3) and (q1, q2)-PEP
(q2 > q1 ≥ 3) algorithms. The q-PEP methods exploit the best
Two-Dimensional (2D) slice of the dataq-th order spectrum.
The originality of the (q1, q2)-PEP methods consists of exploiting
simultaneously one 1D slice of theq1-th order spectrum and
one 2D slice of theq2-th order spectrum. These new algorithms
are easy both to implement and to use. Moreover, the asymptotic
unbiasedness and consistency of these methods are demonstrated.
Eventually, computer simulations show that the PEP algorithms
exhibit in general better performances than classical methods
especially for band-limited systems.

I. I NTRODUCTION

System reconstruction and especially phase recovery is a
significant problem which arises in many applications, suchas
data communications [2], seismic, speech processing, medical
diagnosis and other deconvolution problems [5]. More partic-
ularly, in astronomy, high resolution imaging from ground-
based telescopes involves a phase recovery to overcome the
severe atmospheric degradation [12].

Because physical systems are mostly non-minimum phase,
we consider, in our paper, the phase retrieval problem of a non-
minimum phase Linear Time Invariant (LTI) system excited
by an i.i.d. (independently and identically distributed),zero
mean and non-Gaussian input. In such a context, the phase
recovery of a non-minimum phase system can be achieved
from the output using higher order spectra (polyspectra).
Indeed, in opposition to the power spectrum which preserves
only the magnitude information of systems, the polyspectra
also preserve the true phase character of systems. Several
methods for phase reconstruction using polyspectra have been
developed (see [15] [16] for a review). These methods can
be divided in two subcategories: those that use the whole
q-th order (q ≥ 3) spectrum information [3] [1] [13] [17]
[19] and those that use only some part of this information
such as one or two fixed One-Dimensional (1D) polyspectrum
slices [10] [7] [20] [21]. The latter algorithms assume that
there is a criterion for selecting the most useful polyspectrum

region providing a measure of slice goodness. The algorithm
presented in [21] proposes such a procedure, named the 1D
frequency content. This selection procedure potentially enables
us to avoid regions where polyspectrum estimates exhibit high
variance or regions where the ideal polyspectrum is expected
to be zero, as in the case of band-limited systems. Another
way to describe and to differentiate algorithms named before,
consists of classifying them according to their recursive or
non-recursive nature. Indeed, the algorithms [3] [1] [10] [20]
are recursive in nature: they calculate, sequentially, thephase
values under the assumption that the first value is equal to
zero. Methods proposed in [13] [7] [17] [19] [21] are not
recursive: they estimate all phase values at the same time.
Eventually, methods presented in [3] [13] [7] [17] [19] require
an additional step of phase unwrapping, in contrast to those
introduced in [1] [10] [20] [21].

Each of these methods present some limitations. Methods
which use the whole polyspectrum information [3] [1] [13]
[17] [19] are generally less effective on systems which havea
band-limited frequency response as shown in [21]. Besides,
Rangoussi et al. [17] and Lii et al. [10] have developed
algorithms which are only valid for real systems. In addition,
the method given in [20] does not allow for handling a linear
system whose input sequence is symmetrically distributed.
It should be noted that since methods [3] [1] [10] [20]
are recursive in nature, phase estimation errors in the low-
frequency samples can propagate to high-frequency samplesas
well. Finally, computer results presented in [20] [21] showthat
the performances of algorithms proposed in [20] [21] depend
on the selected 1D polyspectrum slice.

In order to overcome the limitations of the previous al-
gorithms, a new family of phase retrieval methods, based
on multiple higher order spectrum slices, named PEP (Phase
Estimation using Polyspectrum slices), is proposed. A panel of
algorithms which are easy to use and to implement is provided.
These algorithms can handle any kind of non-minimum phase
SISO (Single Input Single output) systems, they are not recur-
sive and do not estimate all the phase values at the same time.
They estimate each phase value independently from the others.
More precisely, we propose two subfamilies of methods, the
q-PEP (q ≥ 3) and (q1, q2)-PEP (q2 > q1 ≥ 3) algorithms.
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The q-PEP methods exploit the best Two-Dimensional (2D)
slice of the dataq-th order spectrum. The originality of the
(q1, q2)-PEP methods is the simultaneous exploitation of one
1D slice of theq1-th order spectrum and one 2D slice of the
q2-th order spectrum. This joint exploitation of two distinctq-
th order spectra allows for a better processing of band-limited
systems. Computer results show that the (q1, q2)-PEP methods
are less sensitive to a wrong selection of the best polyspectrum
slice. Finally, note that all the proposed methods require an
additional phase unwrapping step.

The paper is organized as follows: in section II, the phase
recovery problem is stated and the definition of theq-th (q >
2) order spectra is recalled. In section III, the PEP approachis
presented and its asymptotic consistency analysis is provided.
Section V gives computer results of some PEP algorithms and
classical methods, and a conclusion is given in section VI.

