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1. INTRODUCTION 

Let 

F<v = 0S Fi = 1, F _,, = F + F n (n > 1) . 
u 1 n+1 n n - 1 

It i s well known that eve ry posit ive in teger N can be uniquely r ep re sen t ed 

in the form 

(1.1) N = F. + F. + F. + 

where 

(1.2) ki ^ 29 k . + 1 - k. ^ 2 tt = l , 2, 3, • •• ) ; 

Equation (1,1) i s cal led the canonical r ep resen ta t ion of N. Le t A^ denote 

the se t of posi t ive in t ege r s N with kt = k in (1.1). It was proved in [ 2 ] 

that 

(1.3) A 2 t = a b ^ a W ) (t = 1, 2, 3 , •• •) , 

(1.4) A 2 t + 1 = b W ) (t = 1, 2, 3, • • • ) , 

where M denotes the se t of posi t ive in tegers and the functions a(n), b(n) 

a r e defined by means of 

(1.5) a(n) = [ o n ] , b(n) = [or2n], a = \(1 + <\/5) , 
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and [x] denotes the g r e a t e s t in teger ^x . In the paper ci ted, cons iderable 

use is made of the function e(N) defined by 

This function was introduced in an e a r l i e r paper [ l ] . 

It i s na tura l to t ry to extend the r e s u l t s of [2] to Fibonacci number s of 

h igher o r d e r . F o r a number of r e a s o n s we l imi t ou r se lves in the p re sen t 

pape r to the number s defined by 

(1.7) G0 = 0, Gi = G2 = 1, G n + 1 = G n + G n _ 1 + GR_2 (n 2 2) . 

To begin with, we have the unique canonical r epresen ta t ion 

(1.8) N = ^ G 2 + €3G3 + €4G4 + . . . f 

where each €. is e i the r 0 o r 1 and now 

(1.9) €i€i + l€i + 2 = ° (i = 2, 3 , 4 , • • • ) . 

Corresponding to the function e(N) defined by (1.6) we introduce the function 

(1.10) f(N) = €2Gi + €3G2 + €4G3 + • • • . 

Moreover if 

(1.11) N = e[G2 + €̂ G 3 + €̂ G 4 + - . , 

where each € \ i s e i the r 0 o r 1, i s any represen ta t ion of N, then 

f(N) = € ^ + €̂ G 2 + €̂ G 4 + - . . 

Let C. denote the s e t of posi t ive in tegers { N } for which 6, i s the 

f i r s t nonzero 6. in (1.8). We obtain r e s u l t s analogous to (1.3) and (1.4), 

namely 
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(1.12) C 3 k + 2 = ac k a (N) U ackb(W) (k ^ 0) , 

(1.13) C 3 k + 3 = bcka(Jf) U bckb(N) (k ^ 0) , 

(1.14) C 3 k + 4 = c k + 1 a ( N ) U c k + 1 b ( N ) (k s> 0) . 

The functions a, b , c a r e defined in Section 3 below; we have been unable 

to find explicit formulas analogous to (1.5). We show, however , that the 

functions can be cha rac t e r i zed in the following way. They a r e s t r i c t ly m o n o -

tone functions whose ranges const i tute a disjoint par t i t ion of the posit ive in t e -

ge r s ; m o r e o v e r 

(1.15) b(n) = a2(n) + 1, c(n) = a(n) + b(n) + n . 

In addition to the canonical r epresen ta t ion (1.8), we find i t convenient 

to introduce a second canonical r ep resen ta t ion 

&-16> N = G 3 k + 1 + €3k + 2 G 3k + 2 + 

where k ^ 0 and as before 

6 i e i + l €i + 2 = ° (i ^ 3k + 1) . 

Moreover , making use of the represen ta t ion (1.16), 

a ( N ) = G 3 k + 2 + €3 k + 2 G 3 k + 3 + > - -

(1.17) {b(N) = G 3 k + 3 + €3 k + 2 G 3 k + 4 + . . . 

C ( N ) = G 3 k + 4 + e 3 k + 2 G 3 k + 5 + - - ' 

It i s because of these formulas for a(N), b(N), c(N) that (1.16) i s p a r t i c u -

l a r l y useful. 

2. PRELIMINARIES 

Let Q be the se t of non-negat ive Nrs- which can be wr i t ten canon-

ical ly in the form 
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(2.1) N = e2G2 + e3G3 + • • • + enGn . 

