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This is in set A2, because T3n + 3 is in A±. Thus, since (T3n + h + T3n + 3) and 
(̂ 3n + 5 "" ̂ 3n + 3^ a r e ̂ o t n i n ̂ » ^ 3 n + 5 + ̂ 3n + ̂  ̂ a s a representation as the sum 
of two elements from set A2„ 

Next, consider 

T3n + *+ + ™3n + 3 " ^ 3 n + l + ^3rc ' 

^ 3 n + 4 + "^3n+3 + ™3n + 2 ~ (™3n + 2 + ™3n + l + -^3n ' 

-1 3n + 5 2 3 n + 3 s 

which we have seen to lie in A2, so that 

'^3n+5 ~ 3n + 3^ + ^ 3n + 1 3n ' = ^ 3n + k + -^3n+3 

is the sum of two integers from A2, since both are in A2. This completes 
the proof. 

If n £ Tm or n =fi Ts + Ts + 1 , then n has a representation as the sum of 
two elements from the same set. If n = Ts + Ts + 1 , then if n = T3m + 1 + T3m + 2 , 
both T3m+1 and T3m + 2 appear in A19 and n has a representation as the sum of 
two elements from A, . If n = T~m.0 + 2V ...q or n = 2V + S1,^, , then each 

1 3m + 2 3 m + 3 3m 3 7 7 7 + 1 ' 

has a sum of two elements from A2. 
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THE NUMBER OF MORE OR LESS "REGULAR" PERMUTATIONS 
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Institut de Statistique, Paris, France 

Let us call Sm+1 the set of all permutations of the integers {1,2,..., 
m + 1}. Any permutation a from Sm + 1 may be decomposed into b blocks Bl9B2> 
..., Bh defined by the following property: each block consists of integers 
increasing unit by unit, and no longer block has the same property. 

Example.: m = 8, a = 314562897; there are b = 6 blocks: 

B1 = 3, B2 = 1, B3 = 456, Bh = 2, B5 = 89, B& = 7. 

The lengths of the blocks form a ̂ -composition q of m + 1 (see [1]); in the 
above example, q - (1, 1, 33) 1, 2, 1). 
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If a(£) is the ith integer in a, a(£) and a(i + 1) belong to the same 
block iff a(i + 1) = a(i) + 1; let us call the number of V s satisfying this 
condition the regularity z» of a. Obviously b + v = m + 19 so that b and r 
are equivalent descriptive parameters of a. The greatest possible regular-
ity is v = m; it occurs iff a is the identical permutation. The smallest 
possible regularity is r = 0; it occurs iff q = (1, 1, 1, . .., 1); we shall 
call the corresponding permutations "irregular permutations," and look for 
their number. More generally, we shall call U(m5 r) the subset of Sm+1 con-
sisting of the permutations of regularity r9 and u(m9 r) the cardinality of 
U(ms r). We know already that u(m9 m) = 1 and that 

777 

r = 0 

Setting u(rn5 0) = u , we shall first show that 

(2) u(m9 r) = (™)um_r. 
Let us start from a permutation a of regularity P, i.e., of b = 77? - v + 1 

blocks. Besides their order of appearance in a, there is an "order of in-
creasing values" of the blocks; in that order9 the smallest block in the 
above example is 1 (=B2) s then comes 2 (=Bh) s then 3 (=B]_) 5 then 456 (=B3) 9 
then 7 (=56)9 and finally, 89 (=S5). If we relabel the blocks according to 
their place in the latter order, and if we list them by order of appearance 
in a, we obtain a permutation p of {1, 2, ..., b}; in the above example, 
p = (314265). 

Necessarily, this permutation p is an irregular one, since, if it had 
two consecutive integers at two consecutive places, it would mean that the 
corresponding blocks in a could be merged into a single block, which is con-
tradictory with the definition of the "blocks." 

Let us start now from the pair (p, q), where p is any irregular permu-
tation of {1, 2, ..., m-p+l} and q is any (m - r+ 1) -compos it ion of 77? + 1: 

p = (p19 p 2, . .., p b ) s 

q = (?!> q2> ••• v ? * ) -
If p. = p(i) = 1, transform p by replacing p. by a block (123 ... q^)% 

if p(j) = 29 replace p. by a block (qi+l9 ^ + 2, ..., qi + qS) , and so on, 
until p is finally transformed into a permutation a of {1, 29 ...,772+1}. 

