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1. INTRODUCTION 
In [11, [2], and [3], Hoggatt and BickneSI discuss the numerator polynomial coefficient arrays associated with the 

row generating functions for the convolution arrays of the Catalan sequence and related sequences. In [4], Hoggatt 
and Beirgum examine the irreducibility of the numerator polynomials associated with the row generating functions 
for the convolution arrays of the generalized Fibonacci sequence | Hn J-JJL/ defined recursively by 
(1.1) /// = 7, H2 = P, Hn = H^ + Hn-2, n>3, 

where the characteristic/32 - P- 1 is a prime. The coefficient array of the numerator polynomials is also examined. 
The purpose of this paper is to examine the numerator polynomials and coefficient array related to the row generat-
ing functions for the convolution array of the Fibonacci sequence. That is, we let P = /. 

2. THE FIBONACCI ARRAY 
We first note that many of the results of this section could be obtained from [4] by letting P= I 
The convolution array, written in rectangular form, for the Fibonacci sequence is 

Table 1 
Convolution Array for the Fibonacci Sequence 

1 
1 
2 
3 
5 
fi 

n 
21 

1 
2 
5 
10 
20 
38 
71 
130 

1 
3 
9 
22 
51 
111 
233 
474 

1 
4 
14 
40 
105 
256 
594 
1324 

1 
5 
20 
65 
190 
511 
1295 
3130 

1 
8 
27 
98 
315 
924 
2534 
6588 

1 
7 
35 
140 
490 
15.54 
4&78 

12,720 

1 
8 
44 
192 
726 
2472 
7776 

22,968 

The generating function Cm(x) for the m column of the convolution array is given by 
(2.1) Cm(x)= (1-x-x*fm 

and it is obvious that 
(2.2) Cm (x) = (x+x2)Cm (x) + Cm„ / (x). 
Hence, if Rnrm is the element in the nth row and mth column of the convolution array then the rule of formation 
for the convolution array is 

43 
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'2-3) Rnem - Rn-1,m + Rn~2,m + Rn,rri-1 

which \$ representahle pictorially by 

where 
(2.4) x = u + v + w. 

If Rm (x) is the generating function for the mth row of the convolution array then we see by (2.3) and induc-
tion that 
(2.5) Rjx) ~ 1 

1 -x 
1 (2.6) Rjx) (1_x)2 

and 

(2.7. * .« . '-'*>«'-?-*> . J^L. „>3 
(1-x)m (t-x)m 

with Nm (xj a polynomial of degree 

[V] 
where / / i s the greatest integer function. 

The first few numerator polynomials are found to be 
NJx) = / 
NJx) = 1 

NJx) = 2-x 

NJx) = 3-2x 

NJx) = 5~5x+x2 

NJx) = 8- 10x+3x* 

NJx) = 13-20x + 9x2 -x3 

NJx) = 21 - 38x + 22x* - 4x3 . 

Recording our results by writing the triangle of coefficients for these polynomials, we have 
Table 2 

Coefficients of Numerator Polynomials Nm (x) 

1 

2 
3 
5 
8 

13 
21 

-1 
-2 
-5 

-10 
-20 
-38 

1 
3 
9 

22 
-1 
-4 

Examining Tables 1 and 2, it appears as if there exists a relationship between the rows of Table 2 and the rising 
diagonals of Table 1. In fact, we shall now show that 
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k 

(2-8) NmM = V Rm„2n+2,n(-*)n~1, m>2 . 

where 

[¥ 
It Is obvious from (2.5), (2.6), and (2.7) that the constant coefficient of Nm (x) is Fmfor ai! m > 1, where Fm is 

the/77th Fibonacci number. Furthermore, the rule of formation for the elements in Table 2 is given pictorially by 

where 
(2.9) x = ±(u + v~w) 

with the sign chosen according as* is in an even or odd numbered column. 
Letting Gm(x) be the generating function for the/??t/7 column and using (2.9) with induction, we see that 

(2.10) Gm(x) = \—^—\ Gm-iM = — U ^ — « (-1)m-1CmM. 

