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Liu [2] asks for the number of sequences of zeros and ones of length five, such that every digit 1 has at least 
one neighboring 1. The solution [1] uses the principle of inclusion-exclusion, although it is easier in this par-
ticularcase to enumerate the twelve sequences: 

00000, 11000,01100,00110,00011, 11100,01110,00111, 11110,01111, 11011, 11111. 

In order to obtain a general result it seemed to us easier to find a recurrence relation. 
Call a sequence good if each one in it has a neighboring one, and let an be the number of good sequences of 

length n. For example, 
al = I 32 = 2, a$ = 4, a4 = 7 and a^ = 12. 

Good sequences of length n are obtained from other good sequences of length n - 1 by appending 0 or 1 
to them, except that 

(a) some not good sequences are also produced, namely those which end in 01, but are otherwise good, and 
(b) there are good sequences which are not produced in this way; those obtained by appending 011 toa 

good sequence of length n - 3. 

So 
(D an = 2an,1 - an_2 + an-3 • 
Alternatively, all good sequences are obtained from shorter good sequences by appending 0,11 or0111, so 
that 
(2) an = an„i +an_2 + an-4-

The characteristic equation for (2) is the same as that for (1), namely 
(3) x3 -2x2 +x- 1 = Of 

except for the additional root - 1 . The equation (3) has one real root, y « 1.754877666247 and two com-
plex roots, a± t'P, the square of whose modulus, 1/7, is less than 1. 

an = cyn + (a+/b)(a*-/p)n + (a - ih)(a-i$)n, 
where 

a = 1 -Y2y « 0.122561166876, 0 = J2y*-4yl2 « 0.744861766619, 
a = ( 7 2 - 2 T + 2 ) / 2 ( 2 T 2 - 2 T + 3 ) « 0.138937790848, b = (2?+1) ( ? - D/2/3 - 0.202250124098, 

c = ( y 2 + 1 ) / ( 2 7 2 - 2 7 + 3 ) « 0.722124418303, 

and an is the nearest integer to cyn. 

• The sequence {an } does not appear in Neil Sloane's book [3 ] ; nor do the corresponding sequences {afi*' } 
of numbers of binary sequences of length n in which the ones occur only in blocks of length at least k. The 
problem so farconsidered is k= 2. The more general analogs of (1), (2), (3) are 

(1') an = 2an-i - an„2 + an_k-i, 
(2') an = an„i+ an„k + an-k~2 + an-k-3 + '" + an-2k > 
(3') xk+1-2xk+xk'1- 1 = O. 

Then 
84 
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,(h) = a-i &) = k-i 1; 1 + 1Mr+1)(r + 2) 

for 0 < r < k; and for larger values of n, a ^ is the nearest integer to c^ y\, where y^ is the real root of (3') 
which lies between 1 and 2, and c^ is an appropriate constant. Approximate values of y$, and cy, for k- 1(1)9 
are shown in Table 1. 

Table 1 

k 1 2 
yk 2 1.7549 
ck 1 0.7221 

The sequence {a„ } is similar to the Lucas sequence associated with the Fibonacci numbers, since 73 = 
(1 + V5 )/2, the golden number. 

The characteristic polynomial for (2') is the product of that for (V) with the cyclotomic polynomial x + 
x
k~2 + ... + x + 1 \/\/nen /< j s odd, (3')js of even degree and is reducible and has a second real root between 0 

" for/7 = 0(1)26, A: = 2(1)9. Of course, a^ = 2n, the number of un-

3 
1.6180 
0.5854 

4 
1.5289 
0.5033 

5 
1.4656 
0.4481 

6 
1.4178 
0.4082 

7 
1.3803 
0.3778 

8 
1.3499 
0.3539 

9 
1.3247 
0.3344 

and - 1 . Table 2 gives the values of ah ' 
restricted binary sequences of length n. 

*W ,P) 
Table 2 

JV J5) J6) JV JS) „(9) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

1 
1 
2 
4 
7 
12 
21 
37 
65 
114 
200 
351 
616 
1081 
1897 
3329 
5842 
10252 
17991 
31572 
55405 
97229 
170625 
299426 
525456 
922111 
1618192 

1 
1 
1 
2 
4 
7 
11 
17 
27 
44 
72 
117 
189 
305 
493 
798 
1292 
2091 
3383 
5473 
8855 
14328 
23184 
37513 
60697 
98209 
158905 

1 
1 
1 
1 
2 
4 
7 
11 
16 
23 
34 
52 
81 
126 
194 
296 
450 
685 
1046 
1601 
2452 
3753 
5739 
8771 
13404 
20489 
31327 

