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1. Introduction 

In certain finite fields Wp of prime order p, it is possible to write the 
set of nonzero elements, without repetition, in such an order that they form a 
closed Fibonacci-type sequence. For example, in I ^ we may write 

1, 8, 9, 6, 4, 10, 3, 2, 5, 7, 

which evidently has the required property. In [1], a similar example is given 
for]F109* It is implicit in [1], [12], that such sequences exist in 3Fp if ~Fp 
contains a so-called Fibonacci Primitive Root, or FPR: see below for defini-
tions. Here we show (Theorem 4.2) that such sequences exist in Wp if and only 
if Wp contains an FPR; moreover, when Wp does contain an FPR, we show that the 
only such sequences to exist are the "natural'1 ones: that is, the sequences of 
successive powers of FPRs. Of course, it was shown in [1] that if the sequence 
of successive powers of an element is to have this Fibonacci property, then the 
element in question must be an FPR, but here we allow for any sequence of 
elements. 

We also prove (Theorem 4.4) analogous results for Fibonacci-type sequences 
of the set of (nonzero) squares of ¥p. In this context, the sequence 

1, 4, 5, 9, 3, 

is a Fibonacci-type sequence of the squares of F ^ . 
It will be shown that, except for the fields IF̂  and IFg , these phenomena 

only occur in the fields of prime order. 
We wish to thank the referee for pointing out several references, and in 

particular for the information that part of Theorem 2.5 below is proved in 
[10]. 

2. Preliminaries 

In this section we collect some preliminaries from [3], [7], [8], [14], and 
[15]; p will always denote a prime, q will stand for a power of p, ~E?q will 
denote the field of order q, Wq will denote the multiplicative group of Wq, 
while Fn and Ln will, respectively, denote the nth Fibonacci and ntJri Lucas 
number. In addition, if z is an integer, then ~z will denote the image of z in 
Wp (in situations where the prime p is understood) . If g is an element of a 
group, then \g\ will denote the order of g. 

A ^--sequence in a finite field IF is defined to be a sequence 

(5 = (s0, sl9 sl9 . . .) (si e IF), 
where 

sn+2 = sn+l + Sn f o r ^ = 0, 1, 2, ... . 
Any ^-sequence in Wq is periodic with period r < q2 - 1:. see [7, Th. 8.7]. 

This means that 

Sn + r
 = sn f o r ?2 = 0, 1, 2, ..., 

and that v is the least natural number for which this holds. Following Wall 
[15], we write k(p) for the period of the Fibonacci sequence (mod p) ; note that 
De Leon [3] writes A(p) for this number, while Vajda [14] writes P(p, F). 
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Theorem 2.1: ([7, Th. 8.16]). If r is the period of some ^-sequence in Wq, 
where q = pn, then r|fc(p). D 

Theorem 2.2: (Wall, [15]; see also [14, p. 91]). Let p be a prime. Then 

(a) k(p)\p - 1 if p E ±1 (mod 5). 
(b) k(p)\2(p + 1) if p = ±2 (mod 5). D 

The polynomial /(£) = t2 - t - 1 e fp[t] is what is called [7, p. 198], the 
characteristic polynomial of a O-sequence. We have 

Theorem 2.3: ([7, Th. 8.21]). Let p * 5 be a prime. Let s0, sx, ..., be a 
<!>-sequence in ]F̂ . Let f(t) = t2 - t - 1 6 ]Fp [t ] and suppose that ^, ft are the 
roots of f{t) in a splitting field W D Wq. Then there exist a, 3 e ]F such that 

ŝ  = ag^ + 6^, for i = 0, 1, 2, ... . D 

Lemma 2.4: Let p be an odd prime and let n e IN be such that 
ipn - l)/2|2(p + 1). 

Then p < 5 and n < 2. 

Proof: We have 

(p - l)(pn'1 + ... +1) 4(p + 1). 

But (p - 1, p + 1) = 2, because p is odd. Thus (p - 1)|8, and so p € {3, 5}. 
If n > 3 we may easily derive a contradiction, and the assertion follows. 

