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1. INTRODUCTION

F():O, F1=1, F =F +F
n n-

o+l n=1).

1

It is well known that every positive integer N can be uniquely represented

in the form

(1.1) N = Fk1+Fk2+Fk3+"' ,
where
(1.2) k= 2, 41 - K = 2 =1, 2,3, ) ;

Equation (1.1) is called the canonical representation of N. Let Ak denote
the set of positive integers N with k; = k in (1.1). It was proved in [2]
that

(1.3) Ay = ab’ La @) € =1, 2,3 ),

R -
(1.4:) A2t+1 = ba(N) (t 1: 29 33 ) 3

where M denotes the set of positive integers and the functions a(n), b(n)

are defined by means of

(1.5) am = [en], b@m) =[], «a =34(1+ ),
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and [x] denotes the greatest integer =x. In the paper cited, considerable

use is made of the function e(N) defined by

(1.6) e(N) = Fki-l + Fk2—1 + Fk3-1 oo
This function was introduced in an earlier paper [1].

It is natural to try to extend the results of [2] to Fibonacci numbers of
higher order. For a number of reasons we limit ourselves in the present

paper to the numbers defined by

I

(1.7) GO = 0, G1 = G2 = 1, G 1 = Gn+Gn_ +G (n 2) .

n+ 1 n-2
To begin with, we have the unique canonical representation
(1.8) N = Gy + €G3 + €Gy + +++ ,
where each € is either 0 or 1 and now

1.9) € =0 @=2,34,").

1641 G2
Corresponding to the function e(N) defined by (1.6) we introduce the function
(1.10) f(N) = €,Gy + €3Gy + €G3 + =** .

Moreover if

(1.11) N = €3G, + €3Gy + €3Gy + +«+ ,

where each e'i is either 0 or 1, is any representation of N, then

f(N) = €3Gy + €3Gy +€)Gy + =+

Let C, denote the set of positive integers {N} for which €, is the

first nonzero ei in (1.8). We obtain results analogous to (1.3) and (1.4),

namely
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(1.12) Copug = acka(N) U ackb(m) k= 0),
(1.13) Cgerg = bea® U beby) k = 0),
(1.14) Copry = Elamy U Fhan) & = 0.

The functions a, b, ¢ are defined in Section 3 below; we have been unable
to find explicit formulas analogous to (1.5). We show, however, that the
functions can be characterized in the following way. They are strictly mono-
tone functions whose ranges constitute a disjointpartition of the positive inte-

gers; moreover

(1.15) bn) = a?@) + 1, cm) = a@) + b(m) + n.

In addition to the canonical representation (1.8), we find it convenient

to introduce a second canonical representation

(1.16) N = Ggpiq * €g1e4903k42 ¥ 00
where k =0 and as before
eiei+1ei+2 =0 i@ =3k +1).

Moreover, making use of the representation (1.16),

alN) = Gg g+ €g49Cgpg ¥ 0

(1.17) bON) = Ggpyg * €gnC3ea T 7
e = Ggppy * €g203k45 T 7
It is because of these formulas for a(N), b(N), ¢(N) that (1.16) is particu-
larly useful.
2. PRELIMINARIES

Let Qn be the set of non-negative N'S which can be written canon-

ically in the form
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(2.1) N = ﬁsz + 63G3 + oeee + enG’n o

Then we have

{021}3 Q3 = {09 13 2’ 3} 3
{09 15 2: 3’ 4: 5,6 9"'}

Qs
Q4

(2.2)

We can see easily by induction that Qn is a disjoint union:

(2.3) Q+t@Q _+G, 1 +G) U@ ,+G)UQ 4
and that
(2.4) Q, = fo, 1, 2, -+, G - 1 -

These remarks imply the following theorem.
Theorem 1. Any positive integer N can be uniquely represented in
the canonical form (2.1).

Theorem 2. If N is given (not necessarily canonically) by
N = Gy + €Gy + -+,
then

F(N) = €}Gy + €3Gy + +o- .