1 
1 
1 
1 
1 
2 
4 
7 
11 
16 
22 
30 
42 
61 
91 
137 
205 
303 
443 
644 
936 
1365 
1999 
2936 
4316 
6340 
9300 

1 
1 
1 
1 
1 
1 
2 
4 
7 
11 
16 
22 
29 
38 
51 
71 
102 
149 
218 
316 
452 
639 
897 
1257 
1766 
2493 
3536 

2 
4 
7 
11 
16 
22 
29 
37 
47 
61 
82 
114 
162 
232 
331 
467 
650 
894 
1220 
1660 

1 
1 
1 
1 
1 
1 
1 
1 
2 
4 
7 
11 
16 
22 
29 
37 
46 
57 
72 
94 
127 
176 
247 
347 
484 
667 
907 

2 
4 
7 
11 
16 
22 
29 
37 
46 
56 
68 
84 
107 
141 
191 
263 
364 
502 

Since these are recurring sequences, they have many divisibility properties. Examples are 5 ^ ^ just if n = 

- 4 or - 2 , mod 12; 8 | a ^ just if n = - 4 o r - 2 , mod 14 and 2|a^ ' according to the residue class to which n 

belongs, mod 2(2(k+1)/2 - 1), k odd, or mod 2k+1 - 1, k even. 
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******* 

ON THE EQUALITY OF PERIODS OF DIFFERENT 
MODULI IN THE FIBONACCI SEQUENCE 

JAMES E. DESMOND 
Pensacola Junior College, Pensacola, Florida 32504 

Let m be an arbitrary positive integer. According to the notation of Vinson [1, p. 37] let s(m) denote the period 
of Fn modulo m and let f(m) denote the rank of apparition of m in the Fibonacci sequence. 

Let p be an arbitrary prime. Wall [2, p. 528] makes the following remark: "The most perplexing problem we have 
met in this study concerns the hypothesis s(p2) ? sip). We have run a test on a digital computer which shows that 
s(p ) t s(p) for all p up to 10,000; however, we cannot yet prove that s(p2) = s(p) is impossible.The question is 
closely related to another one, "can a number x have the same order mod p and mod p2?," for which rare cases give 
an affirmative answer (e.g., x = 3, p = 11;x = 2,p = 1093); hence, one might conjecture that equality may hold for 
some exceptional p." 

Based on Ward's Last Theorem [3, p. 205] we shall give necessary and sufficient conditions iorsfp ) =s(p). 
From Robinson [4, p. 30] we have for/77,/7 > 0 

(1) Fn+r = Fr (mod m) far all integers r if and only if s(m) \n. 

If m,n > 0 and m \n, then Fsrnj+r = Fr (mod m) for all r. Therefore by (1), s(m) \s(n). So we have for m,n > O 

(2) m\n implies s(m)\s(n). 

It is easily verified that for all integers n 

(3) F2n+1 = (-Dn +Fn+lLn-
From Theorem 1 of [1, p. 39] we have X\\dXs(m) is even if m > 2. 
An equivalent form of the following theorem can be found in Vinson [1, p. 42]. 

Theorem 1. We have 
i) s(m) = 4f(m) if and only if m > 2 and f(m) is odd. 

ii) s(m) = f(m) if and only if m = 1 or 2 and s(m)/2 is odd. 
iii) s(m) =2f(m) if and only if f(m) is even and s(m)/2 is even. 
To prove the above theorem it is sufficient, in view of Theorem 3 by Vinson [1, p. 42], to prove the following: 

Lemma. m = 1 or 2 ors(m)/2 is odd if and only if d\m and 2\f(p) but 4 (///?,/for every odd prime,/?, which 
divides m. 

Proof. Let m = 1 or 2 or s(m)/2 be odd. If m = 1 or 2, then the conclusion is clear. So we may assume that m > 
2 and s(m)/2 is odd. Suppose %\m. Then by (2), 12 = s(8)\s(m). Therefore s(m)l2 is even, a contradiction. Hence 
8f/77. 

Let p be any odd prime which divides m. From [1, p. 37] and (2), f(p)\s(p)\s(m). Therefore 4 ]/ f(p). Suppose 
2 \f(p). Then by Theorem 1 of [1,p. 39] and (2), we have 4f(p) = s(p)\s(m), a contradiction. Thus 2\f(p). 

Conversely, let 8 (/wand 2 \f(p) but 4 \f(p) for every odd prime,/?, which divides m. Let/? be any odd prime which 
divides m and let e be any positive integer. From [1, p. 40] we have that f(p) and f(pe) are divisible by the same 
power of 2. Therefore 2\f(pe) and %\f(pe). Then since 