The first four parts of the following theorem are a combination of results 
from [3], [10], [11] , and [12] (but note that we are working in an extension 
field ]F D JFp rather than in IFp). Proofs of parts (a)-(c) can be found in Phong 
[10, pp. 68-69], or can be extracted from a careful reading of De Leon [3], 
together with Wall's result that kip) is even for p > 2: [11, Th. 4]. Part (d) 
is proved by Shanks [12, p. 164]. We supply proofs for completeness. 

Theorem 2.5: Let p > 7 be a prime. Let g, h be the roots, in a suitable ex-
tension field F 2 Wp9 of the polynomial 

fit) = t2 - t - 1 e Wp[t]. 
Then 

(a) Not both |̂ | and \h\ can be odd. If, say, \h\ is odd, then \g\ = 2|h|. 
(b) If both \g\9 \h\ are even, then \g\ = \h\ is divisible by 4. 
(c) If \g\, say, is even, then \g\ = kip). In particular, fc(p) is even. 

(d) We have #, ft € Wp if and only if p = ±1 (mod 5). 

(e) If |̂ |, say, is of the form pn - 1 or (pw - l)/2, for n e IN, then n = 1, 
# e IFp, and p = ±1 (mod 5). 

Proof: Since #, ft are the roots of fit) = t2 - t - 1, then # = 
\g\ = a and |ft| = b. 

(a) Suppose that b is odd, and note that b = |l/ft|. Since 
follows that \g\ = 2|l/ft|, and thus that a = 2b. 

(b) Suppose that a, b are both even. Then we have 

i = ga = (-i)a/fta = i/fta 

and so ha = 1. Similarly, ^^ = 1, and so a = b. Suppose that a = 2d with d 
odd. Then |g^| = 2 and so gd = -1, the unique element of order 2 in JF*. But 
then 

-1/ft. Write 

|-l| = 2, it 
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hd = (~l)d/gd = -1/-1 = 1, 

and so b is odd5 contrary to hypothesis. Assertion (b) now follows. 
_ (c)_ We adapt the proof of [3, Lem. 1]. It follows by induction that gn = 
F^g + -Fn_i for any natural number n (and similarly for hn) . Since Fk(p) = 0 and 
Fk(p)-l = ls it follows that gk^ = 1 and thus that a\k(p). Similarly, b\k{p). 
In particular^ k(p) must be even^ If Fa = 0, then 1 = ga = Fa _ x; thus, fc(p)|a 
and so fc(p)_= a. Similarly, if ^&_= 0* then fc(p) = b. Suppose then that 
Fa * 0 and 1^ * 0. Then 1 = ga = Fag + Fa.l and so g = (1 - Fa.{)lFa. Thus, 
as in [3], we have 

0 = {g1 - g - \)Fl 

- " ^ " « - l " *?-!> ~ ^a + 2 ^ ^ ) + 1 

= (~Da ~ La + 1. 

Thus, La = 1 + (-l)a. Similarly, Lfc = 1 + (-l)K 
Now, if a is even, then La = 2. But L% - 5F2 = 4 and so F̂  = 0, a contra-

diction. Thus, a must be odd. Similarly, b must also be odd. But this is in 
contradiction to (a). It follows that at least one of Fa , Fh must be zero, and 
assertion (c) follows. 

(d) We have (2g - l ) 2 = 5 e Wp . On the other hand, if w e Wp satisfies 
W2 = 5, then (1 ± w)/2 are the roots of f(t). Thus, gs h E Fp if and only if 
the element 5 is a square in Wp, and this occurs if and only if p E ±1 (mod 5), 
by the quadratic reciprocity law [5, Ths. 9? and 98]. 

(e) Suppose that \g\ = pn - 1 or (pn - l)/2. Then \g\ divides k(p) by (a) 
and (c) above. Suppose that p = ±2 (mod 5). Then k(p) | 2 (p + 1) by 2.2(b). 
Thus, in either case, (pn - 1) /2 j 2 (p + 1). This is impossible by Lemma 2.4, 
because p > 7. Therefore, we must have p E ±1 (mod 5), and so g e Wp by (d) . 
But now k(p) | (p - 1) by 2.2(a), whence (pn_1 + - - • + 1) | 2 and it follows that 
n = 1. D 

3. Fibonacci Primitive Roots 

Definition 3.1: Let /(£) = £2 - t - 1 e ]Fp [t] CWq[t] where q is a power of p. 
Suppose that ^ E Wq is a root of f(t) . 