II. PROBLEM FORMULATION AND STATISTICS

A. Problem statement

It is assumed throughout the paper thatM complex samples
of a discrete random process{x(m)}m∈

� are observed, and
that each random variablex(m) satisfies the following LTI
model:

x(m)=
∑
`∈

�
h(`)s(m−`)+ν(m) (1)

where {s(m)}m∈
� and {ν(m)}m∈

� represent the input and
additive noise sequences, respectively, and where:

h(m)
def
=

1

2π

∫ +π

−π

H(ω) e i ωm dω (2)

is them-th tap of the LTI system whose frequency response
is H. The problem dealt with in this paper can be formulated
as following:

Problem 1: LetH(ω) = |H(ω)| e iφh(ω) be the frequency
response at pointω of the considered non-minimum phase
LTI system, find the phase response,φh, of the system only
from samples of the output sequence{x(m)}m∈

�.

The following assumptions are then placed on the system and
the signals involved in order to solve problem 1.

(A1) {s(m)}m∈
� is an i.i.d. non-gaussian, stationary and

ergodic complex sequence;
(A2) {ν(m)}m∈

� is stationary, ergodic, gaussian with com-
ponents in the complex field, and independent of the
input source;

(A3) All q-th (q > 2) order marginal source cumulants are
absolutely summable and allq-th order spectra are
non-zero in the frequency band over which the chan-
nel response is non-zero (higher order cumulants and
polyspectra will be described hereafter);

(A4) The LTI system is stable (i.e.{h(m)}m∈
� is absolutely

summable, which guarantees the existence of a bounded
frequency response) with complex taps.

It is noteworthy that a unique solution of problem 1 can be
found only up to a linear phase. Indeed, as shown in equation
(1), the expression ofx(m) does not change when we replace

` by `′+τ whereτ is a delay or when we multiply the impulse
response and the input source by a complex exponential and
its conjugate, respectively.

B. Cumulants and polyspectra

Let Cq−r
r, x (m, τ1, . . . , τq−1) = Cum{x(m), x(m+ τ1), . . .

, x(m+ τr−1), x(m+ τr)
∗, . . ., x(m+ τq)

∗} be theq-th (q≥3)
order cumulant [14] ofx(m), wherer terms are not conjugated
and q−r terms are conjugated. Under assumption(A1) and
(A2), process{x(m)}m∈

� is stationary. Consequently, it’sq-
th order cumulants do not depend on timem and can be
denoted byCq−r

r, x (τ1, . . . , τq−1). Then, under assumption(A3),
it is possible to define theq-th order spectrum as following
[15]:

Definition 1: Theq-th order spectrum is given by the(q−
1)-dimensional Discrete Fourier Transform (DFT) of theq-th
order cumulant.

Using assumptions(A1), (A2) and the multilinearity prop-
erty shared by all moments and cumulants [14], theq-th order
spectrum of the output data can be related to theq-th order
marginal source cumulant, as shown by property 1:

Property 1: Let{x(m)}m∈
� be the discrete random pro-

cess given by (1). Itsq-th order spectrum satisfies the following
equality:

Γq−r
r, x (ω1, . . . , ωq−1)=Cq−r

r, s H(−ω1 − . . .− ωq−1)H(ω1)

H(ωr−1)H(−ωr)
∗ . . .H(−ωq−1)

∗ (3)

whereCq−r
r, s

def
= Cq−r

r, s (0, . . . , 0) and H denote theq-th order
marginal source cumulant associated with null delays and the
system frequency response, respectively.

Note that, in practical contexts, cumulants and spectra
cannot be exactly computed and they have to be estimated
from data samples using some estimation procedures [14] [15].

III. A LGORITHMS

A. Theq-PEP methods (q≥3)

This approach exploits one 2D slice of the output dataq-th
order spectrumΓq−r

r, x of the output sequence, that is, the matrix
extracted fromΓq−r

r, x by fixing q−3 frequencies and varying
the two latter frequencies between±π. Although the3-PEP
method was briefly presented in [9] and since an extension to
q-th order (q>4) spectra is straightforward, we only illustrate
the q-PEP method forq=4.

Let ψ2
2, x be the phase of the data trispectrumΓ2

2, x. More-
over, we will consider discrete frequencies in the sequel, i.e.,
ωj =(2π/N)kj with kj ∈{0, . . . , N−1} and j ∈ {1, . . . , q −
1}. By omitting the factor2π/N , the relationship between the
phases of the quantities involved in (3), for(q, r) = (4, 2), is
given by:

ψ2
2, x(k1, k2, k3) = ξ22, s + φh(−k1 − k2 − k3) +

φh(k1) − φh(−k2) − φh(−k3) (4)

whereξ22, s is the phase of the marginal source cumulantC2
2, s.

Note thatξ22, s is a multiple ofπ sinceC2
2, s is necessarily a real
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number. Letk3 be fixed to an integer,α ∈ {0, 1, . . . , N − 1},
using a simple measure of 2D slice goodness which will be
presented in section III-C. Because the2π-periodicity of H
implies theN -periodicity of its discrete phaseφh, the sum of
ψ2

2, x(., ., α) over the discrete frequenciesk2 (0≤ k2 <N ) is
given for each discrete frequencyk1 (0≤k1<N ) by:

N−1∑
k2=0

ψ2
2, x(k1, k2, α) = N(φh(k1) + ξ22, s − φh(−α)) (5)

Although equation (5) seems to provide a solution for the
estimation ofφh from ψ2

2, x, it is not a convenient formula
for phase retrieval. Indeed, the trispectrum phaseψ2

2, x is
generally estimated by its principal value,̃ψ2

2, x, given, for
everyk1, k2, k3 (0 ≤ k1, k2, k3 < N), by:

ψ̃2
2, x(k1, k2, k3) =

arctan(=(Γ2
2, x(k1, k2, k3)),<(Γ2

2, x(k1, k2, k3))) (6)

where< and= refer to as the real and imaginary parts, and
arctan is the four-quadrant arc tangent operator that forces
the angle functionψ̃2

2, x to lie between±π radians. These
principal values are also calledwrappedphase values because
the absolute phase is wrapped into the interval[−π, π] by the
following non-linear process:

∀(k1, k2, k3) ∈ {0, 1, . . . , N − 1}3

ψ̃2
2, x(k1, k2, k3) = ψ2

2, x(k1, k2, k3) + 2πI(k1, k2, k3) (7)

whereI is an integer function that forces̃ψ2
2, x to belong to

[−π, π]. Thus, fixingk3 to α in (7), summing the result over
the discrete frequenciesk2 (0 ≤ k2 < N ) and using (5), we
have for everyk1 (0 ≤ k1 < N):

∑N−1
k2=0 ψ̃

2
2, x(k1, k2, α) = N(φh(k1) + ξ22, s − φh(−α))

+2π
∑N−1

k2=0 I(k1, k2, α)
(8)

The discrete phase functionφh can thus be extracted from
equation (8) provided that aphase unwrappingscheme is
performed before extraction. In other words, the following
phase unwrapping problem has to be solved:

Problem 2: Letq and ψ̃ be a non-zero integer and a phase
function of{0, 1, . . . , N−1}q into [−π, π], respectively, find
the phase jump functionJ of {0, 1, . . . , N−1}q into

�
such

that the unwrapped phase functioñψu given by:

∀k ∈ {0, 1, . . . , N − 1}q, ψ̃u(k) = ψ̃(k) + 2πJ(k) (9)

is as continuous (smooth) as possible.

Some methods can be found in the literature in order to
solve problem 2 (see [8] and [6] forq = 2 and q = 3,
respectively). However, note that problem 2 has not a unique
solution, but it has a class of solutions, pairwise equal within a
multiple of 2π. Consequently, in the light of equation (8), the
unwrapping step can be achieved at three different levels, each
one leading to a particular phase retrieval approach. The first
approach consists in applying a Three-Dimensional (3D) phase
unwrapping scheme [6] tõψ2

2, x to obtain, for everyk1, k2, k3

(0 ≤ k1, k2, k3 < N ), an estimate,ψ̃2,u
2, x, of ψ2

2, x up to an
additive constant:

ψ̃2,u
2, x(k1, k2, k3) = ψ2

2, x(k1, k2, k3) + 2πIu (10)

whereIu is an unknown integer constant. An estimate,φ̃h, of
φh up to an additive constant,a(α)=ξ22, s−φ(−α)+2πIu, may
then be derived by i) fixingk3 to α, ii) summing overk2 and
iii) dividing by N . A second solution can be obtained using a
2D phase unwrapping process [8] of the functionψ̃2

2, x(., ., α)
whereα is fixed. Then, we get, for everyk1, k2 (0 ≤ k1, k2 <
N ), an estimate,̃ψ2,u

2, x(., ., α) of ψ2
2, x(., ., α) up to an additive

constant:

ψ̃2,u
2, x(k1, k2, α) = ψ2

2, x(k1, k2, α) + 2πI ′u(α) (11)

where I ′u(α) is an unknown integer constant. An estimate,
φ̃h, of φh can thus be derived, from (11), using the following
equation, for everyk1 (0 ≤ k1 < N ):

φ̃h(k1)
def
=

1

N

N−1∑
k2=0

ψ̃2,u
2, x(k1, k2, α) = φh(k1) + a′(α) (12)

where the constanta′(α) is given bya′(α) = ξ22, s−φ(−α)+
2πI ′u(α). The third and last approach consists of applying a
1D phase unwrapping procedure to the left term of equation
(8) and dividing the result byN . We then obtain a new
estimate,φ̃h, of φh up to an additive constanta′′(α)= ξ22, s−
φ(−α)+2πI ′′(α)/N whereI ′′(α) is an unknown integer. For
the sake of convenience, the three4-PEP approaches presented
previously will be referred, in the sequel, to as4-PEP3D, 4-
PEP2D and4-PEP1D, respectively. Besides, since aq-th order
spectrum (q > 3) may contain several 2D slices of sufficient
goodness, an improved final phase estimate can be obtained
by averaging. In such a case, the averaging can be done in
the ei· domain just before the division byN . Moreover, if the
filter impulse response has taps with values in the complex
field, a non-zero value has to be chosen forα. Indeed, ifα is
nul then equation (5) shows thatφh(0) cannot be estimated.
On the other hand, when the system is real,φh(0) is equal
to zero. Consequently,α can be set to zero and the constants
a(0), a′(0) or a′′(0) can be deduced from̃φh(0). Note that
for real systems, the constantsa(0) anda′(0) are necessarily
multiples ofπ sinceξ22, s is a multiple ofπ.

B. The (q1, q2)-PEP methods (q2>q1≥3)

The originality of this algorithm is the joint exploitation
of a 1D slice of oneq1-th order spectrum and one 2D slice
of the q2-th order spectrum(q2 > q1 ≥ 3). As an example,
the approach is presented hereafter using the fourth (q1 = 4)
and sixth (q2 = 6) order spectra, named trispectrum and
quintuspectrum of the data respectively. The method using the
third and the fourth orders was briefly investigated in [9]. The
extension to the(q1, q2)-th order, such as(q1, q2) = (4, 5)
or q2 > q1 ≥ 5, can be easily realized from the following
discussion.