Then we have 

Q2 = {0 ,1} , Q3 = {0, 1, 2, 3} , 
(2.2) 

Q4 = {0, 1, 2, 3, 4, 5, 6 , . . . } 

We can see easily by induction that Q is a disjoint union: 

(2.3) Qn + (Qn_3 + Gn_1 + Gn) U (QQ_2 + Gn) U Q ^ 

and that 

(2.4) Qn = {0, 1, 2, • - . , G n + 1 - 1} . 

These remarks imply the following theorem. 
Theorem 1. Any positive integer N can be uniquely represented in 

the canonical form (2.1). 
Theorem 2. If N is given (not necessarily canonically) by 

N = €̂ G2 + €j G3 + ••• , 

then 

f(N) = €\Gt + €jG2 + . - . 

Proof. Given any representation €f = (€2, 63, •••) of N we obtain 
another representation s(€?) of N by choosing, in €9 the block of the form 
(1, 1, 19 0) that is farthest right and replacing it by the block (0, 0, 09 1). 
If there is no such block;, € T is canonical and we set s(€?) = €!. It is clear 
that sufficiently many applications of s will yield the canonical representa-
tion of N9 but it is also clear that 

(2.5) €̂Gj + €̂ G2 + ••• = s(€f)2Gi + s(€')3G2 +• • • • , 
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es tabl ishing the theorem* 

T h e o r e m 3» We have f(N + 1) — f(N), with equali ty if and only if 
N E C 2 , 

Proof. If N $ C2 then 

N = €3G3 + €4G4 + . . . 

and 

N + 1 = G2 + €3 G3 + • • • . 

Hence 

f (N + 1) = Gi + €3G2 + • • • = f(N) + 1 . 

If N G C2 then e i the r 

(a) N = G2 + G3 + €5G5 + - . . 

o r 

(b) N = G2 + €4G4 + • • • . 

In case (a) 

N + 1 = G4 + €5G5 + . - • 

and 

f(N + 1) = Ga + %Ga + . . . = f(N) . 

In case (b) 

N + 1 = G3 + €4 G4 + • •• 

and 
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f(N + 1) = G2 + €4 G 3 + . . . = f(N) . 

[Jan. 

This comple tes the proof. 

T h e o r e m 4. We have N - 1 <$ C2 if and only if N G C , , where k = 
2 (mod 3). 

Proof. If N E C2? the re i s nothing to p rove , so suppose N E C, , k 

^ 2; le t N have the canonical r epresen ta t ion 

N = G, + €. ,- G. ^ + k k+1 k+1 

Then we have 

'G0 + Gi + G 2 + (G4 + G5) + 

(2.6) Gk = Gi + G2 + G3 + (G5 + G6) + • 

lG2 +G3 + G4+ (G6 + G7) + • 

+ G k - 2 + G k - l k 

+ ( G k - 2 + G k - l 

0 (mod 3) 

) k = 1 (mod 3) 

+ ( G k _ 2 + G k _ x ) k = 2 (mod 3). 

Thus we see that only in the case k = 2 (mod 3) we have G. - 1 6£ C2 

T h e o r e m 5. The following ident i t ies hold for k => 2. 

J k - 1 
(2.7) f(Gk - 1) G k - 1 

G k - 1 " X 

k = 0 (mod 3) 

k E 1 (mod 3) 

k = 2 (mod 3) 

Proofo Making use of (2.6), we readi ly get (2.7). 

3. THE FUNCTIONS a, b , AND c 

In this sect ion we define th ree s t r i c t ly monotone functions on the p o s i -

tive i n t ege r s , which we display a s an a r r a y : 

(3.1) R 

1 

a( l ) 

b(l) 

c( l ) 

2 

a(2) 

b(2) 

c(2) 

3 

a(3) 

b(3) 

c(3) 

4 

a (4) 

b(4) 

c(4) 

5 

a(5) 

b(5) 

c(5) 

. . . 
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We begin by set t ing a( l ) = 1, b(l) = 2, c( l) = 4 , a(2) = 3 , and fill the 

r e s t of the a r r a y by induction. Suppose that columns 1 to n have been filled* 

and a lso that a(n + 1) i s known. Then we fill row a to column a(n + 1) in 

inc reas ing o r d e r with the f i r s t in tegers that have not appeared so far in the 

a r r a y . Then we le t b(n + 1) be the next in teger that has not appeared , and 

we set 

c{n + 1) = n + 1 + a(n + 1) + b(n + 1) . 

Thus we get 

n 

a 

b 

c 

1 

1 

2 

4 

2 

3 

6 

11 

3 

5 

9 

17 

4 

7 

13 

24 

5 

8 

15 

28 

6 

10 

19 

35 

7 

12 

22 

41 

8 

14 

26 

48 

9 

16 

30 

55 

10 

18 

It i s c l e a r from the definition of R that the r anges a(N), b(N), and 

c(N) a r e disjoint and exhaust the posi t ive i n t ege r s . We will now es tab l i sh 

seve ra l re la t ions between a9 b and c. 

