| · | L. O. L. | Traffic
Pattern | Standard | Traffic Pattern | |--------------------------------------|--|--|---------------------------------------|--| | n | f(n) | $\sum_{i=1}^{n} f(i)$ | g (n) | $\sum_{i=1}^{n} g(i)$ | | 1
2
3
4
5
6
7
8 | 1
1
2
3
5
7
11
16
22 | 1
2
4
7
12
19
30
46
68 | 4
12
20
28
36
44
52 | 4
16
36
64
100
144
196 | $$8n-50 4n^2-46n+158 8 n-4 4 n^2$$ $(n \ge 9) (n \ge 9)$ In this situation, then, the Fibonacci sequence appears only as a transient effect but such effects are, I think, relatively infrequent in purely abstract mathematical models. ## ## (Continued from page 302.) Thus every time that this sequence repeats there are only a possible 16 Fibonacci Numbers (the starred ones) out of 60 which both end in 1, 3, 7, or 9 and can be expressed as $6x\pm1$ and which just may be prime. Therefore we have established 16/60 or rather 4/15 of Euler's expression as an upper bound of the Fibonacci Prime Density. ## ## NO WONDER NO SOLUTION H-26 (Corrected) Proposed by L. Carlitz, Duke University, Durham, N.C. Let $$R_k = (b_{rs})$$, where $b_{rs} = {r-1 \choose k+1-s} (r, s = 1, 2, ..., k+1)$ then show $$\mathbf{R}_{k}^{n} = \begin{pmatrix} \mathbf{s} \\ \mathbf{\Sigma} \begin{pmatrix} \mathbf{r} - \mathbf{l} \\ \mathbf{j} - \mathbf{l} \end{pmatrix} \begin{pmatrix} \mathbf{k} + \mathbf{l} - \mathbf{r} \\ \mathbf{s} - \mathbf{j} \end{pmatrix} \mathbf{F}_{n-1}^{k+1-r-s+j} \mathbf{F}_{n}^{r+s-2j} \mathbf{F}_{n+1}^{j-1} \end{pmatrix}.$$