Equations (2.9) and (2.10) show that the columns of Table 2 are the columns of Table 1 shifted downward by the 
value of 2(m - 1) and having the sign (-1)m~1. Hence, Eq. (2.8) is proved. 

Adding along rising diagonals of Table 2 is equivalent to 
oo 

k=0 
which is the generating function for the sequence defined by 

m • * even 
(2-12) s-= !§ ] * / , -d 

Letting 
(2.13) G£(x) = (l-x-x*rk< 

we see that adding along rising diagonals with all signs positive is equivalent to 
oo 

(2.14) £ X*G^M - (jr^rO - ('-Trfe) = t-*-*-* 
k=0 

which is the generating function for the sequence of Tribonacci numbers. 
Since 

k=0 / x J 

we know that the row sums of Table 2 are always one. This fact can also be shown in the following way. From (2.7), 
we determine that the generating function for the polynomials Nm(x) is 

oo 

(2.16) fZT^W ' £ ***/M** • 
Lettingx= 1, we have 

oo 

(2.17) y - ^ - = £ Nk+1(1IKk 

k=0 
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so that Nk(1) = 7 for all Ar > 7. When x = 0, we obtain an alternate proof that the constant coefficient of Nm (xlls 

Row sums with all signs positive is given by 
oo 

(2.18) £ * *<w- (TT^T . ) • C ' - r r b ) - "-*-*•;- ' 
which is the generating function for the sequence defined recursively by 

(2.19) 7-y - 7, T2 = 7, Tn = Tn^+2T^2. n>3. 

It is interesting to observe that by letting x--1 in (2.16) we have N^i- V - 7& fo r / r>7 . 
Adding along failing diagonals is equivalent to 

(2.20) ^ ^ ^ / W = _ L _ 2 

k=*0 

which is the generating function for the sequence defined by 

(2.21) Sn°{ 'A n ° d d 
n 1 " ~ even 

bn [O. n 

In conclusion, we note that the sum of falling diagonals with all elements positive is equivalent to 
oo 

(2'22) E^6*+'M*T=5h? 
k=0 

which is the generating function for the sequence of Pel liars numbers defined recursively by 
(2.23) P1 = I P2 = 2, Pn = 2Pn--i +Pn-2, n > 3. 

3. PROPERTIES OF \ Nm(x))m*i 

The main purpose of this section is to show that if m > 5 then / l / m 6r^ is irreducible if and only if m is a prime. The 
irreducibility ofNm(x)for 1 <m < 5 is obvious. 

By standard finite difference techniques, it can be shown that the auxiliary polynomial associated with 

is 
(3.1) X2-X-(7-x) = 0 
whose roots are 

(3.2) X, = ^ | ^ * and X, = Lz^lH^L , 

Using (3.1) and induction, we have 
•\tn-\fn 

(3.3) Nm(x) = V ** , m > 1. 

Since \ \ = x- 1, we can use (3.3) to show that 
(3.4) Nm+n+, (x) = Nm+1 (x)Nn+1 (x) + (1- x)Nm (x)Nn (x), m>1, n > 1. 

Following the arguments of Hoggatt and Long which can be found in [6 ] , we obtain the following results. 
(3.5) (1-x,Nm(x)) = 1, m > 1. 

(3.6) lNmM,Nm+1(x»= 1, m > 1. 
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(3.7) If m > 3 then Nm(x)\Nn(x) if and only if m\n. 

(3.8) Let m > 5. If Nm(x) is irreducible then m is a prime. 
(3.9) For m > 7, n > 1, (Nm(x), Nn(x» = N(mfn)(x). 

Substituting (3.2) into (3.3) and expanding by the binomial theorem, we obtain the following. 
(3.10) ^2n+iM is a monic polynomial of degree n. 

(3.11) 4nN2n+iM - 2n+1(mod5-4x). 

