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1. INTRODUCTION

Presented here is a generalization of Fibonacci numbers which
is intimately connected with the arithmetic triangle. It at once goes
beyond and falls short of other generalizations. In section 2 the num-
bers aredefined and denoted by u(n; p, q) where p isa non-negative
integer and q is a positive integer. The characteristic equation is

shown to be

(1.1) LPx-1)%-1 = o.

The numbers are represented in the usual manner in terms of powers
of roots of the equationand certain initial conditions. In section3cer-
tain sums and properties involving sums are developed and in section
4 there is made a beginning in the study of divisibility properties.
The generalization made here may be compared with character-

istic equations obtained in other generalizations:

by Dickinson [2] , x“-x*-1 =0 (a, ¢ integers)
by Miles [4], Koo Dxo1 = 0 (k integral, 2 2)
by Raab [5] s Xr+1 —ax' -b=0 (2, b real; r integral, 2 1)
by Feinberg [8] , Xnu+1 - ; Xui = 0, various positive inte-
i=0 gral values of u, n.

Generalizations by Basin [1] and Horadam [3] involve altering only the
initial conditions of the Fibonacci sequence.

The numbers studied here are special cases of sums defined in
Netto [6] and Dickinson [2] and their definition and relationto the arith-

metic triangle appear in Hochster [7] .
2. THE NUMBERS u(n; p, q)

Let p and g be integerswith p 20 and g > 0. Thenbydefi-

nition the n-th generalized Fibonacci number of step p, q is

277
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e

(2.1)  ulmp a) = <n{§p> ,n 21, uop, )=l
i=0
Here [x] denotes the greatest integer <x. In particular,
u(n-1; 1, 1) = fn (the n-th Fibonacci number), n=1, 2, ...
u(n; 0, 1) = 2%

When the definition is related to the arithmetic triangle one sees that
u(n; p,q) is the sum of theterm in the first column and the n-th row
(counting the top row as the zero-th row) and the terms obtained start-
ing from this term by taking steps p, q -- that is, p units up and q
units to the right.

It follows that

u(0; p, q) = u(l; p, q) = ... =ulptq-1; p,q) = 1, ulptq; p, q) = 2
1f V is the backward difference operator, so that
Vi(x) = {(x)-f(x-1),
then
(2.2) v. u(@ p.q) = u(n-p-q; p» @), 0 2p+q

From properties of binomial coefficients and

v um; p, @) = v&! v p, a)
it follows that
=
_ptq
Vamp 9= £ (PTP;I71P)

1

u(n - p - q; p, 9) ) Z2p+tgq
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This proves (2.2). In terms of forward differences this is

viun-q; p, @) = uln-p-q; p, @) , n2p+gq
The characteristic equation and initial conditions consequently are
(2.3) xPx-1)3-1=0

u(n; p, q) =1, n=0, 1, ..., p+qg-1l.

Let
ptq
u(n; p, q) = X C. X].’l+1
i1
i=1
where X i=1,2,...,(ptq) are the roots of (2. 3).

The derivative of
f(x) = xP (x-1)T -1 is £'(x) = pxP Hx-1)T + g xP (x-1)%7!
-1 -1
= xP7H (x-1)T ((ptq) x-p)

Since no root of f'(x) 1is a root of f(x), it follows that f(x) has no

multiple root. Hence the determinant of the coefficients of

ptq .
+
s cixlirl =u(n; p, 9 =1, n=0, ..., ptq -1

i=1

is different from zero. The system can be solved by Cramer's rule

with Vandermondians (as in several of the references). It results that

c, = 1/((pta)x; - p)

and
ptq X?H.