T h e o r e m 6. F o r every posit ive in teger N, the following ident i t ies 

hold: 

(3.3) c(N) = a(N) + b(N) + N , 

(3.4) b(N) = a2(N) + 1 , 

(3.5) ab(N) = ba(N) + 1 , 

(3.6) c(N) = ab(N) + 1 = ba(N) + 2 . 

Proof. 1. ((3.3)) This i s the definition of c(N). 

2. ((3.4)) Let N be the f i r s t in teger for which (3.4) fai ls . 

Then we mus t have3 for some K < N, 
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c(K) - a2(N) + 1 and b(N) - a2(N) + 2 . 

Hence the array has the form 

K N a(N) 

a2(N) 

a2(N) + 2 

a2(N) + 1 

Now K + N + a(N) numbers have been entered. Since they must be the num-
bers 1, 29 • • • , a2(N) + 2, we get 

(3.7) K + N + a(N) = a2(N) + 2 . 

But 

K + a(K) + b(K) = c(K) = a2(N) + 1 . 

Therefore 

(3.8) a(K) + b(K) + 1 = N + a(N) . 

Now if we had a(K) < N3 we would have a2(K) < a(N), but from (3.8) we 
would have b(K) + 1 > a(N). However b(K) = a2(K) + 1 since (3.4) holds 
for K < N. This is a contradiction, since a(N) < b(K). In a similar way 
we contradict the supposition a(K) > N. Hence a(K) = N and we have 

K + N + a(N) = K + a<K) + a2(K) = K + a(K) + b(K) - 1 = c(K) - 1 = a2(N), 

contradicting (3.7). 

3. ((3.5) and (3.6)). Consider the array: 
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. 

c(N) 

a2(N) 

ba(N) 

ba(N) -- 1 

Assume ba(N) > c(N). Then no number ^c(N) can be mi s s ing from the en -

closed port ion (since i t f s too la te to en te r It In any row). Hence In the en -

closed port ion we have at l e a s t the n u m b e r s 1, 2, ° - • , c(N), ba(N) - 1 and 

ba(N). However these a r e only N + a(N) + b(N) - 1 = c(N) - 1 e n t r i e s , a 

contradict ion. Hence ba(N) < c(N) and one number M < c(N) is mi s s ing 

from the enclosed port ion. Then we mus t have M = ab(N). Now M Is e x -

ceeded only by c(N), so we m u s t have ab(N) = c(N) - 1, ba(N) = c(N) - 2 

proving (3.5) and (3.6). 

We conclude this sect ion with a cha rac te r i za t ion of the a r r a y R. 

T h e o r e m 7. Let al 9 bt and ct be s t r i c t ly monotone functions whose 

ranges form a disjoint par t i t ion of the posi t ive i n t ege r s . Suppose fur ther that 

they satisfy (3.3) and (3.4). Then at = a, bA = b and ct = c. 

Proof. Clear ly 

b(N) = a2(N) + 1 > a2(N) > a(N) . 

Hence we mus t have a(l) = 1 and b(l) = a2(l) + 1 = 2. Then c ( l ) = 4, 

and fur ther s s ince b(N) > a ( N ) , a(2) = 3. 

Now by induction on the columns of the a r r a y formed by the functions 

a1? fy and c1? we see that it i s the a r r a y R. 

4. RELATIONS INVOLVING f 

Since every number appea r s in the range of f and f is monotone, the 

following definition m a k e s sense . F o r every N? we le t A(N) be defined as 

follows: 

(4.1) f(A(N)) = N; f(A(N) - 1) = N 
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We define B(N) by 

(4.2) B(N) = A(A(N)) + 1 

and C(N) by 

(4.3) C(N) = N + A(N) + B(N) . 

Theo rem 8. A(A(M) C C2 . 

Proof. Suppose for some N, A(A(N)) i s not in C2. Put (canonical 
r ep re sentation) 

A(A(N)) = G k + 6 k + 1 G k + 1 + . . . (k * 2 ) . 

Then applying f we get 

( 4 . 4 )
 A ( N ) = G k - l + €k + l G k + - - -

N = G k - 2 + € k + l G k - l + - - ' • 

By the definition of A and T h e o r e m 3 , A(A(N)) - 1 €£ C2, so by T h e o r e m 

4 , k = 2 (mod 3). But ne i the r i s A(N) - 1 in C2. Hence k - 1 = 2 (mod 

3). This i s a contradict ion and p roves the theorem. 