For (q2, r2) = (6, 3), property 1 implies, for every
k1, k2, k3, k4, k5 (0 ≤ k1, k2, k3, k4, k5 < N):

ψ3
3, x(k1, k5, k3, k4, k2)=φh(−k1−k5−k3−k4−k2)+

φh(k1)+φh(k5)−φh(−k3)−φh(−k4)−φh(−k2)+ξ
3
3, s (13)
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whereψ3
3, x is the phase of the discrete output quintuspectrum

Γ3
3,x and ξ33, s is the phase associated with the marginal

source cumulantC3
3, s. According to the cumulant definition, it

appears thatC3
3, s is a real number and thusξ33, s is a multiple

of π. Based on the difference between equations (13) and (4),
we get:

ψ3
3, x(k1, k5, k3, k4, k2)−ψ2

2, x(k1, k2, k3)=ξ33, s−ξ22, s +

φh(−k1−k5− k3−k4−k2) − φh(−k1−k2−k3) + (14)

φh(k5)−φh(−k4)

Next, k2, k3 andk4 have to be fixed to particular frequencies
α, β andγ (0≤α, β, γ<N ), respectively, chosen using both
the 1D and 2D frequency content criteria defined in section III-
C. Summing (14) over all the discrete frequenciesk1 (0≤k1<
N−1), it can be easy shown that, for everyk5 (0 ≤ k5 < N):

∑N−1
k1=0 ψ

3
3, x(k1, k5, β, γ, α) − ψ2

2, x(k1, α, β) =
N(φh(k5) − φh(−γ) + ξ33, s − ξ22, s)

(15)

Therefore, the phase responseφh could be estimated from the
previous equation. However, as it was said in section III-A,
the output polyspectrum phase has to be estimated through
its principal value. So, in order to obtain the true phase up
to an additive constant, we must perform an additional step
of phase unwrapping (see problem 2). This problem can be
resolved in several ways, depending on the level where the
unwrapping scheme is applied to the output quintuspectrum
and trispectrum phases. For the sake of convenience, in this
section we only present two different approaches. The first
one consists of applying a 2D phase unwrapping method to
function ψ̃3

3, x(., ., β, γ, α) defined fromψ̃3
3, x by fixing some

frequencies toβ,γ andα respectively. In fact, sincẽψ3
3, x is a

function of five variables,ψ̃3
3, x(., ., β, γ, α) is obtained from

ψ̃3
3, x by fixing its three last variables, namelyk3, k4 and

k2 (see equation (14)), toβ, γ and α respectively. So the
unwrapped functioñψ3, u

3, x(., ., β, γ, α) and ψ̃2
2, x(., α, β) (where

ψ̃2
2, x(., α, β) is obtained fromψ̃2

2, x by fixing k2 and k3 to α
andβ, respectively) are subtracted and then they are summed
over all the frequenciesk1 (0≤k1<N−1). Finally, the result
is divided byN in order to estimateφh up to an additive
constant. The second approach consists of i) summing up
the function ψ̃3

3, x(., ., β, γ, α) − ψ̃2
2, x(., α, β) with respect to

its first variable,k1, over all the discrete values belonging to
{0, 1, . . . , N−1}, ii) unwrapping the result using a 1D phase
unwrapping process, and iii) dividing the result byN . In the
sequel, these two methods will be referred to as the (4, 6)-
PEP2D and (4, 6)-PEP1D algorithms, respectively.

Moreover, as explained in the previous section, one should
be cautious about the choice ofγ. Indeed, if the taps of the
impulse response are in the complex field, a non-zero value
has to be chosen forγ in order to be able to estimateφh(0).

C. Toward a 2D frequency content criterion

One of the particularities of the PEP methods with regard
to the others is the need of a ”good” 2D polyspectrum slice.
Therefore, we decided to extend the criterion proposed by
Pozidis et al. [21, eq. 25] for the selection of the best 1D slice.

More precisely, in order to select the appropriateq-th order
(q > 3) 2D slice, we propose to choose the set (α1, . . . , αq−3)
which maximizes the following criterion:

FC2D(α1,. . . ,αq−3)=
1

N2

N−1∑
k1=0

N−1∑
k2=0

|Γq−r
r,x (k1,k2,α1,. . . ,αq−3)|

(16)
This procedure implies the estimation of all theq-th order 2D
slices. Another way, less expensive in terms of computational
cost, consists of i) choosing the frequency indexα which
maximizes the modulus of the power spectrumΓ1

1,x and ii)
fixing the set (α1, . . . , αq−3) to (α, . . . , α). This idea was first
suggested by Pozidis et al. [21] in order to select the bestq-th
order 1D slice.

IV. A N ANALYSIS OF ASYMPTOTIC CONSISTENCY OF THE

PEPAPPROACH

We provide, in this section, an analysis of the asymptotic
behavior of the4-PEP2D and (4, 6)-PEP2D methods when
Flynn’s algorithm is used in order to achieve a 2D phase
unwrapping [8]. Indeed, Flynn’s method is one of the most ro-
bust algorithms with respect to false discontinuities [8],which
could appear in the wrapped phase because, for instance, of a
poor frequency sampling of the corresponding polyspectrum.