Proof. Given any representation €' = (€, €}, -++) of N we obtain
another representation s{€') of N by choosing, in €, the block of the form
(1, 1, 1, 0) that is farthest right and replacing it by the block (0, 0, 0, 1).
If there is no such block, €' is canonical and we set s(€') = €'. It is clear
that sufficiently many applications of s will yield the canonical representa-

tion of N, but it is also clear that

2.5) EYZGi + €3Gy + v = S(€),G + s(€")3Gy + o0,
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establishing the theorem.

Theorem 3. We have f(N + 1) = f(N), with equality if and only if
N € C,.

Proof. If N& C, then

N = 63(}3 + €4G4 + oo
and
N+ 1 =G2+E3G‘3+'

Hence

fN + 1) = Gy + €Gy + »o» = f(N) + 1.

If N & C, then either

(a) N = Gy + Gg + €;Gy + «»
or

(b) N = G2+E4G4+"
In case (a)

N+1=G4+€5G5+“"’
and
f(N+1) = Gg"‘ 65G4+ eoe = f(N).

In case (b)

N+1 = Gg+ €G + -

and
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f(N+ 1) = GZ +€4G3 + e =f(N).

This completes the proof.
Theorem 4. We have N -1 & C, if and only if N € C
2 (mod 3).

where k

k’

Proof. If N & C,y, there is nothing to prove, so suppose N & Ck’ k
= 2; let N have the canonical representation
N = Gk + ek+1Gk+1 +oe
Then we have
Gy + Gy +Gy+ (Gg +Gg) + -« + G 5+t G 4 k = 0 (mod 3)
(2.6) Gk = G1+G2+G3+(G5+G6)+"' +(Gk—2+Gk—1) k=1 (mod 3)

G2+G3+G4+(G6+G7)+"'+(G Gk-—l) kEZ(mOdS).

k-2

Thus we see that only in the case k = 2 (mod 3) we have G -1 &g€C,.
Theorem 5. The following identities hold for k > 2.

Gk-l k = 0 (mod 3)
(2.7) f(Gk -1) = Gk-l k = 1 (mod 3)
G4 -1 k = 2 (mod 3)

Proof. Making use of (2.6), we readily get (2.7).,

3. THE FUNCTIONS a, b, AND c

In this section we define three strictly monotone functions on the posi-

tive integers, which we display as an array:

a(l) | a@2) | a(3) | a@) | a(d)

(3.1) R:| b(l) | b@) | b(3) | b(4) | b(5)

c@) | c@ | cB | c@ | c(5)
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We begin by setting a(l) = 1, b@) =2, c@) = 4,

a(2) = 3,

49

and fill the
rest of the array by induction. Suppose that columns 1 to n have been filled,
and glso that a(n + 1) is known. Then we fill row a to column a(m +1) in

increasing order with the first integers that have not appeared so far in the

array. Then we let b(n + 1) be the next integer that has not appeared, and

we set
cmn+1) =n+1+an+1) +bn +1).
Thus we get
ni{l 2 3 4 5 6 7 8 9 10
all 3 5 7 81 10 | 12 14 | 16 | 18
(3.2) R:elpla| 6| 9|13| 15| 19|22 26 30
c 4 111 17 24 28 35 | 41 48 55

It is clear from the definition of R that the
c(N) are disjoint and exhaust the positive integers.
several relations between a, b and c.

Theorem 6. For every positive integer N,
hold:

(3.3) c(N) = a(N) + b(N) + N ,
(3.4) b(N) = a*(N) + 1,
(3.5) ab(N) = ba(N) +1 ,
(3.6) c(N) = ab(N) +1 = ba(N) +

ranges a(N), b(N),

and

We will now establish

the following identities

2.

Proof. 1. ((3.3)) This is the definition of c(N).
2. ((3.4)) Let N be the first integer for which (3.4) fails.

Then we must have, for some K< N,
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cK) = a’(N) + 1 and b®N) - a?(N) + 2.

Hence the array has the form

K N a(N)

a?(N)

a?(N) + 2

a?(N) + 1

Now K + N +a(N) numbers have been entered. Since they must be the num-

bers 1, 2, "=+, a’(N) + 2, we get
(3.7) K+ N +aN) = a?(N) + 2.
But
K +a®) + bK) = cK) = a?(N) + 1.