(a) (Shanks, [12]). We call g a Fibonacci Primitive Root (FPR) in Wq if 
\g\ = q - 1; that is, if g is a primitive root inf^. 

(Jb*) We call g a Fibonacci Square-Primitive Root (FSPR) in Wq if g generates 
the subgroup of squares in Wq ; if q is odd, this means that 

\g\ = (q - l)/2. 
Fibonacci Primitive Roots and related topics have an extensive literature: 

see, for example, references [1], [3], [6], and [9]-[15]. 
In part (b) of the following result, the criterion for the existence of an 

FPR is proved in Theorem 1 of De Leon [3], while the assertions on the number 
of FPRs are proved by Shanks [15, pp. 164-65]. The exceptional cases to this 
theorem (p < 7) will be dealt with in 3.3 below. 

Theorem 3.2: Let p > 7 be a prime and let q = pn where n e M. 

(a) If Wq D Wp possesses an FPR or an FSPR, then Wq = Wp and p = ±1 (mod 5). 

(b) Wp possesses an FPR iff k(p) = p - 1. Further, if k(p) = p - 1, then 
(i) if p E 1 (mod 4), there are two FPRs; 

(ii) if p E -1 (mod 4), there is just one FPR (and one FSPR). 
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(c) Fp possesses an FSPR iff either 

(i) kip) = p - 1 and p = -1 (mod 4), when there is a unique FSPR; or 
(ii) kip) = (p - 1)/2. In this case, we must have p = 1 (mod 4), then 

(a) if p = 1 (mod 8) there are two FSPRs; 
(3) if p E 5 (mod 8), there is a unique FSPR. 

Proof: Again write fit) = t2 - t - 1 G ]Fp [£], and suppose that #, 7z are the 
roots of /(£) in the fieId F^ D lFp . 

(a) Suppose that g is an FPR or an FSPR in ~Fq . Then \g\ = pn - 1 or (pn -
l)/2, and so by 2.5(e), p E ±1 (mod 5) and n = 1. Thus, Wq = Fp. 

(bj If # is an FPR in ]Fp, then |^| = p - 1 is even and so k(p) = p - 1 by 
2.5(c). Further, p = ±1 (mod 5) by 2.5(d). 

Conversely, suppose fe(p) = p - 1. Let # be an even-order root of fit); 
then |^| = p - 1, by 2.5(c), and so ^ G I p by 2.5(e). Thus, g is an FPR in Wp. 
Now, if p E 1 (mod 4), then 4 |p - 1, whence \g\ = |/z | by 2.5(c), and so g, h 
are both FPRs. However, if p = -1 (mod 4), then p - 1 is twice an odd number. 
Thus, by 2.5(a) and 2.5(c), g has order p - 1, and so is an FPR, while h G ~Fp 
has order (p - l)/2, and so is an FSPR. 

(c) Suppose that h G ]Fp is an FSPR. Then \h\ = (p - l)/2, and so 

fc(p) G {p - 1, (p - l)/2} 

by 2.5(a) and 2.5(c). Suppose that kip) = p - 1. Then, by part (b), ]FP pos-
sesses an FPR, which must be the other root g of fit) . But then g is a non-
square in ]Fp, while In is a square and g = -l//z. Thus, -1 is a non-square in ]Fp 
and p E -1 (mod 4) by quadratic reciprocity. This proves the "only if" part of 
(c). 

If kip) = p - 1 and p E -1 (mod 4), then there is a unique FSPR in ~FP 
by (b). Suppose that kip) = (p - l)/2. S ince kip) is even by 2.5, then p = 1 
(mod 4). 

(a) If p E 1 (mod 8), then (p - l)/2 is divisible by 4 and so both roots of 
fit) have order (p - l)/2 by 2.5(a)-(c). These roots belong to Fp by 
2.5(e), and so there are two FSPRs in Wp. 

(3) If p E 5 (mod 8), then (p - l)/2 is twice an odd number. By 2.5(a)-
(c), one root of fit) has order (p - l)/2 while the other has order 
(p - l)/4. Again by 2.5(e), these roots belong tolp, and so there is 
a unique FSPR in Wp. 