A. Preliminary results

As a first result, let’s recall the following lemma [4]:

Lemma 1: Let Γ̂q−r
r, x be the estimate of theq-th order

(q ≥ 2) spectrum,Γq−r
r, x , of a stationary-ergodic process

{x(m)}m∈
�, defined as a weighted smoothing of theq-th order

periodogram. By properly choosing the weighting sequence
with increasing sample size, and under suitable regularity
conditions, the estimatêΓq−r

r, x is asymptotically unbiased and
consistent.

Now, what happens as far as the wrapped phase,ˆ̃
ψq−r

r, x , of Γ̂q−r
r, x

is concerned? Does it converge in probability to the wrapped
phase,ψ̃q−r

r, x , of Γq−r
r, x ? If it does, is it asymptotically unbiased

and consistent? The answer ensues from the following results:

Theorem 1: Under the assumptions of lemma 1, the

wrapped phase,ˆ̃ψq−r
r, x , of Γ̂q−r

r, x converges in probability to the
wrapped phase,̃ψq−r

r, x , of Γq−r
r, x .

A proof is given in appendix VII-A. The following corollary
ensues from theorem 1.

Corollary 1: Under the assumptions of lemma 1, the

wrapped phase,ˆ̃ψq−r
r, x , of Γ̂q−r

r, x is asymptotically unbiased and
consistent.

The proof is then straightforward since the phase estimation
error is bounded. Before analyzing the asymptotic properties

of the estimateN ˆ̃
φh of Nφh when4-PEP2D and (4, 6)-PEP2D

are used, let’s consider the following result:

Theorem 2: Letα = (α1, . . . , αq−3), ψ̃q−r,u
r, x (., .,α) and

ˆ̃
ψq−r,u

r, x (., .,α) be aq−3-tuple of{0, 1, . . . , N−1}q−3, the un-
wrapped phases computed by applying Flynn’s method to the
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wrapped phases̃ψq−r
r, x (., .,α) and ˆ̃

ψq−r
r, x (., .,α), respectively.

Under the assumptions of lemma 1, the estimateˆ̃
ψq−r,u

r, x (., .,α)

of ψ̃q−r,u
r, x (., .,α) is asymptotically unbiased and consistent.

A proof is given in appendix VII-B.

Now let W (k) and V (k, k′) be random variables de-

fined by W (k) =
ˆ̃
ψq−r

r,x (k,β)− ψ̃q−r
r,x (k,β) and V (k, k′) =

ˆ̃
ψq−r,u

r, x (k, k′,α)−ψ̃q−r,u
r,x (k,k′,α), respectively, where(k, k′)∈

{0,. . . , N−1}2, β = (β1, . . . , βq−2) ∈{0,. . . , N−1}q−2 and
α=(α1, . . . , αq−3)∈{0,. . . , N−1}q−3. Next, letL2(Ω, T ,P)
be the Hilbert space of second order random variables.
SinceW (k) andV (k, k′) are elements ofL2(Ω, T ,P), using
corollary 1, theorem 2 and Schwarz’s inequality we get the
following proposition.

Proposition 1: Under the assumptions of lemma 1,
E[W (k)W (k′)], E[V (k, k′)V (k′′, k′)] and E[V (k, k′)W (k′′)]
converge to zero, whereE denotes the mathematical expecta-
tion operator.

B. About the4-PEP2D and (4, 6)-PEP2D methods

According to equation (12) and using the notations of the
previous subsection, for everyk1 belonging to{0, . . . , N−1},
we get:

N(
ˆ̃
φh(k1) − φ̃h(k1)) =

N−1∑
k2=0

V (k1, k2) (17)

Thus we deduce from (17), theorem 2 and the linearity of

the mathematical expectation that the estimated phase,ˆ̃
φh,

obtained by the4-PEP2D method is asymptotically unbiased.
The same result is also true for the (4, 6)-PEP2D algorithm. In
fact, the following equation can be easily derived from sections
III-B and IV-A:

N(
ˆ̃
φh(k5) − φ̃h(k5)) =

∑N−1
k1=0 (V (k1, k5) −W (k1))

(18)
The asymptotically unbiasedness ofˆ̃

φh is then directly deduced
from (18), corollary 1, theorem 2 and the linearity of the
mathematical expectation.

Now the variances ofˆ̃φh associated to the4-PEP2D and
(4, 6)-PEP2D methods are given by:

N2
E[(

ˆ̃
φh(k1) − φ̃h(k1))

2] =
N−1∑
k2=0

N−1∑
k′

2
=0

E[V (k1, k2)V (k1, k
′
2)] (19)

and

N2
E[(

ˆ̃
φh(k5) − φ̃h(k5))

2] =
N−1∑
k1=0

N−1∑
k′

1
=0

(E[V (k1, k5)V (k′1, k5)]−E[V (k1, k5)W (k′1)]+

E[W (k1)W (k′1)] − E[W (k1)V (k′1, k5)]) (20)

respectively. Then, using proposition 1 it appears that both pre-
vious equations converge to zero, which shows the consistency
of the 4-PEP2D and (4, 6)-PEP2D algorithms.