Therefore

(3.8) aK) + bK) +1 = N +a(N) .

Now if we had a(K) < N, we would have a’(K) < a(N), but from (3.8) we
would have b(K)+1 > a(N). However b(K) = a’(K) +1 since (3.4) holds
for K < N. This is a contradiction, since a(N) < b(K). In a similar way
we contradict the supposition a(K) > N. Hence a{K) = N and we have

K+N+a@ = K+aK) +a%K) = K+a®) +bK) -1 = cK) -1 = a’(N),

contradicting (3.7).

3. (3.5) and (3.6)). Consider the array:
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N a(N) a%(N) b(N)

a?(N) ba(N) - 1 ab(N)

(3.9)

ba ()

c(N)

Assume ba(N) > c(N). Then no number =<c{N) can be missing from the en-
closed portion (since it's too late to enter it in any row). Hence in the en-
closed portion we have at least the numbers 1, 2, ¢+, ¢c(N), ba(N) -1 and
ba{N). However these are only N +a{N) +bN) -1 = ¢c(N) -1 entries, a
contradiction. Hence ba{N) < ¢{N) and one number M < c{N) is missing
from the enclosed portion. Then we must have M = ab(N). Now M is ex-
ceeded only by c¢(N), so we must have ab(N) = ¢(N) -1, ba(N) = c(N) - 2
proving (3.5) and (3.6).

We conclude this section with a characterization of the array R.

Theorem 7. Let a;, by and ¢y be strictly monotone functions whose
ranges form a disjoint partition of the positive integers. Suppose further that
they satisfy (3.3) and (3.4). Then a; = a, by =b and ¢, = ¢,

Proof. Clearly

b{N) = a?(N) +1 > a’(N) = a(N).

Hence we must have afl) =1 and b@) = a%(1) +1 = 2. Then c@) = 4,
and further, since b{N} > a(N), a{(2) = 3.
Now by induction on the columns of the array formed by the functions

a;, by and ¢y, we see that it ig the array R.

4., RELATIONS INVOLVING f{

Since every number appears in the range of f and f is monotone, the
following definition makes sense. TFor every N, welet A(N) be defined as

follows:

(4.1) fAN) = N; flA(N) - 1) = N -1,
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We define B(N) by

(4.2) B(N) = A(AIN)) +1
and C(N) by
(4.3) C(N) = N + AN) + B(N) .

Theorem 8. AA(N) C C,.
Proof. Suppose for some N, A(A(N)) is not in Cs. Put {(canonical
representation)

AAMN) = G_+€_.G

ke Grn T = 2.

Then applying f we get

AN) = G

G * € G T

(4.4)

N =G g+ €qGq ¥

By the definition of A and Theorem 3, A(A(N)) -1 & C;, so by Theorem
4, k = 2 (mod 3). But neither is A(N) -1 in Cy. Hence k-1 = 2 (mod
3). This is a contradiction and proves the theorem.

Theorem 9. C, = A(A(N)) U A(B®N)).

Proof. Suppose A(B(N)) & C,. Put (canonical representation)

ABMN) = G + € G g+ k= 2).

As in the previous theorem, we must have k = 2 (mod 3) so that k = 5 and

AA(N)) +1 = B(N) = Gk-l + €k+1Gk 4 oo
Hence
AAN)) = Gk—l -1+ ek+1Gk + ee

and, from Theorem 5,
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AN) = G G,

k2 T 1 G T e

Now again since A(N) -1 & C,, we get k- 2 = 2 (mod 3), a contradiction.
Theorem 10. Let K be arbitrary and suppose K -1 is given canon-
ically by

(4.5) K-1= €Gy + €Gg + -+,
Then

(4.6) AK) = Gy + €,Gg + €3Gy + -
(4.7) AAK) = Gy + €Gy + €3G5 + + =+
(4.8) CK) = Gy + €,G5 + €3G + **°