Assertion (c) now follows, and the proof is complete. D 

The following proposition lists a collection of easily-verifiable facts 
concerning FPRs for primes p < 7. 

Proposition 3.3: We have 

(a) fc(2) = 3. Let £ be a root in Wk of fit) = t2 + t + 1 G ]F2[t] . Then 
1 + £ is the other root of fit). We have |£| = |l + £| = 3 , and so £ and 1 + C 
are both FPRs in F^; they are also FSPRs because all elements of W^ are 
squares. 

(b) fe(3) = 8. Let e be a root in IFg of p(£) = t2 + 1 e3F3[t]. Then /(£) = 
£2 - £ - 1 G]F3[t] has roots g = n - 1 and 7z = -n - 1 in Fg . Further, |#| = 
\h\ = 8, and so g9 h are FPRfs in I9. 

(c) fc(5) = 20. Because (£ - 3 ) 2 = £2 - t - 1 G]F5[t], then the element 3 G 
]F5 is a double root of fit) in ]F5. Further, 13 J = 4 , so that 3 is the unique 
FPR in!F5. Note that 2.5(c) definitely fails for p = 5. • 
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It should be noted that Brousseau [1] lists the FPRfs for those primes 
p < 300 that possess such, while Wall [15] gives the values of k(p) for all 
primes p < 2000. In section 5 below, we list the FPRs and FSPRs for those 
primes p < 2000 that possess such. 

It is proved in [11], on the assumption of certain Riemann hypotheses, 
that, asymptotically, the proportion C = 0.2657.. . of all primes possess an 
FPR; since, apart from p = 5, the only eligible primes p satisfy p = ±1 (mod 
5), then we are to expect that over half of these possess an FPR. It might be 
of interest to determine the proportion of primes that possess an FSPR. For 
example, there are 146 primes p < 2000 with p = ±1 (mod 5), of which 80 possess 
FPRs and 76 possess FSPRs (see the table in section 5). 

4. Complete ^-Sequences 

Let p be a prime and let q be a power of p. Let © = (SQ9 S^5 ^2* «••) be a 
^-sequence of period v in Wq. We call © a complete ^-sequence in Wq if P = 
q - 1 and if {SQS S]_, ..., sr-i} is precisely the set of nonzero elements of 
~Fq. If {SQ, Sis . .., sr-i} is precisely the set of nonzero squares of Wq, so 
that v = {q - l)/2 if q is odd, then © is called a square-complete ^-sequence 
in Wq . 

Lemma 4 A: Let f(t) = t 1 - t - l e w [t] and let g be a root of f(t) in a field 
I D f p = Then the ^-sequence © = (s0, sx, ...) in IF with s0 = 1, sl = g has 
period a = \g\> and 

{s0, sl5 ..., sa_x} = {1, g, ..., # - 1 }. 

In particular, if g is an FPR, or FSPR, in IF, then © is a complete- or square-
complete ^-sequence in F, respectively. 

Proof: This is clear. D 

We now give our characterization of complete ^-sequences for primes p > 7; 
the cases p < 1 are exceptional and will be dealt with later. It is worth 
observing that if © is a complete ^-sequence in Fp, then the sequence formed by 
multiplying the terms of © by a fixed nonzero element of ~FP is essentially the 
same sequence © with the terms all shifted by a fixed amount; we will thus not 
distinguish between such multiples. 

Theorem 4.2: Let p > 7 be a prime and let q = pn where n € M. Then there is a 
complete ^-sequence in JFq if and only if there is an FPR in TFq, and for this to 
happen we must have q = p. Further, any complete ^-sequence in Wp has the form 
(1, J, J2, ...) where j is an FPR in Fp, and conversely. 

Proof: Let f(t) = t2 - t - 1 € 3Fp [t ] , let g, h be the roots of f(t) in a split-
ting f ield ¥ D JFq. Suppose without loss that \g\ is even; then \g\ = k(p) by 
2.5(c). 

If j is an FPR in Wq, then the 0-sequence (1, J, J2, ...) is complete (in 
Wq) by Lemma 4.1. 