T h e o r e m 9. C2 = A(A(N)) U A(B(M)). 

Proof. Suppose A(B(N)) ££ C2. Put (canonical representa t ion) 

A(B(N)) = G k + ^ + 1 G k + 1 + . . . (k > 2 ) . 

As in the previous theo rem, we m u s t have k = 2 (mod 3) so that k ^ 5 and 

A(A(N)) + 1 = B(N) = G k _ 1 + €k + 1 G k + • • • . 

Hence 

A(A(N)) = ^ - 1 + 6 ^ + 

and, from T h e o r e m 5, 
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A ( N ) = Gk-2 + VlGk-l + - " -

Now again since A(N) - 1 <$ C2, we get k - 2 = 2 (mod 3), a contradict ion, 
T h e o r e m 1Q8 Let K be a r b i t r a r y and suppose K - 1 i s given canon-

ical ly by 

(4.5) K - 1 = e2G2 + €3G3 + • • • . 

Then 

'(4.6) A(K) = Gi + €2G3 + €3G4 + • • • 

(4.7) A(A(K) = G2 + €2G4 + €3 G 5 + •• • 

(4.8) C(K) = G4 + €2G5 + €3G6 + ••• 

Proof. F r o m the previous theo rem, the number 

P = G2 + €2G4 + €3 G 5 + . . . 

i s e i the r of the form A(A(L)) o r A(B(L)). Hence 

f(P) = Gi + €2G3 + €3G4 

i s e i the r of the form A(L) o r B(L). But f(P) - 1 $ C2, so f(P) cannot 

have the form B(L). Hence P i s 5 in fact, A(A(K)) and all of the re la t ions 

follow9 the th i rd using (4.2) and (4.3). 
T h e o r e m 11 . A = a5 B = b , C = c and for any in teger N9 

I f(a(N)) = N 

f(b(N)) = a(N) 

f(c(N)) = b(N) . 

Proof. We prove the f i r s t p a r t of the theorem by verifying the condi -

t ions of T h e o r e m 7. The second p a r t will be es tabl i shed incidentally in the 
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cou r se of the proof. Only the r equ i r emen t that A (NT), B(W) and C(N) be 

disjoint and exhaust ive i s not c l e a n 

Now A(A(N)) E C2 by T h e o r e m 8, so by T h e o r e m 39 

f(B(N) - 1) = f(A(A(N))) = f(B(N)) . 

Hence B(N) $ A(M) (and f(B(N» = A(N)). Now 

C(N) = N + A(N) + A(A(N)) + 1 . 

Le t (canonical representa t ion) 

A(A(N)) = G2 + €3G3 + €4G4 + - . . 

Then 

A(N) - 1 = €3G2 + €4G4 + - . , 

ands s ince A(N) - 1 (£ C2, It follows that e3 = 0. Applying f we get 

N - 1 = €3Gi + €4G2 + • • • , 

so that 

C (N) = 3 + F 2 + €3 G4 + €4 G5 + • • • 

= G4 + €4 G 5 + €5G8 + . . . 

This i s not n e c e s s a r i l y the canonical r ep resen ta t ion of C(N) but 

f(C(N)) = A (AON)) + 1 ( = B(N)) 

and 

f(C(N) - 1) = A(A(N)) + 1 . 
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Hence C(N) ^ A(N). Now suppose C(N) = A(A(M)) + 1 for some M, Then 

B(N) = A(A(N)) + 1 = f(C(n)) = A(M) , 

a contradict ion. Hence we have shown that A(N), B(N) and C(N) a r e 
d i s jo in t 

Now suppose N €f A(N) U B(N). Let (canonical representa t ion) 

(4.io) N = G k + e k + 1 G k + 1 + - - . . 

By T h e o r e m 9 this i s equivalent to assuming A(N) (J C2, that i s s 

(4.11) A(N) = G k + 1 + e k + 1 G k + 2 + . . . , 

and s ince , a lways , A(N) - 1 €f C2, we have k + 1 = 2 (mod 3)? that i s 5 

k = 1 (mod 3). 

F i r s t le t us cons ider the case k = 4S Then, If we put 

(4.12) K - 1 = C5G2 + €6G3 + • • • , 

we get5 by T h e o r e m 10, 

c(K) = N . 

Now suppose k > 4 ; k = 3t + 1, t > 1. Then le t s = t - 1 and set 

K = G 3 s+1 + €3 t+2 G 3s+2 + *"* 

= G_2 + (G_x + GQ) + ( G 2 + G s ) + - + < G 3 s - 1 + G3 8 ) + €3 t _ 2 G 3 8 + 2 . 