V. COMPUTER SIMULATIONS

The objective of this section is twofold: i) to demonstrate
the performances of the proposed PEP algorithms, applied to
band-limited systems, comparing them with those of some
efficient phase retrieval techniques, referred to as Petro/Pozi
[20] and q-Pozi/Petro [21] (q= 3 and q= 4 when the output
bispectrum and trispectrum are used respectively) and ii) to
show that the PEP methods are more robust to a wrong choice
of the polyspectrum slices used in the reconstruction procedure
compared to methods quoted previously. Note that, although
the Pozi/Petro approach [21] allows for complete system
reconstruction, we only evaluate its ability in recoveringthe
system phase. Moreover, we decided to show the performances
of the PEP2D methods, that is, the PEP algorithms which
use a 2D unwrapping scheme, since simulations proved their
superiority over the other PEP approaches. Recall that Flynn’s
minimum discontinuity method [8] was used, as far as the 2D
unwrapping processing is concerned. D.C. Ghiglia et al. [8,
pp.151–177] show that this finds a solution that minimizes
the discontinuities. The algorithm achieves this goal by using
a tree-growing approach that traces paths of discontinuities in
the phase, detects the paths that form loops, and adds multiples
of 2π to the phase values enclosed by the loops to minimize the
discontinuities. This process is performed iteratively until no
more loops are detected. The process is guaranteed to converge
to a ”minimum discontinuity” solution.

So, four computer experiments are presented in the fol-
lowing subsections in order to compare the PEP2D methods
with the Petro/Pozi,3-Pozi/Petro and4-Pozi/Petro algorithms.
In each experiment, two stationary processes were generated
using two non-minimum phase bandlimited systems defined
by:

∀m ∈ {−9, · · · , 6}, h1(m) = 0.77|
m

2
| cos(0.49πm)

+0.8(0.65)|
m

2
| sin(0.38π +

π

5
)

and:

H2(z) = 1 − 1.25z−1 + 1.75z−2 − 5.25z−3 − 12.5z−4

+18z−5 + 9z−6 − 2.86 × 10−6z−7 + 5.25z−8

+0.75z−9 + 1.75z−10

whereh1 andH2 represent the impulse response of a band-
pass filter and the transfert function of a proakis-a channel,
respectively. It should be noted that the discrete-time proakis-
a channel is typical of the response of a good quality telephone
channel [22]. Next an additive zero-mean white gaussian noise
was added to the outputs. The noisy sequence is then divided
to records of 256 samples, and an indirect method is used
to estimate the polyspectra, with a DFT size of64 samples.
As a performance index of the phase estimation methods, we
used the Normalized Mean-Squared Error (NMSE) criterion
[5, eq. 53] between the true channel impulse response and its
estimated impulse response. Note that the estimated impulse
response was computed in time-domain using the true filter
magnitude combined with the recovered phase.
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A. Data length effects

In this experiment, we set the Signal to Noise Ratio (SNR)
to 15 dB and varied the data length. Two different studies were
then conducted. The first one relates to non-symmetric input
sources (we used a zero-mean exponentially distributed i.i.d.
sequence) and the second one deals with symmetrically dis-
tributed sources (a Binary Phase Shift Keying (BPSK) source
in baseband with a square transmit filter and a symbol rate
equal to the sample rate was then used). Consequently, since
the i.i.d. exponential sequence has a non-zero skewness, the
first study allows to compare the performance of the3-PEP2D,
(3,4)-PEP2D, Petro/Pozi and the3-Pozi/Petro algorithms. On
the other hand, since the BPSK signal is symmetrically dis-
tributed, the trispectrum (q=4) of the observations was used
in the second study in order to compare the performances of
the 4-PEP2D and4-Pozi/Petro techniques.

Figures 1(a), 1(b) and figures 1(c), 1(d) display the obtained
results corresponding to the exponentially distributed i.i.d se-
quence and to the BPSK source, respectively. In both cases, the
variations of the NMSE criterion for both impulse responses
h1 andh2 as a function of the data length show clearly that the
PEP methods perform better than the other methods, except
in figure 1(b) where the performance of the (3,4)-PEP2D for
h2, Petro/Pozi and3-Pozi/Petro methods are equivalent.
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Fig. 1. NMSE as a function of the data length: (a) and (b) for anexponential
distribution and (c) and (d) for a BPSK.

B. Signal to noise ratio effects

We generated 2048 samples of data and varied the SNR.
Then the performance of the six methods cited in V-A were
compared again. As in the previous experiment, two kinds
of results were obtained: those associated with a zero-mean
exponentially distributed i.i.d. sequence, plotted in figures 2(a)
and 2(b) and those dealing with a BPSK, shown in figures 2(c)
and 2(d). It appears in figures 2(a) and 2(b) that the PEP2D

methods lead to better results, especially for low SNR values.
The superiority of the PEP2D approach is even more obvious
in figures 2(c) and 2(d), whatever the SNR value.
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Fig. 2. NMSE as a function of the SNR: (a) and (b) for an exponential
distribution and (c) and (d) a BPSK.