Suppose now that © is a complete ^-sequence in Wq• Then © has period q - 1 
and so q - l|fc(p) by 4.1. If p = ±2 (mod 5), then fe(p)|2(p + 1) by 2.2. Thus, 
< 7 - l | 2 ( p + l ) , which is impossible by 2.4 because p > 7. Therefore, we may 
assume that p = ±1 (mod 5). Then k(p)\p - 1 by 2.2; thus, q - 1|p - 1, and so 
q = p and k(p) = p - 1. Thus, g is an FPR in Wp. Note now that /(£) splits in 
Fp. By 2.3, there exist a, ^ e i p such that 

© = (a + 3, ag + j3/z, a#2 + $h2, . . . ) , 

and because © is complete, 

F* = {ag*1 + Sh1: 0 < i < p - 2}. 
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But h = -l/g = g^~l)/2gP~2 = g^P~5^2. Thus, the map 

gt H> agi + 3#i(3P~5)/2, 0 < i < p - 2, 

is a permutation of W$. But then the polynomial 

p(t) = at + 3t(3P"5)/2 e Wp[t] 

is a permutation polynomial of JFp. But now Hermite's criterion for permutation 
polynomials (see [4, §84] or [7, Th. 7.4]) implies that, in particular, the 
reduction, P(t) say, of (p(t))4 (mod tp - t) has degree d < p - 1. A certain 
amount of calculation reveals that 

P(t) = 6a232tP_1 + «(£), 

where §(£) G 3Fp[t] has degree e < p - 2. It follows that a3 = 0, and so the 
only possibilities for © are (nonzero multiples of): 

(1, g, g2
5 . . . ) , 

and if, also, \h\ = p - 1, 

(1, h, h2, . . . ) . 

This completes the proof. • 

The next theorem characterizes the square-complete $-sequences for p > 7; 
again, the exceptional cases (p < 7) are dealt with later. The characteriza-
tion is almost a word-for-word "translation" of the previous result, but there 
are a number of technical differences in the proof. Hermitefs criterion is not 
directly applicable here, but we can apply ideas from its proof to get what we 
need. We will also need to know that the smallest prime p = ±1 (mod 5) for 
which k(p) < p - 1 is p = 29. This fact is given in Wall [15], but may easily 
be calculated by hand: we need only check the Fibonacci sequences mod 11 and 
mod 19. 

First we need a lemma; it is not new (see [4, §74]) but we indicate a 
proof. 

Lemma 4.3: Let G be a subgroup of W* with |&| = m. Then 

(a) ]T gm = m (considered as an element of IF*) , and 

(b) ]T gd = 0, for 1 < j < m - 1. 
geG 

Proof: 
(a) This follows because gm = 1 for all g e G. 

(h) The elements of G are precisely the roots of tm - 1 G TFq [t]. Then 

geG 
is the sum of the j t h powers of these roots, and the assertion follows by New-
ton's formula [4, §74] and [7, Th. 1.75]. • 

Theorem 4.4: Let p > 7 be a prime and let q = pn where n GIN. Then there is a 
square-complete ^-sequence in Wq if and only if there is an FSPR in Wq , and for 
this to happen we must have q = p. Further, any square-complete 0-sequence in 
Wp has the form (1, J, j 2 , ...) where j is an FSPR in Wp, and conversely. 

Proof: Let f{t) = t2 - t - 1 G ]Fp [t], let #, 7z be the roots of f(t) in a split-
ting field F D Wq . Suppose without loss that \g\ is even; then \g\ = k(p) by 
2.5(c). ^ 

If j is an FSPR in 1F̂ , then the ^-sequence (1, j, j 2 , ...) is square-complete 
(in IF̂  ) by Lemma 4.1. 
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Suppose now that (5 is a square-complete ^-sequence in Wq. Then © has period 
(q - l)/2, and so (q - l)/2|/c(p) by 4.1. If p = ±2 (mod 5), then fc(p)|2(p + 1) 
by 2.2. Thus (q - 1)/2|2(p + 1), which is impossible by 2.4 because p > 7. We 
may therefore assume that p E ±1 (mod 5) 5 and so j, he Wp. Then fe(p)|p - 1 by 
2.2; thus q - 1|2(p - 1), and so q = p and 

fc(p) e {p - 1, (p - l)/2}. 