Now, applying T h e o r e m 10 to K - (G_2 + (G_1 + GQ)) f we get 

C(K - (G_2 + G_1 + GQ) + 1) 

= G4 + (G5 + G6) + . . . +(St-l + G 3 t ) +€3t + 2 G 3H2 + ' " 
= N. 



56 FIBONACCI REPRESENTATIONS OF HIGHER ORDER [Jan. 

This p roves the Theorem. 

5. THE SECOND CANONICAL REPRESENTATION 

Theorem 12. Eve ry posit ive in teger N can be wri t ten in a unique way 

in the form 

(5A) N = G 3 s + 1 + e 3 s + 2 G 3 s + 2 

where s ^ 0 and, as before , 6 . 6 . , - C . l 0 = 0. Moreover , 
i l+l i+2 ' 

( 5 - 2 ) a ( N ) = G 3 s + 2 + 6 3 s + 2 G 3 s + 3 + 

( 5 - 3 ) b ( N ) = G 3 s + 3 + 6 3 s + 2 G 3 s + 4 + 

and 

( 5 ' 4 ) C ( N ) = G 3 s + 4 + ^ s + 2 G 3 s + 5 + - - - • 

Proof. We saw in the proof of the previous theorem that an in teger 

M is of the form c(K) if and only if it is given canonically by 

M = G k + €k + l G k + l + • " ' ' k = 1 (mod 3). 

Hence for some s ^ 0, c(N) i s given canonically by 

C ( N ) = G 3 S + 4 + €3 s + 2 G 3 s + 5 + - - - • 

Apply f repeatedly to get the exis tence of the represen ta t ion and formulas 

(5.2) and (5.3). Now if we a s s u m e that N can be wr i t ten in two different 

ways in the form (5.1), we should obtain two different canonical r e p r e s e n t a -

tions of c(N). Hence the theorem is proved. 

We may call (5.1) the second canonical represen ta t ion . 
In view of the represen ta t ion (5.1), it is na tura l to l e t C,. - denote 

the set of in tegers r ep resen tab le in the form (5.1), for a fixed s. Then 
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c lea r ly 

57 

(5.5) 

while 

C3s+1 C3s-KL (s ^ 1) 

(5.6) q = U (cqlr+9 U c ^ ) 
k=0 3k+2 3k+3' 

Making use of the l a s t t heo rem, we obtain seve ra l formulas re la t ing 

a, b and c. The de ta i l s a r e s i m i l a r in all c a s e s so we will prove only two 

of the fo rmulas . 

T h e o r e m 13. The following formulas hold. 

(5.7) 

a2 

ab 

ac 

ba 

b2 

be 

ca 

cb 

c2 

= 

= 

= 

= 

= 

= 

= 

= 

= 

b 

c 

a 

c 

a 

a 

a 

a 

-

-

+ 

-

+ 

+ 

+ 

+ 

2a • 

1 

1 

b + c 

2 

b + c - 1 

2b + 2c 

b + c - 3 

2b + 2c - 2 

f 3b + 4c 

Proof. To prove, for instance, that 

be = a + 2b + 2c , 

we suppose that 

(5.8) C ( N ) = G 3 s + 1 + €3s+2 G 3s + 2 + (s £ 1) 
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Then by Theo rem 12 

b c ( N > = G 3 s + 3 + e 3 S + 2 G 3 S + 4 + - - - ( s £ X) 

But, by applying f to c(N) we see that 

b ( N ) = G 3 s + €3 s + 2 G 3 S + l + ' " <s * « 

and 

a ( N ) = G 3 s - 1 + e 3 s + 2 G 3 s + - " ( S - 1 } 

Now the resu l t follows if we obse rve that 

G - + 2G + 2G - = G ^ n - 1 n n - 1 n+3 

Simi lar ly , to prove that 

b2 = a + b + c - l , 

suppose that 

C ( N ) = G 3 s + 1 + *fc+2G3s+2 + - " ( S & 1 } 

Then 

b ( N ) = G 3 s + e 3 S + 2
G 3 s + l + - " ( S * « 

and 

a ( N ) = G 2 s - 1 + % + 2 G 3 s + " - (s ^ I ) -

Now we wr i te b(N) in the second canonical form: 

b(N) = (G l + G2) + . . . + ( G 3 s _ 2 + G g ^ ) + e 3 s + 2 G 3 g + 1 + 
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Then 

b»(n) = (G, + G4) + . . . + (G 3 s + G 3 s + 1 ) + 6 3 g + 2 G 3 s + 3 + • • • . 

Hence 

b2(N) + 1 = b2(N) + G2 = a(N) + b(N) + c(N) . 

