THREE DIOPHANTINE EQUATIONS — PART I”

IRVING ADLER
North Bennington, Vermont

6. THE PELL EQUATIONS

Equation (3) is the special case d = 2 of the equation
(18) s¥ - dt” =1 ,

where d is positive and is not a perfect square, Equation (18) is known as the
Pell equation. Another way of solving Eq. (3) is provided by the following
theorem concerning the Pell equations found in most text books on the theory of
numbers. (For a proof of the theorem, see [2].)

Theorem: If (sl,tl) is the minimal positive solution of Eq. (18), then

every positive solution is given by
(19) s, Tt VA = (s + tlva>“, n > 0.

(A solution (s,t) is called positive if s > 0, t > 0.) The minimal positive
solution of Eq. (3) is (3,2). Then, according to this theorem, all positive solu-

tions are given by
(20) s, *t V2= G+2v2)", n=1,2,3--.
Equations (15) and (16) are easily derived from Eq., (20) as follows:

s, tt V2= (3+ 2v2)® = 3+2v2 3+ 2vE) = (5,47t VAE+2V2

= (s, *t4t )T @s 4t 3t:n_1)\/2~ .

n-1

= = +
Therefore S, Ssn_1+ 4tn—1’ and tn an—l Stn—l .

7. RECURRENCE RELATIONS
If (xn,zn) is one of the sequence of non-negative solutions of Eq. (1)

with n > 2, we can derive from Egs. (7) and (8) a formula that expresses X,
*Part I appeared in the December 1968 Issue.
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as a linear function of X1 and X o andaformula that expresses z  asa

linear function of Z, 1 and Z o0 If we replace n by n-1 in Egs. (7) and

(8), we get

(21) X4~ 3xn_2+ :Zzn_2 +1,
(22) Zpq = 4Xn—2 +3z, o * 2.
From (21) and (22) we get

(23) 2Zn-2 = Xiq 3Xn—2 -1,
24) 4% o = Zpq T 32, 5 2.

Then, from Egs. (7), (22) and (23),

= + +
X, 3% 1 2z, 4 1.

X = 8% t2(x otz ,+2) 1.

= +
Xn Elxn_1 + 8Xn—2 + 6zn_2 5,

+ 3(X

NPEL NP R

X = 3x

+ 8x
n n=-1 n

-2
(25) X = 6xn_1—-x + 2.,

n n-2

Similarly, from Egs. (8), (21) and (24),

z, = x 4t sz, 4 % 2.
7 = 4@x, gt 2z, ot 1)+ 82 4 Y 2.
z = 12xn 2+ Szn_z + 3Zn—1 + 6.
z, = 3(zn—1 - 3z 2 2) + 8zn_2+ 3z -1 + 6.,
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(26) z, = 6zn_1 “Zpo e

EXERCISES

5. Let (un, vn) be the nth solution in positive integers of Eq. (2),

n 2 2., Use Egs. (12) and (13) to derive the recurrence relations
(27) u = 61,1n -u

(28) Ve T 6vn_1 = Vp-g -

6, Let (sn,tn) be the nth solution in positive integers of Eq. (3), n

2 2. Use Eqgs. (15) and (16) to derive the recurrence relations
(29) 5 = 6s
(30) t = 6tn -t

8. CLOSED FORMULAS

If a sequence AT AN SURAREN S PRRE is defined by specifying the values of
the first few terms and determining the values of the rest inductively by means
of a linear recurrence relation, then there is a standard technique for finding
a formula that expresses Y in terms of n. For example, it can be shown

that if the recurrence relation is the equation

(31) Vipg =y TV, = O
then

_ n n
(32) Yn T C1T1 T Cofg

where ry and r, are the roots of the characteristic equation

(33) E“-6E+1 = 0,
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and the constants ¢y and c, are determined by the values of Y1 and Yoe
(See [3] for a proof of this assertion.) The roots of (33) are 3+ 2\/2 and 3

- 2\/2_. So in this case

(34) v, = ey 3+ 2V2)" + ¢y (3 - 2v/2)"

The recurrence relations for Zos Vs 8 and tn all have the form (31)
with characteristic equation (33). Hence the closed formulas for Zps Vo 8y
and t all have the form of Eq. (34), and differ only in the values of the con-
stants ¢, and Cqe To determine the constants in the formula

z = c1(3+2\/§)n+ c2(3—2\/§)n ,

we make use of the fact that Z =1 and zy = 5, Then

1= ¢, (3+2V2)°+ cy(3 - 2v3)? |

5= o 3+2VE) ¢, (3 - 2v2)! .