By 2.3S there exist a, 3 € IFp such that 

© = (a + 35 a# + 3^, a^2 + 3^2
S . . . ) . 

We consider separately the two possibilities for k(p). 

(i) Suppose that k(p) = p - 1. Since © has period (p - l)/2, then 

a + 3 = a#(P-1)/2 + 3^(p"1)/2. 

But \g\ = p - 1 and so g(P~U/2 = -l. If also 17z | = p - 1, then /z^P"1^2 = -l, 
and so a + 3 = -(ot + 3) = 0 . But then © contains the element 0, and so cannot 
be square-complete, a contradiction. Therefore \h\ = (p - l)/2, by 2.5, and so 
a + 3 = -a + 3- Thus a = 05 and so © must be (a nonzero, square multiple of) 

(1, h, h2, ...), 
and h is an FSPR in Wp. 

(ii) Suppose that fc(p) = (p - l)/2. By the Remark before Lemma 4.3, we may 
assume that p > 29. Since \g\ = fc(p), then # is an FSPR in Ip . By 3.2(c), 
p E 1 (mod 4), and so -1 is a square in JFp. We then have ^ - 1 = g(P~3)/2. an(j _^ 
= g^P-1)/\ whence 7z = -1/g = <7 ̂ 3p "7^l+. Write § for the subgroup of squares in 
3F*; then \Q\ = (p - l)/2. Since © is square-complete, we have 

Q = {agt + $hli 0 < i < (p - l)/2} 

= {a#* + 3#i(3p~7)/t|: 0 < i < (p - l)/2} 

= {ao + 3^(3P~7)A: c e 0 . 

Calculation now reveals that 

(ao + 3^3p-7)/4)8 = #(<*), 

where x(t) £ ]Fp [t] is a polynomial of degree at most (p - 3)/2 with constant 
term 70aLf3Lf. There are certain points that require care in the calculation 
here; for example, the second term in the expansion is 

8a 7^V 3P" 7 ) / I * = 8a73^(3P + 2 1 ) / 4 

= 8a73^(p-1)/2£(p+23)/if. 

Now (-(P-D/2 = i because o G Q9 while 1 < (p + 23)/4 < (p - l)/2 is the upper 
bound because p > 29 > 25. Thus, we obtain a term whose degree in o lies 
between 1 and (p - 3)/2. The constant term arises naturally as the "middle" 
term of the expansion, and all other terms have degree between 1 and (p - 3)/2. 
Now 4.3 gives both the first [since (p - 3)/2 > 8] and the last equality in the 
following chain: 

0 = £ °Q = £ (ac + 3^( 3 p" 7 ) / I f) 8 = £ * ( e ) = ((p - 1)72)700^3^ 

It follows (because p > 29 cannot divide 70) that a3 = 0. Thus, the only pos-
sible square-complete ^-sequences in Wp are (nonzero square multiples of) 

(1, g, g2, . . . ) , 

and if, also, h is an FSPR, 
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(1, h, 7z2, . . . ) . 

This completes the proof. D 

The following result mirrors Proposition 3.3, and deals with the primes 2, 
3, and 5. 

Proposition 4. 5: 
(a) The field TS?2 possesses neither a complete ^-sequence nor a square-com-

plete ^-sequence. If £ is as in 3.3(a), then 

1, C, 1 + C, and 1, 1 + £, £ 

are the only complete ^-sequences in IF^; they are also square-complete because 
all elements of IF* are squares. 

(h) The field F3 possesses neither a complete ^-sequence nor a square-com-
plete ^-sequence. If co is any element in IF 9 that is not in F3 then the $-
sequence with SQ = 1, s^ = w : 

1,0), 1 + 0), 1 + 2o), 2, 2o), 2 + 2o)5 2 + GO, 

is in JFg, but there are no square-complete ^-sequences. 

(c) The sequence 1, 3, 4, 2 is the unique complete (̂ -sequence in IF55 while 
this field possesses no square-complete ^-sequence. 

(d) If q is any of 2n, n > 3, or 3n, n > 3, or 5n, n > 2, then IF̂  possesses 
neither a complete f-sequence nor a square-complete ^-sequence. 

