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The following development, to the best of the author's knowledge, is
new. At any rate, it is original and very interesting. We begin by defining

the function

) flx) = 1/(1 - x)N1 + x

This may be thought of as the generating function of a power series in
x, whose coefficients we are to determine. Thus, we seek the values of the
coefficients Ak’ where

That this representation is valid may be seen by observing that 1f(x) is
expressible as the product of the two functions (1 - x)_1 and (1 +x)°%, each

of which is of the same form as (2). In fact,

© s K
@ @-01=Y <, ad a+x7-= }:(ﬁf) (&) <
k=0

Therefore, it follows that

L)

i=0

From the foregoing expression for Ak’ it is evident that
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k
2k 1
(5) Ak = Ak—l + (k) (—Z> s Ao =1 .
Recursion (5) may be expressed in the form
k-1
~ 2k-1 2k - 2\ [/ 1
(6) Ag = Ber K ( k-1>(“21>

If, in recursion (6), we multiply throughout by (2k)/2k - 1, and if, in
recursion (5), we replace the subscript k by k -1, we may add the two re-
sults, thereby eliminating the factorial term. Upon simplification, this pro-
cess yields the following recursion, which involves three successive values

of Ak:

(7) 2kA, = A 1t 2k - 1A

k k- k-2 °

This is valid for k = 2, 3, 4, ---, and if we affix the values A; =1 and
Ay =%, we have fully characterized the coefficients A .
We shall now define the sequence of numbers Bk’ such that for each

non-negative integer Kk,
(8) B, =2 .kl.A
Substituting this definition in recursion (7),

2kB B, 2k - DB,
K = +

27 . k! zk’l(k -1 zk"z(k -2

If we multiply this result throughout by Zk_l - (k - 1)1, we obtain:

(9) B = B

" L+ Gk - D@k - 2)B,

k-

Recursion (9), plus the initial conditions By = By = 1, completely
characterize the coefficients Bk' Furthermore, from (9), it is evident that
all the Bk's are integers. Upon application of (9), for the first few values

of k, we obtain the following values:
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BoEBlzl, B2=7, B3=27,

B, = 321, By = 2,265, By = 37,575, B; = 390,915,

etc. We may summarize the results thus far derived in the following form:

® k
(10) f2x) = 1/ - 2 NT 7 2% = ) B =
k=0
where
K i
ok 2i\ / 1
B, = 2 'k’E(i)(“Z>
i=0

What struck the author as interesting was the fact that the sequence of
numbers Bk appears in other power series, derived from generating func-
tions of totally different form from (10).

Specifically, we will demonstrate that

X ©0
2k+1
_ x*/2 ~u? _ X
(11) g(X) = e f e du = E Bk -(m N
0 k=0
and
® 2k+1
= -1 2 = 2 X
(12) B =t x/NT - = ) (B T
k=0

Let y = g(x). I we differentiate y, as defined in (11),

X
2 _x2 2 S _x2
y'=eX/2.eX+xex/2feudu=ex/2+xy,

(@)

Differentiating again, we obtain
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_x2 52 _x2
x2/2 _Xex/z x2/2

y' = —xe +xy! by = + xe + X%y +y = (1 + x2)y.

Next, we observe that g(x) is an odd function of x. This is demon-
strated by replacing x with -x and the dummy variable u with -u in(11),
which yields g(-x) = -g(x).

Therefore, g(x) may be expressed in the form

Negative powers of x are excluded, for otherwise g(x) would be discontin-
uous at x = 0, along with the first and higher order derivatives. However,
it is readily seen that g(0) = 0, g'(0) = 1, and g'(0) = 0,

We will use these conditions to develop a recursion involving the coef-

ficients Ty If we differentiate the series expression for g(x),

o0 oo
a3 g = 3 @k+ D, 2K enm) = 3 2keek + x5
k=0 k=1
We use the differential equation y" = (1 +x2®)y derived above, which
becomes transformed to the following relationship:
(=] (=) ©0
2k+1 2k-+1 2k+1
(14) }: 2k + 2)(2k + 3)rk+1x o= E X + Z . 1 X .
k=0 k=0 k=1

If we equate the coefficients of similar powers of x, we obtain:

=1 +r

(15) ry = 61y 2k + 2){(2k + 3)r c i

1 g i k=1,2,8,-

Using the condition g'(0) = 1, we see that ry; = 1, and therefore,

=

ry =
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We now define the sequence of numbers Rk such that, for every non-negative
integer Kk, Rk = (2k +1)! I Substituting this definition in recursion (15),
and multiplying throughout by (2k + 1)}, we obtain:

(186) R = R

o + 2k(2k + )R

also, Ry =Ry = 1

k k-1’

But if we replace k by k-1 in (16), we obtain precisely the same re-
cursion as (9). Since the initial values of R, are identical to those of B,
we conclude that Rk = Bk for all values of k, and the validity of (11) is
established.