Therefore ¢, + ¢, =1 and ¢, - ¢, = i\/2. Consequently, c, = Ie+ \/5),02

= %(2-V?2), and

(35) a = z}[(2+\/§) B+2V2)" + 2 -V2) 3 - 2\/5)“] .

EXERCISES
7. Determine the values of ¢y and Cy in each of these closed formulas:
(36) s, = ¢ 8+2V2)" + ¢,3 - 2V2)"
(37) t, = c, 3+ 2V +cy(3 - 2V ;
(38) v, o= ¢ 2v2)" + ey(8 - 2v2)" .

It can be shown that if the recurrence relation defining a sequence {yn}
is the non-homogeneous equation



1969 ] THREE DIOPHANTINE EQUATIONS — PART II 185

(39) yn+2 - 6yn+1 + Yn = 2 9
then

= n n_3
40) Y clr1 + czrz 3

where r, and r, are the roots of (33), and c, and ¢, are determined by the
values of Yo and Yy The recurrence relations for X and w have the form
of (40). Hence the closed formulas for X and s after evaluation of the

constants ¢, and ¢ are

1 2°
(41) x, = 1 [(1 FV2)E+2Vv2) (- V2)6 -2V - 2} ,
(42) w, = t[Erevatr e-2vE” - 2],

9. HOW EQUATIONS (1), (2), AND (3) ARE RELATED TO EACH OTHER

The sequence of non-negative integers { zn}, {vn} and {tn§ which
arise in the solution of Egs. (1), (2) and (3), respectively, all satisfy the same
recurrence relation (31). This shows that the solutions of Egs. (1), (2) and (3)
are intimately related to each other, We shall now derive the equations that
relate them to each other from the closed formulas for Xs Zps Sps tn, u,
and \~ The formulas for Zs X and u,  are Egs. (35), (41) and (42), re-

spectively. The formulas for S, tn and Vo obtained in Exercise 7 are

(36") s, = %[<3+ 2v2)"' + (3 - z\@)“} ,
(37") b = %——5 [(3 +2v2)" - (3 - 2\@“] :
(38") v, = Y2 [6+2va®- - 2\/5)“} .

By solving Eqgs. (42) and (38') for (3 + 2\/5)n and (3 - 2\/5)n, respectively,

we find

43) @+2V2)" = 20 +2V2v +1,
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(44) 3-2v2)" = 2u_- 2Vav +1.

Making these substitutions for (3+2V/2)" and (3 - 2V2)" in Egs. (41) and

(35), we obtain the following equations relating the solutions (xn, Zn) of Eq.

(1) to the solutions (un, Vn) of Eq, (2):

(45) X = ou, + .?.vn s

(46) Z_ = 2u_+2v_+ 1,
n n

If we solve Egs. (45) and (46) for u, and vy we get these equations:

(47) un=zn-xn—1,
48) v, = %(an -z 1),
EXERCISES

8. Use Egs. (36"), (37"), (43) and (44) to derive these equations relating
the solutions (sn,tn) of Eq. (3) to the solutions (un,vn) of Eq. (2):

(49) Sy = 2un + 1,
(50) s t, = 2V,
(51) u, = %(sn - 1),
(52) v, = %tn.

9, Use the results of Exercise 8 and the paragraph that precedes it to
derive these equations relating the solutions (sn,tn) of Eq. (3) to the solu-

tions (xn,zn) of Eq. (1):

(53) s, = 2, -2x -1,
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(54) tn = 2xn -z +1,

(55) X = %(sn+ 2t - 1),
= +

(56) Zn *n t;n °

10. Without using the closed formulas (41), (35), (42) and (38') for X
z s Uy and A respectively, verify that if (xn, zn) is a solution of Eq. (1),
in non-negative integers, and u and v, are defined by Eqs. (47) and (48),
respectively, then u, and v, are non-negative integers, and (un,vn) is a
solution of Eq. (2). Also verify, conversely, that if (un,vn) is a solution of
Eq. (2) in non-negative integers, and X and z are defined by Eqgs. (45) and

(46), respectively, then X and z, are non-negative integers, and (xn,zn)

is a solution of Eq. (1). (See [1], pp. 20-21.)

11. Without using the closed formulas for X Zps Sps and tn’ verify
that if (xn,zn) is a solution of Eq. (1) in non-negative integers, and S, and
l:n are defined by Eqs. (53) and (54), respectively, then Sy and t, are non-
negative integers, and (sn,tn) is a solution of Eq. (3). Also verify, con-
versely, that if (sn,tn) is a solution of Eq. (3) in non-negative integers, and
X and z are defined by Egs. (55) and (56), respectively, then X and z,
are non-negative integers, and (xn, zn) is a solution of Eq. (1).