Proof. From the previous theorem, the number
P =Gy + €Gy + €Gg + +o-
is either of the form A(A(L)) or A(B(L)). Hence
f(P) = Gy + €,G3 + €3Gy
is either of the form A(L) or B(). But f(P) -1€& Cy, so £(P) cannot
have the form B(L). Hence P is, in fact, A(A(K)) and all of the relations

follow, the third using (4.2) and (4.3).
Theorem 11. A =a, B =b, C = c and for any integer N,

faN)) = N
(4.9) fbM)) = a(N)
flcN)) = bM)

Proof. We prove the first part of the theorem by verifying the condi-

tions of Theorem 7. The second part will be established incidentally in the
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course of the proof. Only the requirement that AM), B@M) and C(N) be

disjoint and exhaustive is not clear,
Now A(A(N)) € Cy by Theorem 8, so by Theorem 3,
fBMN) - 1) = fAAN) = f(BN) .
Hence B(N) & AM) (and f(B(N)) = A(N)). Now
CN) = N+ AN + AA(N) + 1
Let (canonical representation)
AAM)) = Gy + €3Gy + €, Gy + -~
Then
AN) -1 = €Gy + €Gy + -+,
and, since A(N) - 1 & C,, it follows that € = 0. Applying f we get
N-1=6G + G +- -+ ,
so that

C(N) = 3+F2+ €3G4 +e4G5+'°'

= Gy + €,G5; + €5Gg + o

This is not necessarily the canonical representation of C(N) but

fCcm) = A(A@) + 1 ( = BWM)

and

fC) - 1) = AAN) + 1.
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Hence C(N) & A(N). Now suppose C(N) = A(A(M)) +1 for some M. Then
B(N) = A(AN)) +1 = £(C(n)) = A ,
a contradiction. Hence we have shown that A(N), B(N) and C(N) are
disjoint,
Now suppose N & A(N) U B{N). Let (canonical representation)
(4.10) N =G, + € G, +oeee
By Theorem 9 this is equivalent to assuming A(N) & C,, that is,
(4.11) AN) = G +

1 TE€k41Can T o

and since, always, A(N) -1 & Cy, we have k+1 = 2 (mod 3), thatis,
k = 1 (mod 3).

First let us consider the case k = 4. Then, if we put
(4.12) K -1 = €Gy + €Gg + ++- ,
we get, by Theorem 10,
cK) = N.
Now suppose k >4; k =3t+1, t >1. Thenlet s = t-1 and set

K =G G

3s+1 * €atapUggrn T
G * Gy * Go) * GytGy) e+ (Gyg g TGag) ¥ ey 905045 -

Now, applying Theorem 10 to K - (Gr__2 + (Gr_1 + GO)), we get

CK - (G4 +G_4 +Gy) +1)

= G4 + (G5 -+ GG) + o0e + (th—1+G3t) +63t+2G3t+2 Foeee

= N.
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This proves the Theorem.

5. THE SECOND CANONICAL REPRESENTATION

Theorem 12. Every positive integer N can be written in a unique way

in the form

(5.1) N = Ggoq * &g4aC5500

where s = 0 and, as before, € = 0. Moreover,

16418 142

(5.2) alN) = Ggo o * €gu0CGggug ¥ 70"

(5.3) bIN) = Gggig * €gi9Gagyy * 70"
and
(5.4) cN) = Gggyy * 63S+2G38+5 + v

Proof. We saw in the proof of the previous theorem that an integer

M is of the form c(K) if and only if it is given canonically by

M =G, +€

kT € G

ka1 T ot k =1 (mod 3).
Hence for some s = 0, c(N) is given canonically by

cN) = G G

3s+4 © €3542U3545 ¥
Apply f repeatedly to get the existence of the representation and formulas
(5.2) and (5.3). Now if we assume that N can be written in two different
ways in the form (5.1), we should obtain two different canonical representa-
tions of c(N). Hence the theorem is proved.

We may call (5.1) the second canonical representation.

In view of the representation (5.1), it is natural to let C denote

3s+1
the set of integers representable in the form (5.1), for a fixed s. Then
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clearly
(5.5) E3£s+1 = C3s+1 (s = 1)
while
o0
(5.6) G = kkj*o Cgesg Y Copyg)

Making use of the last theorem, we obtain several formulas relating
a, b and c. The details are similar in all cases so we will prove only two

of the formulas.

Theorem 13. The following formulas hold.