Let/? be an odd prime, say/7 = 2n + h By expanding (3.3) and collecting like powers ofX, we obtain 

am , ,«, , - .£± t(^,){L)shm'-4xr-'.ic-)•*-<^"'-" 
2 m=0 j=m m

 p^j 

= (5-4x)~^ (mod/?). 
In orderto prove the converse of (3.8), we present the following argument. 
Suppose that for some prime p, p >5, Np(x) is reducible. Then, by (3.10), there ex?st two monic polynomials such 

that 
Npfx) = f(x)g(x) 

or 
Np(x

2) = f(x2)g(x2)* 

Since all the powers of f(x2) and g(x2} are even, we can use the division algorithm to obtain 
4ff(x2) = zl(xl(5-4x2)+h 

and 
4qg(x2) = si2(x)(5-4x2)+g , 

where t and q are respectively the degrees of f(x) and g(x) and h and g are integers. 
By (3.11), we see that 

(3.13) 4 2 f(x2)g(x2) sp = hg (mod 5 - 4x2). 
Hence, we assume without loss of generality that h = +p and # = ±7. 

|f/7 ~±2 (mod 5) then 5isaquadraticnonresidueso that 5-4x2 is irreducible in the unique factorization domain 
Zp[x], Hence, by (3.12), we conclude th at g(x)^(5-4x2) (mod/?) for some integer k. If/7 =±1 (mod 5) then 5 
is a quadratic residue so that 

(5-4x2) = (a-2x)(a + 2x) in Zp[x] with a2 = 5 (mod/?). 
Therefore, by (3.12), 

g(x2) = (a-2x)kUa + 2x)k* (modp) 
for some integers kl and k2. However, #fr2) is even so that kx = k2. In both cases, there exists an integers such that 
(3.14) g(x2) = 9.Jx)p + (5-4x2)k . 
Since fi3 (x) is obviously even, we know that 
(3.15) 4%(x) = c (mod5-4x2) 

for some integer c so that 
(3.16) 4qg(x2) s ±1 =± pc (mod5-4x2) 
which is impossible. Hence, Np(x) is irreducible. 
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******* 

LETTER TO THE EDITOR 

October 13,1975 
Dear Professor Hoggatt: 

It was with some surprise that I read Miss Ada Booth's article "Idiot's Roulette Revisited" in the April 1975 issue 
of The Fibonacci Quarterly. The problem she discusses-given N places circularly arranged and successively casting 
out the Cth place, determine which will be the last remaining place-is quite old and commonly referred to as the 
Josephus problem. The name alludes to a passage in the writings of Flavius Josephus [7 ] , a Jewish historian who re-
lates how after the fall of Jotapata, he and forty other Jews took refuge in a nearby cave, only to be discovered by 
the Romans. In order to avoid capture, everyone in the group, save Josephus, resolved on mass suicide. At Josephus' 
suggestion, lots were drawn, and as each man's lot came up, he was killed. By means not made clear in the passage, 
Josephus ensured that the lots of himself and one other were the last to come up, at which point he persuaded the 
other man that they should surrender to Vespasian. 

Bachet [2 ] , in one of the earliest works on recreational mathematics, proposed a definite mechanism by which 
this could have been accomplished: all forty-one people are placed in a circle, Josephus placing himself and the other 
manatthe 16f/? and 3 1 s t places; every third person is then counted off and killed. This is, of course, a special case of 
the question Miss Booth considers. 

Miss Booth's iterative solution to the general problem was apparently first discovered by Euler [5] in 1771 and 
then rediscovered by P. G. Tait [9 ] , the English physicist and mathematician, in 1898. Tait points out that the 
method enables one to calculate the last r places to be left, not merely the last as in Miss Booth's article. Although 
Euler and Tait content themselves with demonstrating how the iterative solution works and do not actually derive 
the formula for Miss Booth's sequence of "subtraction numbers," in the 1890's Schubert and Busche [8,4] derived 
a formula for this sequence (slightly modified) via a wholly different attack on the problem ("Oberreihen"). (Ahrens 
[1] has an excellent description of this work, as well as a comprehensive review of the history of the problem. Ball 
and Coxeter [3] briefly touch on the problem but omit any mention of the work of Schubert and Busche.) 

[Continued on Page 51.] 