A word function (or s imply word) u is a monomial in a, b , c: 

(5.9) u = a ^ c 1 * • - . a i r b j r c k r , 

where the exponents a r e a r b i t r a r y nonnegative in tegers . Since au = bv, for 

example ? is imposs ib le , and au = av impl ies u = v, it follows that the 

represen ta t ion (5.9) i s unique. In o ther words factorizat ion into p r i m e e l e -

men t s a, b , c is unique. We define the weight of a word by m e a n s of 

p(a) = 1, p(b) = 2, p(c) = 3 

together with 

p(uv) = p(u) + p(v) , 

where u 9 v a r e a r b i t r a r y words . Let N denote the number of words of 

weight p. If u i s any such word then e i ther 

u = au1? u = bu2 o r u = cu3 , 

where 

p(u t ) = p - 1, p(u2) = p - 2, p(u3) = p - 3 . 

Hence 

N = N - + N 0 + N 0 (p > 3) . 
p p - 1 p -2 p - 3 F 
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Moreover 

N0 = Ni = 1, N2 = 2 

It follows that 

(5.10) N p = G p + 1 

Theo rem 14. The words u , v sat isfy 

(5.11) uv = vu 

if and only if there i s a word w such that 

r s 
u = w , v = w 

where r and s a r e nonnegative in t ege r s . 

Proof. The proof i s by induction on p(u) + p(v). We may a s s u m e that 

both u, v have posit ive weight. Also we may a s s u m e that p(u) ^ p(v). It 

then follows from (5.11) and unique factorizat ion that u = vz , where z i s a 

word. Thus (5.11) r educes to 

(5.12) zv = vz . 

Since p(zv) < p(uv), the inductive hypothesis gives 

r s 
z = w , v = w , 

r-J~s so that u = w 
F o r the next theorem we r e q u i r e , in addition to the weight of u, the 

degree of u, d(u), defined by 

(5.13) d(u) = i t + ji + kt + • • • + i r + j r + k r , 

where u is given by (5.9). We also define the in tege r s H by m e a n s of 
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(5.14) H0 = 05 Hi = 1, H2 = 2, H n + 1 = Hfl + H ^ + H n _ 2 (n^2) . 

It i s easy to show that 

(5.15) H = G + G -n n n - 1 

T h e o r e m 15. Let u be a word of weight p. Then 

(5.16) u(n) = Gp_3a(n) + Hp__3b(n) + Gp_2c(n) = A u , 

where A i s independent of n but depends on u. 

To have the theorem hold for all p ^ 1 we extend the definition of 

G , H for negative values of n. In pa r t i cu l a r , we have the following table 

of values 

n 

[ G 

H 

- 3 

- 1 

-1 

-2 

1 

0 

- 1 

0 

1 

0 

0 

0 

1 

1 

1 

2 

1 

2 

3 

2 

3 

It is now eas i ly verified that the theorem holds for the words a , b and 

c. We a s s u m e that (5.16) holds for words of degree k. Let u be an a r b i -

t r a r y word of degree k + 1. The re a r e th ree c a s e s according a s u = va, 

vb o r vc. Assume v has weight p. 

(i) F o r u = va , we have, by the inductive hypothesis and T h e o r e m 

13, 

u = va = G p - 3 " H Qba + g 0 c a p - 3 &p-2 

= G p - 3 ( b " X) + H p - 3 ( c " 2 ) + G p - 2 ( a + b + c - 3) - A y 

= G p -2 a + ( G p -2 + V3)b+(V3 + Gp-2) C (G Q + 2H Q + 3G Q + A ) p - 3 p - 3 p -2 v 

= G 0 a + H 0 b + G - c p-2 p -2 p - 1 (H + A ) . p v 

(ii) F o r u = vb, we have 
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u = vb = G Qab + H 0 b 2 + G 0 c b - A p - 3 p - 3 p -2 v 

= G^ „(c - 1) + H , ( a + b + c - l ) + G^ Q(a + 2b + 2c - 2) - A 
p—o p—o p—Zi V 

= (Gp_2 + H p - 3 ) a + ( 2 G p - 2 + H p - 3 ) b + ( 2 G p-2 + G p - 3 + H p - 3 ) C 

" GS-2 + Gp-3 + V3 + V 
G , a + H , b + G c - (G + A ) p - 1 p - 1 p p v 

(ii) F o r u = vc , we have 

u = vc = G Qac + H 0bc + G 0 c 2 - A p - 3 p - 3 p -2 v 

= G^ Q(a + b + c) + H Q(a + 2b + 2c) + G 0 (2a + 3b + 4c) = A 
p—o P~*J p—i4 V 

= (2Gp_2 + G p _ 3 + H p _ 3 ) a + (3Gp_2 + G p _ 3 + 2 H p _ 3 ) b 

+ (4G 9 + G Q + 2H Q )c = A p -2 p - 3 p - 3 v 

= G a + H b + G ^ - c - A P P P + l v 

Ava 

\ b 
Avc 

— 

= 

= 

H 
P 

G 
P 

Av 

+ 

+ 
\ 

\ 

This comple tes the proof. Incidentally, we have proved the following 

re la t ions : 

(5.17) 

where v i s of weight p . 