—

a’ =b-1
ab = c¢c -1
ac = a-+b+ec
ba = ¢ - 2
(5.7) <b2=a+b+c—1

bc = a + 2b + 2¢
ca =a+b+c -3

cbh = a+ 2b + 2¢ - 2

c? = 2a + 3b + 4c

Proof. To prove, for instance, that

bc = a + 2b + 2¢,

we suppose that

(5.8) cN) = G G

3s41 T 3g4203g42 T 7 (s
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Then by Theorem 12

be@) = Gggug * € pCagpy * o0 (s =1
But, by applying f to c(N) we see that
b(N) = Ggg + €34,5Ggg4q * s =1
and
a(N) = Ggg 1 T €5549Ggs * (s = 1)
Now the result follows if we observe that
Gn-l * 2Gn * ZGrn—l = Grn+3 :
Similarly, to prove that
b =a+b+c-1,
suppose that
eN) = Ggyuy * €15 Cg500 T 00 (s = 1).
Then
bN) = Ggg + €34,9Ggqq + =1
and
a) = GrZs-l * e3s+2G35 L (s = 1).

Now we write b(N) in the second canonical form:

bIN) = Gy + Gp) + +++ +(Ggg o * Ggg 1)+ €3,5Cg g +

[.J an.
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Then

+

2y _ ) .
b*m) = (G3 + Gy) T Ggg + Gggyy) * GgipC3qis

Hence

b2(N) + 1

b2(N) + Gy = a(N) + bMN) + c(N) .
A word function (or simply word) u is a monomial in a, b, c:
L ik
(5.9) u = altpitcl... plrplr fr ,
where the exponents are arbitrary nonnegative integers. Since au = bv, for
example, is impossible, and au = av implies u = v, it follows that the
representation (5.9) is unique. In other words factorization into prime ele-
ments a, b, ¢ is unique. We define the weight of a word by means of
p@@ =1, pb) = 2, plc) = 3
together with

pv) = p) + p) ,

where u,v are arbitrary words. Let Np denote the number of words of

weight p. If u is any such word then either

u = aw, u = buy or u = cug,
where
plwy) = p -1, plu,) = p - 2, plug) = p - 3.
Hence
N =N + N + N P = 3
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Moreover

It follows that

(5.10) N =G
Theorem 14. The words u,v satisfy

(5.11) uv = vu

if and only if there is a word w such that

where r and s are nonnegative integers.

Proof. The proof is by induction on p(u) + p(v). We may assume that
both u, v have positive weight. Also we may assume that p(u) = p(v). It
then follows from (5.11) and unique factorization that u = vz, where z isa
word. Thus (5.11) reduces to

(5.12) ZV = VZ.

Sinee p(zv) < p(uv), the inductive hypothesis gives

so that u = Wr+s .

For the next theorem we require, in addition to the weight of u, the
degree of u, d(u), defined by

’

(5.13) d(u)=i1+j1+k1+---+ir+jr+kr

where u is given by (5.9). We also define the integers H by means of
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5.14 = = = =
(3.14) Hy =0, H =1, Hy =2, H  =H+H  +H , @©2).
It is easy to show that
(5.15) H =G +G ;-
Theorem 15. Let u be a word of weight p. Then
(5.16) ufm) = Gp_3a(n) + Hp_sb(n) + Gp_ZC(n) =Ny

where Au is independent of n but depends on u.
To have the theorem hold for all p= 1 we extend the definition of

Gn’ H for negative values of n. In particular, we have the following table
of values

n -3 -2 -1 0 1 2 3
-1 1 0 0 1 1 2
H -1 0 1 0 1 2 3

It is now easily verified that the theorem holds for the words a,b and
c. We assume that (5.16) holds for words of degree k. Let u be an arbi-
trary word of degree k + 1. There are three cases according as u = va,
vb or ve. Assume v has weight p.