C. 1D or 2D slice selection effects

In this experiment, the data length and the SNR were
both fixed to 2048 samples and 15 dB, respectively and
two different kinds of input sequence, namely the zero-mean
exponentially distributed i.i.d. signal and the BPSK source,
were considered again. The NMSE of the output of the
Petro/Pozi,3-Pozi/Petro,4-Pozi/Petro,4-PEP2D, (3,4)-PEP2D
and the (4,6)-PEP2D methods were computed as a function of
the used polyspectrum sliceα (α ∈ {1, . . . , N−1}) introduced
in section III-C. The results are presented, in figures 3(a) and
3(b) for an exponentially distributed i.i.d. sequence and in
figures 3(c) and 3(d) for the BPSK source, in parallel with the
Magnitude Response (MR) of the corresponding filter. Note
that, in order to improve the readability of the results, theMR
was normalized with respect to the maximum value of NMSE
obtained at the output of the different algorithms. Clearlythe
(3,4)-PEP2D and (4,6)-PEP2D methods seem to offer a much
greater flexibility with respect to the polyspectrum slice selec-
tion and they seem to be more robust when the chosen slice
corresponds to a region where the noise contribution to the
polyspectrum output dominates the input signal contribution.

VI. CONCLUSION

We propose in this paper a new family of methods, called
PEP (Phase Estimation using Polyspectrum slices) methods,
in order to solve the phase estimation problem for non-
minimum phase systems. These methods, exploit only 1D
and 2D slices of higher order spectra. They can be divided
in two classes: theq-PEP (q ≥ 3) methods, which use one
particular 2D slice of theq-th order spectrum, and the (q1, q2)-
PEP (q2 > q1 ≥ 3) methods, based on the joint exploitation
of one special 1D slice of theq1-th order spectrum and one
particular 2D slice of theq2-th order spectrum. There are
some important differences between our methods and those
proposed by Petropulu et al. [20] and by Pozidis et al. [21].
Indeed, while the Petro/Pozi [20] is a recursive method and
the Pozi/Petro [21] can be considered as a block method; our
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Fig. 3. NMSE as a function of the frequency slice, with a data length of
2048 samples and SNR=15 dB: (a) and (b) for an exponential distribution and
(c) and (d) for a BPSK.

methods estimate each phase value independently from the
others. Contrary to Petro/Pozi and Pozi/Petro which are based
on two 1D slices of the q-th order spectrum, the q-PEP ap-
proaches exploit one 2D slice q-th order spectrum. Regarding
the (q1, q2)-PEP methods, its originality is the simultaneous
exploitation of one 1D slice ofq1-th order spectrum and one
2D slice of q2-th order spectrum. This joint exploitation of
one 1D slice and one 2D slice has never been proposed in
literature. An important result of this joint exploitationof two
distinct q-th order spectra is the flexibility of the (q1, q2)-PEP
methods regarding the frequency slice selection compared to
the classical methods. It is also shown in this paper that the
PEP methods are easy to implement and they are appropriate in
any kind of system, whether real or complex. In addition, the
recovered phases are shown to be asymptotically consistent.
The good behavior of the PEP2D is confirmed through several
computer simulations. Indeed, for band-limited systems, the
PEP2D methods provide superior performance, as compared
with the classical algorithms, for both symmetrically and non-
symmetrically distributed sources.

VII. A PPENDIX

A. Proof of theorem 1

For the sake of readability and clarity, we omitted the”q−1”-
tuple (k1, . . . , kq−1) in the sequel, that is to say, the point
(k1, . . . , kq−1) where the functionf is evaluated is omitted
and valuef(k1, . . . , kq−1) is simply denoted byf . Indeed,
the following proof is valid for any point(k1, . . . , kq−1) ∈
{0, 1, . . . , N−1}q−1. Then, leta, b, â, b̂, δa and δb be the
real part ofΓq−r

r, x , the imaginary part ofΓq−r
r, x , the real part of

Γ̂q−r
r, x , the imaginary part of̂Γq−r

r, x , the differencea − â and
the differenceb− b̂, respectively. Let’s recall thatM denotes
the number of samples used to estimateΓq−r

r, x .
Now, let’s consider the wrapped phasẽψq−r

r, x . Since it may

be close to±π and since its estimateˆ̃ψq−r
r, x is also a wrapped

phase,ˆ̃ψq−r
r, x can be decomposed as̃ψq−r

r, x +δψ̃+2πη whereδψ̃

is the smallest phase error such thatη belongs to{−1, 0, 1}.
The purpose of this appendix consists then in showing thatδψ̃
converges in probability to zero.

For evrey non-zero positive realε, it exists at least one non-
zero positive rrealε′ such that|δa| < ε′ and |δb| < ε′ implies
|δψ| < ε. Indeed, it suffices to takeε′ =

√
2
√
a2 + b2| sin(ε)|

as shown in figure 4. So for every non-zero positive realε, it
exists at least one non-zero positive realε′ such that:

P (|δa| < ε′ and |δb| < ε′) ≤ P (|δψ| < ε)

Fig. 4. A geometric proof in order to relate the real numberε
′ to ε

Now, let’s recall that convergence in mean square implies
convergence in probability according to Tchebycheff inequal-
ity [18]. Consequently, sincêΓq−r

r, x is asymptotically unbiased
and consistent according to lemma 1, bothδa andδb converge
in probability to zero.

Therefore, for every non-zero positive realε′, the left term
of the inequality above converges to one whenM goes to
infinity. Hence the convergence ofP (|δψ|< ε) to one using
the same inequality.