(2.4) u(n; p, q) = X m , n=0,1, 2,
i=1

There is apositive realroot x; > 1. This follows from £(1)< 0
and £(2) 2 0. Since f'{(x) # 0 for x > 1 there is no other real root
> 1. Also ,Xl ’ exceeds the absolute value of each other root. For if

%, # X is a root and IXZ] 2 %, then
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ng(xz—l)q |= Ilep lxz-l |q> ]xllp le—l ]q >1
sothat (2. 2) cannot be satisfied, a contradiction. From this itfollows
lim u(n+l; p, q)

(.5) n> © u(m p,q) | 1

To show this, merely note

. n+2
lim u(ntl; p,q) _ lim u(ntl; p, q)/Xl _
n-»e uln; p,q) = no>w otz - %1

u(n; p, q)/x;

We remark that if we choose initial conditions u(0; p,q) =
u(l; p,q) = ... = u(ptq-2; p,q) = 1, ulptq-1; p,q) = p+q+l, then we

have a sequence (w(n; p,q)), where

ptq
w(n; p, q) = XY X , n=0,1, 2, ...

i=1

Moreover, a convenient form for expressing u(n, p,q) arises

from writing the difference equation as

(2.6) wuln; p, q) = (P uln-1; p, q) - (J) wln-25p, @) +- ...

-1
+(-1)17" u(n-q; p,q) +uln-p-q; p, q), n 2p+gq

3. SUMS
Theorem 3.1. The relation
n q-1
. i g-1 .
(3.1) X ulp @)= I (D untpta-iip @) - 8
i=0 i=0

holds, where 81q is Kroneeker's & and (q-il) =1 in the case

q=1, i=0
If (3.1) holds for n, for q 2 2, then
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n+l n
2 u(; p, 9 = ulntl;p, q) + u(i; ps Q)
i=0 i=0
q .
= 2 (-1)" (D ulntliptq-is p, Q)
i=0
q-1
i -1 .
+ 2 (-1 (U ulntpta-isp, q) - 8
a
i=0
q-1
i -1 .
= 3 (1" () utlipta-isp, @) - 8y
i=0

Hence (3.1) holds for n+1. When n =0, with g 2 2, then (3.1) be-

comes

0 q-1
3 ou@poq = = (-1 (q'il) ulptq-i; p, q) - 8y
i=0 i=0
q-1
- uptaip @) + = (DT (3T =1=u0ip, q
i=1

To complete the proof, we consider q =1. Then

u(i; p, 1) = u(ptl+i; p, 1) - u(p+i; p, 1)

Hence

3 u(i; p, 1) = u(ntptl; p, 1) - u(p; p, 1)

= u(ntp+l; p, 1) - 611
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Theorem 3. 2.

m q-1 k
4 1 k
(3.2) 2 (-7 ulip,q) = ———er I X (1) () ulmtpta-kip, @)
i=0 ==-107 72 0 50
m+p
+ (-1 9 s (C1)! w(isps q)
i=m+1
+ (-1t et cymteta-l pa

where € =0, ptq even, and € =1, pt+tq odd.
Proof. Writing

m-j .
J u(m+p+q-j; p, q)

il

(-1)) u(m-j; p.q) = (-1)

-j-1 .
+ (-0 () uwlm+pta-j-1; p,a)

T Dl (&) u(mtp-j; p, q)

and summing for j=0, 1, ..., m gives for the sum S,

q-1 k m-q
k
s= 2 X (1) @) u(m+ptq-k;p, q) + (-1)92%9 3 (-1)F u(m+p-1; p, q)
k=0 j=0 r=0
F(-ymotgatt
q-1 k m+p
> <-1)k<‘}.) u(mtpta-ki pra) + (-1)2 29 (-1)F u(m+p-1; p, )
k=0 j=0 r=0
rn+p
sn™ eyl 9 3 (C)T u(mip-r; pq)
r=m-q+l
q-1 k m+p
k + -1 .
= 3 = (-1) (‘}) w(mtptg-k; p,q) + (-1)P74 29 T (-1)7 M u(i; p, q)
k=0 j=0 i=0
ptg-1

s enmrlasl o cpymtpta-laa s s p, q)

i=0
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Solving for S, and noting

ptg-1

RTLI _ J 0 ptq even, | _
2 (-1 ulispg) = { I ptq odd =
i=0

we get the result (3. 2).