If we drop the subscripts in Egs. (45) through (56), each pair of equa-
tions, (45) and (46), (47) and (48), (49) and (50), (51) and (52), (53) and (54),
and (55) and (56), defines a linear transformation that converts one of the
Egs. (1), (2) or (3) into one of the other two.

10. FORMULAS FOR GENERATING SIMULTANEOUSLY SUCCESSIVE
SOLUTIONS OF EQUATIONS (1), (2), AND (3)

From Egs. (45) and (50) we get

- = 4+
7) X, =u b,

From Eqs. (45), (46), (12) and (13), we get
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(58) T R
(59) Vep = Vot %y e
Then, starting with uy = 0, Vo = 0, and applying recursively the sequence

of Egs. (49), (560), (37), (56), (58) and (59), we can generate in succession S0

t X and so on,

tgs Xg» Zgr Yypr Vyr Syo bpo Ko Py Upe Voo Spr fpe Fpr
The first ten non-negative solutions to Egs. (2), (3) and (1), respectively, ob-

tained in this way, are tabulated below.

n (un’ Vn) (Sn’ tn) (Xn’ Zn)
0 (0, 0) 1, 0) 0, 1)
1 1, 1 3, 2) (3, 5)
2 (8, 6) 7, 12) (20, 29)
3 (49, 35) (99, 70) (119, 169)
4 (288, 204) (677, 408) (696, 985)
5 (1681, 1189) (3363, 2378) (4059, 5741)
6 (9800, 6930) (19601, 13860) (23660, 33461)
7 (67121, 40391) (114243, 80782) (137903, 195025)
8 (332928, 235418) (665857, 470832) (803760, 1136689)
9 (1940449, 1372105) (3880899, 2744210) (4684659, 6625109)
EXERCISE
12, Find (ulo,vlo), (slo,tlo) and (xlo,zlo) .

11. SOLUTIONS WITH EVEN OR ODD INDEX

It is of interest to examine separately the even-numbered solutions (XZi’
z2i), (uZi’VZi) and (Szi"t2i) of Egs. (1), (2) and (3), respectively, and the
odd-numbered solutions (X21+1’221+1)’ (u21+1,v2.1+1) and (SZi+1’t2'1+1)’ These
solutions can be expressed in terms of the solutions (xi,zi), (ui,vi) and

(Si’ti)' Tor example, we know from Eq. (20) that
- 21 i =2
8oy Tty V2 = (3 F 2Vv2)° = [(3 + 2V/2) ] = (s;Tt;V2)".

That is,
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2, .2
+ = +
Sa1 tZi\/_ (s; +2t7) + 25t V2

Therefore
2 2 2 2
= -+ = - = -+
(60) Soi si 2ti ZSi 1=1 4ti ,
and
(61) tzi = 2siti .

By using Eqs. (48), (50), (54), (55), (56), (60) and (61), we can show that

= = = = - +
(62) Xoi Zti(ti + si) Ztizi 42i v Zzi (2xi z; 1) ,
and
2 2 2 2
= + = - + +
(63) ZZi ti zi (2x.l z.l 1) Zi

By using Eqs. (49), (50), (51), (52), (60) and (61), we can show that

o2 _ 2
(64) Ugy = 21:i SVi s
and
= = = +
(65) Voi Siti 2V.lsi 2vi(2ui 1) .

By invoking Egs. (58) and (59), we can show that

_ 2 _ 2
(66) Ugjtq = (Vi+Vi+1) = (ui+1—ui) s
and
(67) Vorrr = % U T Vg -
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(68)

(69)

(70)

(71)

THREE DIOPHANTINE EQUATIONS — PART II

The following equations are also easily derived:

Sprry = 27 Vip)? = 227 + (2 + ti)z ,
boirr = 27T ) F Vigq) T 22503 Y )
Xoir] = (Zi+ 2xi+ 1)2— zi2 s
Zopy = @ F T DI r

12, SUM AND DIFFERENCE RULES

The following rules are either already included among the equations we

have derived so far, or are easily derived from them,

(56)

(72)

(73)

(74)

(58)

(47

(75)

(76)

(77)

(78)

(79)

Sl T o7
Si -4 T %y
UoF VS Uyt Vi S %(Zi -1,
T R TR (R
ZpTR T Uiy o
zi-xi = ui + 1 ,
Saitby T H TE
Sgi 7ty T & g s
Ugy Vo T2V (VT Vi)
Ugi = Vai T 2Vp(h - )
Zoi X9y T (Zi+ti)2 g