B. Proof of theorem 2

Let I and Î be the phase jump functions computed by
Flynn’s method from the wrapped phases̃ψq−r

r, x (., .,α) and
ˆ̃
ψq−r

r, x (., .,α), respectively, such that, for every(k1, k2,α) of
{0, 1, . . . , N − 1}2:

ψ̃q−r,u
r, x (k1, k2,α) = ψ̃q−r

r, x (k1, k2,α) + 2πI(k1, k2,α) (21)

and:

ˆ̃
ψq−r,u

r, x (k1, k2,α) =
ˆ̃
ψq−r

r, x (k1, k2,α) + 2πÎ(k1, k2,α) (22)

with, according to the notations of appendix VII-A:

ˆ̃
ψq−r

r, x (k1, k2,α) = ψ̃q−r
r, x (k1, k2,α) + δψ̃(k1, k2,α) (23)

+2πη(k1, k2,α)

We know that Flynn’s method finds the phase jump functionI
of (21) by minimizing, with respect toI, the following global
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criterion:

Υ(I) =

∑
k1,k2

|Int(
ψ̃q−r,u

r, x (k1, k2,α) − ψ̃q−r,u
r, x (k1 + 1, k2,α)

2π
)| (24)

+
∑
k1,k2

|Int(
ψ̃q−r,u

r, x (k1, k2,α) − ψ̃q−r,u
r, x (k1, k2 + 1,α)

2π
)|

where Int(.) denotes the function that rounds to the nearest
integer. Inserting (21) into (24), we get the following global
criterion:

Υ(I) =
∑
k1,k2

|A(k1, k2,α)| +
∑
k1,k2

|B(k1, k2,α)| (25)

with:

A(k1, k2,α) = (I(k1, k2,α)) − I(k1 + 1, k2,α))+

Int(ψ̃(k1, k2,α) − ψ̃(k1 + 1, k2,α)/2π)
B(k1, k2,α) = (I(k1, k2,α)) − I(k1, k2 + 1,α))+

Int(ψ̃(k1, k2,α) − ψ̃(k1, k2 + 1,α)/2π)

(26)

Now, what does Flynn’s method give when it minimizes, with
respect toÎ of (22), the following global criterion, that is to

say, whenψ̃q−r
r, x is estimated byˆ̃ψq−r

r, x ?

Υ(Î) =

∑
k1,k2

|Int(

ˆ̃
ψq−r,u

r, x (k1, k2,α) − ˆ̃
ψq−r,u

r, x (k1 + 1, k2,α)

2π
)| (27)

+
∑
k1,k2

|Int(

ˆ̃
ψq−r,u

r, x (k1, k2,α) − ˆ̃
ψq−r,u

r, x (k1, k2 + 1,α)

2π
)|

Inserting (22) and (23) into (27), we get:

Υ(Î) =
∑
k1,k2

|Â(k1, k2,α)| +
∑
k1,k2

|B̂(k1, k2,α)| (28)

with:

Â(k1, k2,α) = (η(k1, k2,α) + Î(k1, k2,α)

−η(k1 + 1, k2,α) − Î(k1 + 1, k2,α)) + Int(ψ̃(k1, k2,α)

+δψ̃(k1, k2,α) − ψ̃(k1 + 1, k2,α) − δψ̃(k1 + 1, k2,α)/2π)

B̂(k1, k2,α) = (η(k1, k2,α) + Î(k1, k2,α)

−η(k1, k2 + 1,α) − Î(k1, k2 + 1,α)) + Int(ψ̃(k1, k2,α)

+δψ̃(k1, k2,α) − ψ̃(k1, k2 + 1,α) − δψ̃(k1, k2 + 1,α)/2π)
(29)

In fact, we deduce from theorem 1 that both variables
δψ̃(k1, k2,α) − δψ̃(k1 + 1, k2,α) and δψ̃(k1, k2,α) −
δψ̃(k1, k2 + 1,α) converge in probability to zero. Conse-
quently, if we assume that both variables|ψ̃(k1, k2,α) −
ψ̃(k1+ 1,k2,α)| and |ψ̃(k1, k2,α)− ψ̃(k1,k2+ 1,α)| are not
exactly equal toπ, we can asymptotically neglect the effect
of the phase error termsδψ̃ in equation (29), which leads

asymptotically:

Â(k1, k2,α) = (η(k1, k2,α) + Î(k1, k2,α)

−η(k1 + 1, k2,α) − Î(k1 + 1, k2,α))+

Int(ψ̃(k1, k2,α) − ψ̃(k1 + 1, k2,α)/2π)

B̂(k1, k2,α) = (η(k1, k2,α) + Î(k1, k2,α)

−η(k1, k2 + 1,α) − Î(k1, k2 + 1,α))+

Int(ψ̃(k1, k2,α) − ψ̃(k1, k2 + 1,α)/2π)
(30)

Then, by identifying (26) and (30), we find, for every
(k1, k2,α), that:

Î(k1, k2,α) = I(k1, k2,α) − η(k1, k2,α) (31)

So, inserting (23) and (31) into (22), we have:

ˆ̃
ψq−r,u

r, x (k1, k2,α) = ψ̃q−r,u
r, x (k1, k2,α) + δψ̃(k1, k2,α) (32)

According to theorem 1, this last equation clearly shows that
ˆ̃
ψq−r,u

r, x (., .,α) is asymptotically unbiased and consistent when
Flynn’s method is used.
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