As an immedia te co ro l l a ry of the l a s t t heo rem, we s ta te : 

T h e o r e m 16. Let u and v be a r b i t r a r y words . Then the re i s an 
in teger C such that 

(5.18) uv - vu = C . 

6. AN ESTIMATE O F a(n) 

Let a be the r ea l root of x3 - x2 - x - 1 = 0 and le t p and y be the 

complex r o o t s , /3 = r e , y = r e " . Then we have 
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n+1 Qn+1 
(6.1) G ^ - o G = y " P 

n+1 n y 

which we can verify by taking n equal to - 1 , 0 and 1 and noting that both 
s ides of (6.1) satisfy the r e c u r r e n c e 

n+3 n+2 n+1 n 

If N i s given in the second canonical r e p r e s e n t a t i o n by 

(6.2) N = G 3 k + 1 + 6 3 k + 2 G 3 k + 2 + . . . (k s 0 ) , 

we have 

a(N) = G 3 k + 2 + e 3 k + 2 G 3 k + 3 + 

(6.3) {b(N) = G 3 k + 3 + €3 k + 2 G 3 k + 4 + 

c(N) = G 3 k + 4 + e 3 k + 2 G 3 k + 5 + 

Now a = 1.8, • ° • , so that |jS | = \y | = \[]Fy = \[T/a < 1. Then, using 

(6.1), (6.2), and (6.3) we get the following. 

T h e o r e m 17. The th ree sequences 

a(N) - [ a N ] , b(N) - | > 2 N ] , c(N) - [o^N] 

a r e all bounded. 

Next we prove 
T h e o r e m 18. The difference a(N) - [c*N] i s posi t ive infinitely often, 

negative infinitely often and 0 Infinitely often. 

Proof. If 9 we re a ra t ional mult iple of 2i? we should have , for some 

m9 

m+1 flm+l m+1 
y = p = r 

and, by (6.1), G - = aG «, But a i s i r r a t iona l so this i s imposs ib le . 
Hence for infinitely many k we mus t have 
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la A\ n r,n 3 k + 1 s i n { ( 3 k + 2)0 } > n ( 6 ' 4 ) G3k+2 " a G 3 k + l = r sin 0 ° • 

that i s , 

for infinitely many k. 

To get the second p a r t of the theorem we m u s t find an infinite number of 

in t ege r s N for which 

a(N) - arN < - 1 . 

Le t N have the form 

N = Gt + G3 + Gk , 

where k i s ve ry l a r g e . Then 

a(N) - <*N = G, - aGt + G4 - aGz + G k + 1 - j3Gk 

= 1 - a + 3 - 2a + G, ,- - #G. * -1 .4 . k+1 k 

This p roves the theorem. 

Final ly to prove that the difference vanishes infinitely often, it suffices 

to show that (compare (6.4)) 

x ^ 3k+l sin(3k + 2) < Q 
sin B 

for infinitely many values of n. This i s c l e a r s ince 0 < r < 1 and 9 i s an 

i r r a t iona l mult iple of 2TL 

Put 

7. GENERATING FUNCTIONS 
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(7.1) 

and 

<Ux) = X ) x " (k = 2, 3, 4, • • • ) 
n £ C , 

(7.2) &$k+lW = £ ^ (k = ° ' X> 2' "• > 
n£C 3k+l 

In view of (5.5) and (5.6), we have 

(7.3) ? * + i « = V + i W (k = 1, 2, 3, •••) 3 k + l v ' r 3 k + l 

and 

(7.4) flW = X>3k+2(X) + L ^3k+3(x) • 
k=0 k=0 

It i s evident that 

(7.5) 
k=2 

Also it follows from the definition of C, that 

G, 
*kw = x k i + £ * w 

j=k+2 

(7.6) 

+ x 
G k + G k + 1 1 + 

oo % 

j=k+3 
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F r o m (1.1) we get the r e c u r r e n c e 

k+1 k M , k+2 x /A . x kA / v v 
= X (1 + X )(0k(x) - X Pfc+gfc)) 