(i) For u = va, we have, by the inductive hypothesis and Theorem
13,

= = 2 -
u=va=G_ ,a +Hp_3ba+gp_zca A

p-3 v

= Gp_3(b -1) + Hp_3(c -2) + Gp_z(a tb+e-3) -Ay
= Gp—Za + (Gp_2 + Gp_g)b + (Hp_3 + Gp—Z)c - (Grp_3 + ZHp_3+3Gp_2+)\V)
= Gp-2a + Hp-zb + Gp—lc - (Hp + )\V)

(ii) For u = vb, we have
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= = 2 -
u = vbh Gp_sab+Hp_3b + Gp_zcb )\V

1]

Gp_3(c -1) + Hp_3(a +b+c-1)+ Gp_z(a +2b +2¢c - 2) - )\V

G

pg PHy g)a * @G, +H b+ (G _, + G g+ H _go

- (2 -2 + Gp_3 + Hp_3 + )\v)

Gp_la + Hp—lb + Gpc - (Gp + )\V) .

]

(ii) For u = ve, we have

u = ve = Gp_3ac + Hp—SbC + Gp-Zcz _ )\V
= G,_g@ +b+c)+H @ +2b+20)+ G ,Ca+3b+de) =)
= (2Gp_2 + Gp_3 + Hp_3)a + (?;Gp_2 + Gp_3 + 2Hp—3)b
+ (4(3:p_2 + Gp—3 + 2Hp—-3)c =,
= Gpa + Hpb + Gp+1c - Av )

This completes the proof. Incidentally, we have proved the following
relations:

Ava = Hp + )‘v
(5.17) )\Vb = Gp + )\V
}‘VC - )\v ’

where v is of weight p.
As an immediate corollary of the last theorem, we state:

Theorem 16. Let u and v be arbitrary words. Then there is an
integer C such that

(5.18) uv - vu = C.

6. AN ESTIMATE OF a(n)

Let o be the real root of x® -x*-x-1 =0 andlet 8 and o be the
complex roots, f = rele, v o= re_16 . Then we have
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n+1 n+1

-aG_ = - B

(6.1) Gn+1 n v - B

which we can verify by taking n equal to -1, 0 and 1 and noting that both
sides of (6.1) satisfy the recurrence

u =u +u +u_ .
n+3 n+2 n+1 n

If N is given in the second canonical representation by

(6.2) N = CGgesr * Coap G ™ 00 k=0,
we have
al) = Ggryp * €349 Oz * 0
(6.3) b(N) = ng_'_3 + 63k+2G3k+4 + oo
eM) = Ggyig * €349 Cgpes T 0
Now o = 1.8, +++, sothat || = |y| = NBY = ~NI/a@ <1. Then, using
(6.1), (6.2), and (6.3) we get the following.
Theorem 17. The three sequences
a(N) - [aN], b(N) - [e2N], c(N) - [&N]

are all bounded.

Next we prove

Theorem 18. The difference a(N) - [aN] is positive infinitely often,
negative infinitely often and 0 infinitely often.

Proof. If 0 were a rational multiple of 27 we should have, for some

m,

ym+1 _ ﬁm+1 _ I_In+1

and, by (6.1), Gm+1 = osz., But « is irrational so this is impossible.

Hence for infinitely many k we must have
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o _ p3k+1 sin {8k + 2)6 } _ 0,

(6.4) Gopra = %Cgp = sin

that is,

a(G3k+1) - [QG 0 )

ski1] 7
for infinitely many k.
To get the second part of the theorem we must find an infinite number of
integers N for which
a(N) - oN < -1,

Let N have the form

N=G1+G3+Gk,

where k is very large. Then

a(N) - &N = Gy - Gy + Gy - oGy + Gy g - BGy

1-a+3-20+G -aG,. = -1.4.

k+1 k

This proves the theorem.
Finally to prove that the difference vanishes infinitely often, it suffices
to show that (compare (6.4))

r3k+1 sin(3k + 2)
’ sin

-1 =

= 0

for infinitely many values of n. This is clear since 0 <r <1 and 6 isan

irrational multiple of 27.