From (3.1) and (3. 2) we can obtain expressions yielding

n n
2 u(2i; p,q) and 2 u(2i+1;p,q)
i=0 i=0

In the simpler case where q =1, we find

2n-p-n
n 2
(3.3) I u(i+1;p,1) =% (u2n4p+2; p,1) -1 + 5 u(2itn; p, 1)
i=0 i=0
and
2n-p-1
n 2
(3.4) = u(2i; p, 1) =% [u(2n+p+2; p,1) -1 - 3 u(2it+m; p, 1)]
i=0 i=0

where 7 =0 when p is evenand =1 when p is odd. Inthiscase

it is simpler to start with

u(2i+l; p, 1) = u(2i; p, 1) + u(2i-p; p, 1) , 2i 2 )

u(2i; p, 1) , 052i<p

and sum. We obtain in this way

2n-p-1
n n 2
(3.5) 3 u(2itl; p, 1) = b u(2i; p,1) + p3 u(2i+n; p, 1) .
i=0 i=0 i=0

Since we also can write
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2n+l
3 u(i; p, 1)
i=0
as
n n
(3.6) 3 u(2it+l; p, 1) + ¥ u(2i; p, 1) = u(2n+p+2; p, 1) -1
i=0 i=0

by (3.1), the results (3. 3) and (3. 4) follow by addition and subtraction
and solving for the sum.
For p =1 these results reduce to the well-known relations of

Fibonacci numbers:

n
1 = -
(3.17 T of=f -1
i=1
n
' n-i, _ _qyn-1
(3.27) (-1 f=f )+ (-1)
i=1
n
1 = -
(3.3 Zof, =1f, -1
i=1
n
U =
(3.49 2 £, =15
i=1

Theorem 3.3. Let g =1 and define u(i; p,1) =0 for i a negative

integer. Then

p-1
(3.7) u(ntm;p,l)=u(n;p, l)u(m;p,1)+ T u(n-1-i;p, 1)u(m-p+i;p, 1) ,
i=0

where n, m are anypositive integers or zero. To prove this we note
first that this is true for n any positive integer or zero and m = 0.

For n any positive integer or zeroand 0< m = k< p we have
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p-1
u(n; p, Du(k; p, 1) + = u(n-1-i; p, 1)u(k-p+i; p, 1)
i=0
p-1
=u(n; p,1)+ ¥ u(n-1-i;p,1)
i=p-k
ntk-p-1
=u(n; p,1) + b u(j; p, 1)
j=n-p
ntk-p-1 n-p-1
=ump, 1)+ T u@Gel)- T ou@opel)
j=0 j=0
= u(n; p, 1) + u(ntk; p, 1) - u(n; p, 1)

= u(ntk; p, 1)

where the sums have been evaluated using (3.1). Hence (3.7) is true
for n anypositive integerorzeroand m=20,1, ..., p. For m = p+l

we get

p-1
u(n; p, Du(p+l; p, 1) + T u(n-1-i; p, 1)u(p+l-p+i; p, 1)
i=0

p-1
2 u(n; p, 1) + 3 u(n-1-i; p,1)
i=0

n

u(n; p, 1) + S u(j;p,l)

j=n-p

u(ntp+l; p, 1)

Assume now, finally, that (3.7) is true for n any positive inte-

ger or zeroand m=20, 1, ..., p, ..., k where k 2 p+l. Then
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p-1
u(ntk-p; p, 1) = u(n; p, Iu(k-p; p,1) + ¥ u(n-1-i; p, 1)u(k-2p+i; p, 1)
i=0
p-1
u(ntk; p, 1)  =u(n; p, ulk; p,1) + ¥ u(n-1-i; p, 1)u(k-p+i; p, 1)
i=0
Hence

1]

u(ntk+l; p, 1) = u(n+k; p, 1) + u(ntk-p; p, 1)

u(n; p,1) [ulk; p, 1) + u(k-p; p, 1)]

1]

p-1
+ % u(n-1-i; p, 1) [u(k-p+i; p, 1) + u(k-2p;p, 1)]
i=0 -1
= u(n;p, 1)u(k+l;p, 1) + ¥ u(n-1l-i;p, 1) .
i=0

« u(ktl-p+i;p, 1)

But this is (3.7) with m = k+1 and the theorem is proved.