This procedure defines in fact a (1 - 1)-correspondence between the set 
U(m9 r) and the set of pairs (p, q) consisting of an irregular permutation 
p of {1, 2, ..., m-P+1} and a (m - v+ 1)-composition q of m + 1. Since it 

is well known that the number of u-compositions of v is ( .. J, we can con-
elude that , • 

U(7??9 P) = U J 

which proves (2). 
Inverting (1) after replacement of u(m9 r) by its expression (2), we 

obtain 

r> = n ^ 
(m+l - r) ! 

^ — • \ I* / 

which may be written 
(3) M m = Aml!. 
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This enables us to calculate um for moderate values of 777: 

^ = 0 1 2 3 4 5 6 sea 

um = 1 1 3 11 53 309 2119 

For larger values of m9 it is convenient to use recursion formulas with 
positive terms only9 which will be connected with a closer investigation of 
irregular permutations. 

If we start from one of the um permutations belonging to U(m9 0) s say 
a9 and if we delete 7??+ 1 in a, the remaining permutation 3 of {l, 29 ee*9 m} 
may be irregular or not9 and, in fact, will be of regularity either 0 or 1. 
Conversely9 the whole set U(m9 0) can be reconstructed by the reinsertion of 
integer 777 + 1 either at some suitable place of an irregular permutation 3 or 
at the only suitable place of a permutation 3 of regularity 1. 

If 3 is irregular9 there are m + 1 conceivable places for insertion of 
integer 777 + 1, but one and only one of them, namely the place immediatel)?-
after integer 77?s is not suitable* The number of corresponding possibilities 
is thus mum_1. 

If 3 is of regularity 19 the number of possibilities for 3 is given by 
formula (2) , substituting m - 1 for 77? and 1 for v9 which yields (m - l)um_2; 
integer 777 + 1 must then be inserted between the only two consecutive inte-
gers of 3-

Finally9 

(4) um = mum„1 + (TTZ - l)wm.2» 

which provides an easier calculation of the sequence. 
A numerical table of u(m9 r) is readily formed from the knowledge of um 

and formula (2): 

r = 0 1 2 3 4 

0 
1 
2 
3 
4 

1 
1 
3 

11 
55 

1 
2 
9 

44 

1 
3 

18 
1 
4 1 

The following properties are easy to verify: 

(1°) Column p= 1 consists of the "rencontres" numbers (see [2])e The numbers 
of columns 0 and 1 appear in [3]', but without reference to their enu-
merative meaning. 

(2°) The Blissard generating function [2] of column 09 

y(x) ^ L ^TTTT5 

m = 0 

satisfies the differential equation 

yf (1 - x) = z/(l + x) 9 

since (4) may be written 

Elementary integration yields 
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(3°) The Blissard generating function yr of column r is given by use of (2): 

I r ) Um-rm\ r ? LjUm~v (m _ p \ , » 
m \ / m \ • / 

so t h a t 
2/r = e _ a r ( l - a?)"2*2*/*'!. 

+ 00 

(4°) The sum ] T z/r i s ( l - x ) ~ 2 = 1 + 2x + 3x2 + • • • , which confi rms t h a t t h e 
r = 0 

coefficient of xm/ml is (m + 1)!. 

(5°) According to (3), the ratio um/(m +1)1 is equal to 

1 " \l)m + 1 + \ 2 / (m + l)m " *** + ^ ^ \P) (m + 1)* + ° e°  

As 777 increases, with fixed p, the general term of this sum tends toward 
(-1)P/2,I; it follows that the sum itself tends toward e~l , which is the 
limiting proportion of irregular permutations. 

(6°) Using (2), it appears that 

u(m$ r) =
 um-r ^ m - r + I 

(m + 1)! " (m - r + 1)! rl(m + 1) " 

As' m increasess the second member tends toward e~1/rl* The latter re-
sult means that9 if a permutation is chosen at random in Sm+1 and if m 
increases, the limiting probability distribution of its regularity is 
a Poisson distribution with mean 1. 
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In recent years, there has been some flurry of excitement over the re-
lationship between the complexity of a graph, i.e., the number of distinct 
spanning trees in a graph, and the Fibonacci and Lucas numbers [1, 2]. In 
this note, I shall demonstrate a relationships, although incomplete, between 
the Fibonacci numbers and the star polygons. My hope is to spur further 
research into the connection between nonplanar graphs and their enumeration 
from number theory. 