[Apr.
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_ 2 _ 2
(80) Zoi " Xpr T (Y)Y T sy
_ 2
(81) Sopen tboig = 36Tz 2tz + 2,
2 2
- = = -+
(82) Soiv1 “lairr T Zai T G T
+ = +
(83) Uopr1 T Voirs T (Vi T Vi)
(84) Uopr: T Voprr T ZViit Vieg) o
(85) Z +x = 2(z, + 2x + 1)2
2i+1 " Xair1 72 -
(86) Z - X = 222
211~ F2i+1 i
(87) Tes = (Koo +1) = (e, -u,)2
2ir1 ~ Koy 1Y) -

13. HISTORICAL NOTE
Dickson's History of the Theory of Numbers, Vol. II, contains scattered
notes about Eqgs. (1) and (2), and denotes a sixty-page chapter to the Pell equa-
tion, of which Eq. (3) is a special case. (See [4].) Some of the more interest-

ing facts cited by Dickson are reproduced below,

Concerning Eq. (1).

Fermat showed that if (x,z) is a solution of Eq. (1), then so is (3x+
2z +1, 4x+ 3z + 2), (See Eqgs. (7) and (8).)

C. Hutton (1842) found that if P, /qr is the rth convergent of the con-
tinued fraction for the square root of 2, then p Prr1 and 2qrq p+] 2Fe consec-

utive integers, and the sum of their squares is equal to Aoty *
P, Bachmann (1892) proved that the only integral solutions of x2+y2 =

zz, z >0, x and y consecutive, are given by

x+y+zV2 = (1+V2) 8 + 2v’§)k, k=0,1,2,""" .

R. W. D. Christie (1897) expressed the solutions of Eq. (1) in terms of

continuants. The continuant C(al,az,- oo ,ar) is the rth order determinant
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e
-1 a2 .
. 1
O 4
— T

in which the term uij of the principal diagonal is equal to a;s i=1,°°,1),

each term Uipq 0 (i=1,*+,r ~-1), immediately under the principal diagon-
H

l—
the principal diagonal, is equal to 1, and every other term is equal to 0. Let

al is equal to -1, and each term u, 1.1’ (i=2,---,r), immediately above
k]

Qp stand for the rth order continuant C(2,...,2) in which all the diagonal
elements are 2, and define 20 = 1, Christie observed that the positive inte-

gral solutions of Eq. (1) are given by

= + + seoe = = oo
X, Qp +Qy + Q2r—1’ z, Q2r’ T 1,2, .

This result was proved by T. Muir (1899-1901).
Concerning Eq. (2).

Euler (1732) found solutions to Eq. (2) in the following way: He started
with the identity of Plutarch (about 100 AD),

R . R

By Eq. (2),
u+1) _ 2
2 Vo
2

Then 8v
isfy Eq. (3), which Euler solved by using his general method for solving the

+1=(2u+ 1)2. Let s =2u+1, and t = 2v., Then s and t sat-

Pell equation.
Euler proved, too, that u and v satisfy Eq. (2) only when

u:i"_“‘!i-_z_,‘,:_"_'_é_
AVE)

where
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a= (3+2V2)", B= (3-V2" n=0,1,2,-

From this result, he derived the recursionformulas given by Egs. (27) and (28).

E. Lionnet (1881) stated that 0,1 and 6 are the only triangular numbers
whose squares are triangular numbers, This assertion was proved by Moret-
Blanc (1882), Inthe notation of Section 2, Lionnet's result is that S(T(n)) =
T(m) only if n = 0,1 0r 3. Since S(T(0)) = 0= T(©), ST@I) =1="TQa),
and S(T(3)) = 36 = T(8), it follows from Lionnet's result that the equation
S(T(n)) = T(S(m)) has only the trivial solutions (0,0) and (1,1).

Concerning Eq, (3).

Among those who worked on solving equations of the form Sz—dt2 =1
were Diophantus (about 250 AD), and Brahmegupta (born 598 AD).

The general problem of solving all equations of this form was proposed
by Fermat in February 1657, Hence an equation of this form should be called
a Fermat equation, It came to be known as the Pell equation as a result of an
error by Euler, who incorrectly attributed to Pell the method of solution given
in Wallis' Opera.

Lagrange gave the first proof that every Pell equation has integral solu-
tions with t # 0 if d is not a square,

Others who contributed to the voluminous literature on this equation are

Legendre, Dirichlet and Gauss.
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