The proof of (12) is similar, though somewhat more complicated. We
begin by squaring both sides of (9), and solving for Bk-l Bk_2 :

2 _ g2 _ 12 _ 2)2R2
an s B _ Bk Bf 4 2k - 142k - 2) By o
k-1"k-2 2(2k - 1)k - 2)
Next, we may multiply (9) throughout by Bk—l’ obtaining
= B2 - -
(18) B, B, = Bl  +(2k - )@k - 2)B_ B, , .

If, in (18), we substitute the expression derived in (17) for Bk—l Bk-z’
and the corresponding expression for Bk Bk-l obtained by increasing the
subscript from k -1 to k, we arrive at a recursion which involves only the

squares of successive Bk’s. Upon simplification, this becomes

2 = 2 2 2
Bl = (kP + 2k + 1)(B} + 2k(2k + 1B} )
(19) - (2k - 2)%2k - 1)%2k(%k + 1)B} ,

Next, we observe that h(x) is an odd function of x, continuous at x =

0. Therefore, as before, h(x) may be expressed in the form

Z s X2k;+1
k
k=0
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As before, we will develop a recursion involving the s 's. If we let

k
z = h(x), as defined in (12), we differentiate as follows:

1
o = a - XZ)-%- 1 + xz)—1 + x tan x - 1 - xz)_% _ @ - x2)72 + Xz
1 - x2 1 + x? 1 - x?
Differentiating again,
-3/2

VAL

1
x(1 + x2)(1 - x?) - 2x(1 - x%)72 et - x%)(xz' + z) + 2x27

A+ =) 1 - =2)?

From the first differentiation,

(1 _ X2)";% - (1 + Xz)(Z' _ X7 )

1 - x2

Substituting this result in the second differentiation, we eliminate all irrational

functions of x, and upon simplifying the result:
(200 (@ +x2)1 - x2) 20 + 43 - Dz + (@2xt - 8 - Dz = 0 .

In the series expression for h(x), there will be no loss in generality

if we make the substitution S = Sk + (2k +1)!, Then
[~} [+e] [>)
x2k+1 XZK X2k+l
2= D08 ek Y C 2 SkwmRr T Y Sen GEEIN
k=0 k=0 k=0

Each term in differential equation (20) may be expressed in series form
by means of the latter expressions. Using the method of equating coefficients
(the development is omitted here, in the interest of brevity), we arrive at the

following recursion:

— 2 2
(21) Sk+1 = (4k* + 2k + 1)Sk + 2k(2k + 1)(4k? + 2k + 1)Sk-1
- 2k(2k + 1) (2k - 1?2k - 2)%8,_,
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valid for k = 0, 1, 2, 3, ***. But this recursion is of the same form as
(19), and becomes identical to it if 8, = Blz{ for all non-negative values of k.
It remains to show that such is the case for the initial values, where k = 0
and 1. We observe that h(0) = 0, and from the first-order differential equa-
tion, h'(0) = 1. But we see from the series expression for z' that h'(0) =
Sy = 1. From (21), we readily obtain the values S; = 1, S, = 49, S3 = 729,
etc. This establishes the truth of (12).

We have overlooked the question of convergence in the manipulation of
the foregoing infinite series. A more rigorous treatment would only have
served to detract interest from the remarkable properties of these series
which link them together. It may be demonstrated, however, that f(x) and
h(x) are convergent within the interval (-1,1), excluding the end points;
g(x) converges for all real values of x.

The purpose of this paper was to demonstrate the validity of (10), (11)
and (12). Now that this has been accomplished, it would be desirable to de-
duce some properties for the coefficients Bk' The remaining portion is de-
voted to the derivation of several such properties and relationships.

We begin by noting that g(x) and h(x) are expressible as the products

of two functions, as is the case with f(x). By application of Maclaurin's

formula,
o0 X oo
2k 2k+1
x2/2 x -u? 3 k x
= 3 K e du = 37N G -
k=0 : [§) k=0
Multiplying these two series term-by-term, we obtain:
o0
2k+1
g = D x g
k=0

where

€ i
Z (1)
C = > T
k s 7l - i@ + 1)
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But, as we have already shown, ¢ = Bk + (2k +1)!. Therefore, we

are led to an alternate expression for Bk :

k i
(21{ + 1)
(22) Bk ZJ< > 21 + 1
- k! k=0

In a similar fashion, we may derive an expression for Bf{ by using the

component functions of h(x):

©0

2k+1
-1 _ k x .
tanx = D0 (D" ey
k=0

a - xz)_% = Z (2&() (X/Z)Zk

k=0
Therefore,
hx) = Z dk x2k+1 ,
k=0
where

. k-i (2.1
d = (""1) 1
k 2k - 21 +1 2i

i=

But, since dk = Bf{ + (2k + 1)!, we are led to the expression:
K i

1
- k. , 2i 1
(23) Bf = (-DF@k + 1 )] ( i)Zk —2i 1
i=0
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We may also express each Bk in the form of a definite integral as

follows:

First, we define the polynomial Pk(x) by the following summation:

: ifk) 2
@4) Bl = 30 () (1>m—1‘
i=0

If we differentiate,

k
P =) (-1>i<‘§> x
i=0

But the latter expression is equivalent to the binomial expansion for (1 -x2 )k.