7. GENERATING FUNCTIONS
Put
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(7.1) ) = D " k= 2,34, :)
nGCk

and

(7.2) Fyy®@ = 2, £ (= 0,1,2 ).
2€Cg41

In view of (5.5) and (5.6), we have

(7.3) Bop 1@ = gy &) k =1,2,3,
and
(7.4) F160) = D g p® + D by 0l

k=0 k=0

It is evident that

(7.5) =Y
k=2

Also it follows from the definition of Ck that

G, °
o ) = x {1+ ) 9,6
j=k+2
(7.6) o
+XGk+Gk+1 14+ Z ¢j(x)
j=k+3
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From (1.1) we get the recurrence

G G, ,+G
. a+ x k+1) (¢k+1(x) +x k+1 k+2¢k+3(x))
' G, .-G G G,

= x SR e w0 - x Bo 000

It is also convenient to define

5e]

9 A =3P, Bo =YW, cw =3 W,
n=1 =1

n=1
so that
(7.9) AR + Bl + CK) = =
Moreover
(7.10) AR = D 0 0
k=0
(7.11) BE) = ) g0
k=0
(7.12) CE =D 0y 0 = 7= - G .
k=0

Now by (7.1) and (1.12)

o0

Pylx) = Z 2 | § Lab)
n=1 n=1
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Since
a?(N) = b@) - 1, ab(m) = c(m) - 1,

It follows that

(7.13) x0y(x) = B(x) + C(x).

In the next place, by (1.13)

G = 3 20 L 3 P

Il
o]
DO

Q
®

+

ke
I

Since

AR) = Z XaZ(n) i Z Xab(n) + Z Xac(n)
n=1 =1 n=1

[>e]

Z Xa(n)+b (n)+c(n)

AR + x 1B +
=1

it follows that

(7.14) x%Pg(x) = xA(x) - B(x) .

By (1.1)

67
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0, (x)

x{1 + (bj(x)) +x3 1 +Z¢j(x)
j=4 s j=5

]

X + x5+ xPyx) + (x + x3)2 ¢iJ.(x)
j=5

X
1 -x

1]

X+ x5+ xP,x) + (x + x3)3

-0 - 03t0) - 0ut0|

Combining this with (7.13) and (7.14), we get

(7.15) x4y (x) = x%n(x) - C(x) .

In a similar manner we get
(7.16) Bpe(x) = -xA(x) + B(x) + 1 + x})C(x) ,
(7.17) xMipe(x) = (x + x3)Ax) - @ + x% + x")B(x) - x'C(x) .

Generally it can be shown that

Sk-1
X

(7.18) (bk(X) = ppAEK) + p(x)Bx) + p3(x)CX) ,

where

S, = Gy + Gy + e+ +G

k k

and py(x), py(x), ps(x) are polynomials with integral coefficients.
In the next place, exactly as in [1, Sec. 7], we can show that A(x),
B(x) and C(x) cannot be continued analytically across the unit circle. For

the proof it suffices to use

(7.19) Zl~§-, Zl~%, 21~

ak)=n b(k)<n ck)=n

Rl



1972] FIBONACCI REPRESENTATIONS OF HIGHER ORDER 69

which follow from Theorem 17. Indeed, we can show in this way that none of

the functions can be continued across the unit circle. Moreover if we put
| (b)

where (compare (1.12), (1.13), (1.14))

2 k = k
a _ ac a(n) a _ bec a(n)
i) = Z x s Pyeipl) = Z * :
n=1 n=1
_ ¢ “a) b _ ackb(n)
Ogicra® = Z * » Pgepp® = Z * ’ and
n=1 =1
¢gk+3(x) - Z xe b(n), ¢gk+4(x) - Z K ’
n=1 n=1

‘then neither ¢§(X) nor qi,:llz(x) can be continued across the unit circle.
We can also show that A(x), B(x), C(x) do not satisfy any relation of

the form
(7.20) i ®KAR) + [Hx)BK) + f3(x)Cx) = 0 ,

where f;(x), f(x), f3(x) are polynomials. In thefirst place we may assume
without loss of generality that the coefficients of f;(x) are rational (for proof
compare [3, p. 141, No. 151]) and that

(7.21) &), fHx), f3x)=1.

Since (7.19) implies

I

R |~

1 .
1 1-xBkx) = —2, Xll__l_n1

. 1 .
xhinl 1-xARX) = 3 X111=n ,

1 -xCKx)

[Continued on page 94. ]