It i s a lso convenient to define 

(7.8) A(x) = £ xa<n), B(x) = J ] xMn)' C(X) = D X°(n) 

n=l n=l n=l 

so that 

(7.9) A(x) + B(x) + C(x) = X 

1 - x 

Moreover 

(7.10) A(x) = J ] 03k+2(x) > 3k+2v 

k=0 

(7.11) B(x) = ] T ^3k+3 ( x ) ' 
k=0 

(7.12) C(x) = £ ^ a k ^ W = F ^ I " ^ l ( x ) 

k=0 

Now by (7.1) and (1.12) 

^(x) = Exa2(n) + Exab(n) 
n=l n=l 
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Since 

a2(N) = b(n) - 1, ab(n) = c(n) - 1 , 

It follows that 

(7.13) x(j)2(x) = B(x) + C(x) . 

In the next p lace , by (1.13) 

ba(n) _,_ ^ xb2(n) *i« = Ex (n) + E 
n=l ri=l 

x-2C(x) + x - X V xa(n)+b(n) +c(n) 2C(x) + x " 1 2 
n=l 

Since 

AW = x;*a2(n)+sx&b(n)+E xac(n) 
n=l ii=l n=l 

= x 1A(x) + x 1B(x) + £ 

n=l 

a(n)+b(n)+c(n) 
x 

it follows that 

(7.14) x2(/)3(x) = xA(x) - B(x) 

By (1.1) 



68 FIBONACCI REPBESENTATIONS OF HIGHER ORDER [Jan . 

</>2(x) = x 

00 \ I °° 
f^4>.(X) H-X3[l + ^ j ( x ) 

j=4 I ( j=5 
OO 

= x + x3 + x$4(x) + (x + x 3 ) / (̂/>.(x) 

J=5 

X3 + X(/)4(X) + (X + X 3 ) j T - 5 _ - </>2(x) - 03(X) - </>4(X) . 

Combining this with (7.18) and (7.14), we get 

(7.15) x%(x) = x2n(x) - C(x) . 

In a s i m i l a r m a n n e r we get 

(7.16) x805(x) = -xA(x) + B(x) + (1 + x4)C(x) , 

(7.17) x15(jl)6(x) = (x + x8)A(x) - (1 + x2 + x7)B(x) - x7C(x) 

General ly i t can be shown that 

(7.18) \ - l x 0k(x) = Pi(x)A(x) + p2(x)B(x) + p3(x)C(x) 

where 

S k = Gi + G2 + • • - + Gk 

and Pi(x), p2(x), P3(x) a r e polynomials with in tegral coefficients. 

In the next p lace , exact ly a s in [ 1 , Sec. 7 ] , we can show that A(x), 

B(x) and C(x) cannot be continued analyt ical ly a c r o s s the unit c i r c l e . F o r 

the proof it suffices to use 

(7.19) 1 * V * , n V 1 1 n 

a(k)<n b(k)<n c(k)<n 
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which follow from Theorem 17. ladeedj we can show in this way that none of 
the functions can be continued across the unit circle. Moreover if we put 

0k(x) = 0j(x) +</>£b)(x) , 

where (compare (1.12)s (1.13)., (1.14)) 

3 a(n) ,a , , \ " ^ ,-~ -
< ^3k+3( x ) = LJ 

n=l n=l 

ja . v \™^ ac a(n) ,a , , \ " ^ be a(n) 

*°k+1*w. 4 + 2 « = Z - a o k b < 1 
n=l n=l 
E c^+1a(n) b \~"* 

' ^3k+2(x) = 2-rf 

ac b(n) , 
x N , and 

c xb(n) , b , . V"* bckb(n) ,b , , V ^ r 

^3k+3(x) = Z ^ X ' ^ W X ) =2-fX 

n=l n=l 

a b 
then neither </>,(x) nor <fe (x) can be continued across the unit circle. 

We can also show that A(x), B(x), C(x) do not satisfy any relation of 
the form 

(7.20) 4(x)A(x) + f2(x)B(x) + f3(x)C(x) = 0 , 

where £[(x), f2(x), f3(x) are polynomials. In the first place we may assume 
without loss of generality that the coefficients of ft(x) are rational (for proof 
compare [3, p. 1419 No. 151]) and that 

(7.21) (fi(x), f2(x), f3(x)).= 1 . 

Since (7.19) implies 

lim1 (1 - x)A(x) = ~ lim- (1 - x)B(x) = ~ ? lim- (1 - x)C(x) = —, 
x = i a x = L ^ x = l QZ 
[Continued on page 94. ] 