Noting that Pk(O) = 0, we may integrate and obtain:

x
f (1 - uz)k du

(o}

(25) Pk(x)

Next, we observe that

P, (\2)

Kk )
- k\ (-2)*
sz<i>zi e

i=0
Comparing this with the expression for Bk in (22), we obtain:

. N2
(26) B, = 2k + 1)t [ a- w2)¥ du
2‘k+12‘ Kkt ©

Next, we prove the following property:
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(2m)!

m

27) Bk is divisible by
]
27 m!

, where m isthe greatest integer in 4(k +1).

If we multiply (5) throughout by zkk! and apply relation (8), we obtain

the recursion

28) B, = 2kB . + (KR _ o p
K ko1 Ny

k
1t (-1) (1+350 «++ « (2k - 1)) .

Recursion (28) may be expressed in the following alternative forms, de-

pending on whether k is even or odd:

(28a) B2m = 4mB2m_1 + 1:3:5¢ «vv «(4m - 1)

(28b) BZm+1 = (4m + 2)B2m - 1:3¢5¢ «vo < (4m + 1) .

We may now prove (27) by induction. Let us first assume that (27) is

true for k = 2m, i.e., B2m is divisible by 1:8:5+ ¢+« .(2m - 1). Then,
by (28b), B2m+l is divisible by 1:3:5* -:. - (2m + 1). But this is equivalent
to the assertion of (27), where k = 2m + 1. Now, if we replace m by m +1

in (28a), we see that B2m+2 is also divisible by 1:3.5¢ «+. +(2m + 1). This,
in turn, is equivalent to the assertion of (27), where k = 2m + 2. This es-
tablishes the inductive chain. Since (27) is true for k = 0, it is therefore
true for all values of k.

The readers are invited to discover anyother properties of the sequence
Bk which they feel might be of interest. It is the belief of the author that a
deeper analysis of this series of numbers, though perhaps not of any lasting
value, might be a source of recreation for those who derive pleasure from

such studies.

APPENDIX
DERIVATION OF EQUATION (21)

In addition to the series expressions for the derivatives of h(x), we

will need the following expressions:
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x%z

3

Z!

X

x5z!

x2zm

xdzn

xbzn

FROM VARIOUS OPERATING FUNCTIONS

o0
2k+1
(2 x
2 Sk + 1) BEF I
k=1

* W 21
-2 Se_oZk + D Gy
k=2
[~}
2k+1

- (3) _x
= Z Sk—l (Zk + 1) m
k=1

[}

~ (5) X2k+1
= :Z: Sg2@k + D mr—yy
k=2

[~

2k+1
_ (2) x
= :E: S Gk + D G
k=1
® 2k+1
_ “4) x
= :E: S-1 @+ DT Gy
k=2
® 2k-+1
X

_ (6)
=2 S,k + D Gk I

k=5

In the foregoing, the symbol (2k + 1)(r) represents

2k + 1)2k)(2k ~ 1)k - 2) -+- Rk +1 - (r - 1)) =

Equation (20) may be expressed in the following manner:

1 - x2 - x4

@2k + 1)
Gk +1 - 1)}

- x6)z" + (4x5 - 4x3)z' + (2xt - 3x2 - 1)z =

0.

179
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Substituting the previous expressions in the latter equation, we obtain:

= 2kt (2 251
2 Se BETI S 2k + 1 ey
k=0 k=1
* 2k+1 2k+1
4) x 6) x
-2 Sk + 1) TE+ T D Spgl2k + 1) BE 1)
k=2 k=3
(=]
2k+1 2k+1
(5) x 3) x
+ D 48,k + 1) TETD - 2 45 1@k + 1) BE I
k=2 k=1
* 2k+1 2k-+1
4) x (2) x
+, 28 @k +1) BET D - D B @k DY ey
k=2 k=1
!
S e - 0 -
k=0

If we equate like coefficients, we obtain the following recursions:

Si—S():O; 52—681—24:80—1880—5120;

S; - 208, - 1208, + 4808, - 2408, + 2408y - 608, - S, = 0;

if k=3, 4, 5, =+,

Sup - K2k + 1) + 1)§ - 2k(k + QS

k41
vk + D@k - 9@k - 4 + 4@k -3 + 28, = 0,

where

Qk = (2k - 1)(2k - 2) + 42k - 1) + 3,

Upon simplification, these results become:
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(21) Sk+1 (4k? + 2k + 1)Sk + 2k(2k + 1)(4k? + 2k + 1)Sk-1

- 2k(k + D2k - D2k - 2’5, ,

balid for k =0, 1, 2, **° ,

-
[Continued from page 168. ]

FIBONACCI PRIMITIVE ROOTS

etc. Of course, that is (abstractly) the same thing we are doing in (2), (3).

In [7], Emma Lehmer examines the quadratic character of
6 = 1+ ~5)/2 (mod p) .

If 0 is a quadratic residue of p, butnot a higher power residue, then all
quadratic residues can be generated by addition. In our construction, 6 is

a primitive root and generates the quadratic nonresidues also.
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