Proof: Most of these assertions are straightforward to verify. For part (d) , 
we use 2.1. • 

5. List of FPRs and FSPRs for Primes p < 2000 

We finish with a table of FPRs and FSPRs for those primes p < 2000 that 
possess such; as we have seen, the prime 5 is "singular" and we set it apart in 
the list. By 3.2, the only primes p < 5 eligible are those with p E ±1 (mod 5) 
and k(p) G {p - I, (p - l)/2}; all other primes are thus omitted from the list. 
For each eligible prime, we give the respective root(s) in Wp of /(£) - t2- -
t - 1 G fp[t] when they are either primitive (denoted by P) or square-primitive 
(denoted by Q) . We omit those roots that are not either primitive or square-
primitive. 

Information on the values of k(p) necessary to find the eligible primes was 
taken from Wall [15]. Certain of the calculations were performed by computer 
using the finite field facility in the Group Theory Language CAYLEY [2], 
although much of the work was carried out using nothing more than a pocket 
calculator. 

p FPR (P) or FSPR (Q) p FPR (P) or FSPR (Q) 

5 
11 
29 
41 
61 
79 
101 
131 
179 
191 
239 
251 

3P 
8P 
6Q 
7P 
18P 
30P 
23Q 
120P 
105P 
89P 
224P 
134P 

4Q 

35P 
44P 
50Q 

12Q 
75Q 
103Q 
16Q 
118Q 

19 
31 
59 
71 
89 
109 
149 
181 
229 
241 
269 

15P 
13P 
34P 
63P 
10Q 
IIP 
41P 
168Q 
148Q 
52P 
72P 

5Q 
19Q 
26Q 
9Q 
80Q 
99P 
109P 

190P 
198P 
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p . 
271 
349 
379 
401 
419 
439 
479 
499 
569 
599 
631 
659 
719 
751 
821 
929 
971 
1021 
1051 
1091 
1129 
1181 
1229 
1259 
1319 
1361 
1409 
1439 
1459 
1489 
1531 
1559 
1609 
1621 
1709 
1759 
1801 
1831 
1879 
1901 
1949 

FPR (P) 

255P 
206Q 
360P 
112Q 
399P 
370P 
229P 
275P 
337P 
575P 
HOP 
201P 
330P 
541P 
213P 
31P 
798P 
458Q 
73P 

212P 
328P 
534P 
745Q 

1224P 
920P 
83Q 
125Q 
701P 

1293P 
681P 
88P 

1520P 
636P 
1446Q 
601Q 
859P 
427P 
1053P 
1457P 
98P 

789P 

or FSPR (Q) 

17Q 

20Q 
290Q 
21Q 
70Q 

251Q 
225Q 
233P 
25Q 

522Q 
459Q 
390Q 
211Q 
609P 
899P 
174Q 

979Q 
880Q 
802P 
648P 

36Q 
400Q 
1279Q 
1285Q 
739Q 
167Q 
809P 
1444Q 
40Q 
974P 

901Q 
1375P 
779Q 
423Q 
1804P 
1161P 

p ; 
311 
359 
389 
409 
431 
449 
491 
509 
571 
601 
641 
701 
739 
761 
839 
941 
1019 
1039 
1061 
1109 
1171 
1201 
1249 
1301 
1321 
1399 
1429 
1451 
1481 
1499 
1549 
1571 
1619 
1669 
1741 
1789 
1811 
1861 
1889 
1931 
1979 

FPR (P) 

59P 
106P 
152P 
130P 
341P 
166P 
74P 

388Q 
298P 
137P 
279P 
27P 
119P 
92Q 

498P 
228Q 
526P 
287P 
602Q 
703Q 

1058P 
78P 

405Q 
268P 
453P 
240P 
547P 
283P 
39P 

1291P 
1020Q 
1044P 
855P 
136Q 
321Q 
1554Q 
186P 
1498Q 
824P 
988P 
1935P 

or FSPR (Q) 

253Q 
254Q 
238P 
280P 
91Q 

284P 
418Q 

274Q 
465P 
363P 
675P 
621Q 
670Q 
342Q 

494Q 
753Q 

114Q 
1124P 
845Q 
1034P 
869P 
1160Q 
883P 
1169Q 
1443P 
209Q 

568Q 
765Q 

1626Q 

1066P 
944Q 
45Q 
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