For m = n, equation (3.7) becomes

p-1
2
2, 2, ptl. . .
(3.8) u(2n;p,1)=u (n;p, 1)+tu (n—T,p, n+2 X u(n-i;p, 1)u(n-(p+1)+i;p, 1),
i=1 p odd
and
p
2
(3.9) wu(2n;p,1) = uz(n;p, 1) +2 3 u(n-i;p, 1)u(n-(p+l)+i;p, 1),
i=1 p even.
For m = n+l, equation (3.7) becomes
p-1
2
3.10) wu(2ntl;p, 1) = uz(n;p, 1) + 2 £ u(n-i;p, 1)u(n-p+i;p, 1),
i=0 p odd

and
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(3.11) u(2n+l;p, 1) = uz(n;p, 1) + uz(n—

oo

i ps 1)
P_
=-1

+2 2 uln-i;p, 1)u(n-p+i;p, 1),

i=0 p even

When p =1 equations (3.7), (3.8) and (3. 10) reduce to the known

relationships

(3.79 fn+1'n+1 - fn+1 frn-l—l * fn frn
(3.87) font1 ~ fiﬂ * fi

(3.10") £, = fi+2fn £

4, DIVISIBILITY PROPERTIES

Theorem 4.1. Any p + q consecutive terms are relatively prime.

The terms u(0; p,q), ..., u{lp+q-1;p, q are all unity and
so relatively prime. Any p + g consecutive terms containing one of
these will have greatest common divisor 1., Assume (u(n; p,q),
un+1;p,q9), ..., uln+p+qg-1; p, q))=d, where n>p+q-1.

Then because of (2. 2) it follows

dl(un -~ 1; p,q), ufn; p,q), ..., uln +p +q - 2; p, Q).

Successive applications will show

d](u(p+q -1;p,q), ulp+a; ps @) ..., ul2p + 29 - 2; p, q))

This contains u(p +q - 1; p, q) sothat d =1 andthetheorem follows.

Theorem 4. 2. The least non-negative residues modulo any positive

integer m of {u(n; p, q)} are periodic with period P not exceeding

mp+q. There is no preperiod. Each period begins with p + g terms

all unity.
There are m possible least non-negative residues modulo m
ptq

for each u{n; p,q) and m possible arrangements of residues in

p + g consecutive terms. Since by (2.2) the residue of u(n; p,q)
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depends uponthe residues of the preceding p + q terms, after mp+q
terms at most the residues must repeat with a period P. Suppose
u(n + p; p, q) is the first term such that the residues repeat and as-

sume n > 0. Then
uln+P +j;pyg)zuln+j p,q) (modm), j=0, 1, ..., p+tq
In view of the recursion formula, this shows
u(n-1+P; p,q)=uln-1; p,q) (mod m) ,

a contradictiontothe assumption u(n + P; p, q) is thefirst term such
that the residues repeat. Thus n =0 and there is no preperiod.
Hence each period begins with p + q terms each unity.

As an example, we have residues (mod 7) for wu(n; 2,1)

n 01 2 3 45 6 7 8 910111213141516171819 20 21
r 1 1 1 2 3 46 2 65 0 6 4 4 3 0 400 4 4 4

n 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
r 1 52 31 3 6 0 3 2 2502002 2 2 4¢61

n 44 45 46 47 48 49 50 51 52 53 54 55 56
r 5 45 305116 0100111

Here P = 57.

Theorem 4.3 Any prime divides infintely many u(n; p,q). If the

period of the residues (mod m) is P, then m divides each of

wP-1+Pk;p,q) u(lP-2+Pk;p,q) ..., u(P-p+Pk;p,q),
k=0,1, 2,...

Since the residues are periodic it is sufficient, to establish the
first part of the theorem, to showthat any prime divides one u(n; p, q).
Let m be any givenprime or multiple of any givenprime. Then with

P the period,

u(P; p,g)z=u(P+1;p,q)=... =u(P+p+q-1;p,q)=1 (modm).
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From the recursion formula,
q .
i .
wP-1;p,a)z T (- (D uP-1+p+q-ip, q)
i=0
q .
i
=z -0
i=0
=0 (mod m)
Hence m lu(P- 1;p, q). Similarlyfor w(P-2;p, q) ..., WP - p; p, q).

Inthe previous example, we note 7 [u(56; 2, 1), and 7 ’u(55; 2, 1).

Of course, 7 also divides other terms, as the table indicates.
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