
QUADRATIC RESIDUES IN FIBONACCI SEQUENCES

ALEXANDRU GICA

Abstract. In this paper we find all the prime numbers p for which there exists a Fibonacci
sequence modulo p, (an)n>0, such that this sequence modulo p is the set of the quadratic
residues modulo p.

1. Introduction

Let us first consider the sequence 1, 4, 5, 9, 3. These are the quadratic residues modulo 11
and we observe that each number of this sequence is the sum, modulo 11, of the previous
two (and 9 + 3 ≡ 1 (mod 11), 3 + 1 ≡ 4 (mod 11)). Similarly, if we consider the sequence
1, 5, 6, 11, 17, 9, 7, 16, 4, these are the quadratic residues modulo 19 and each number of this
sequence is the sum, modulo 19, of the previous two (and 16 + 4 ≡ 1 (mod 19), 4 + 1 ≡ 5
(mod 19)). We are asking which are the numbers which have the same property as 11 and
19. Therefore we consider the following.

Problem. Which are the prime numbers p > 2 such that there exists a sequence (an)n>0

such that an+2 ≡ an+1 + an (mod p) for any positive integer n, an is periodic modulo p with
period p−1

2
and

{an|n ∈ N∗} = {b2|b ∈ F∗p}?
In the above formula, F∗p is the multiplicative group of the field of the residues modulo p
and an means the class of an modulo p. If p is a prime number, p ≡ 1, 4 (mod 5), then the

Legendre symbol
(

5
p

)
is 1 and so there exists a positive integer m ≤ p−1

2
such that 5 ≡ m2

(mod p). We will denote this number m by
√

5.
We will prove the following result.

Theorem 1.1. If p > 2 is a prime number, there exists a sequence (an)n>0 such that an+2 ≡
an+1 + an (mod p) for any positive integer n, an is periodic modulo p with period p−1

2
and

{an|1 ≤ n ≤ p−1
2
} = {b2|b ∈ F∗p} if and only if

i) p ≡ 1, 4 (mod 5) and

ii) ord α = p−1
2

or ord β = p−1
2

, where α = 1+
√

5
2

and β = 1−√5
2

.

As above,
√

5 means the unique positive integer m ≤ p−1
2

such that 5 ≡ m2 (mod p). The
orders ord α and ord β are considered in the multiplicative group F∗p.

If p ≡ 1, 4 (mod 5) and ord α = p−1
2

or ord β = p−1
2

, then it is easy to check the statement

of the theorem since α2 ≡ α + 1 (mod p), β2 ≡ β + 1 (mod p). If ord α = p−1
2

, then the
sequence (an)n>0 is an = αn. Since α2 ≡ α+1 (mod p), we have an+2 ≡ an+1 +an (mod p).
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Since ord α = p−1
2

, then we have from Euler’s Criterion that 1 ≡ α
p−1
2 ≡

(
α
p

)
(mod p) and(

α
p

)
= 1; this means that all the powers of α are quadratic residues modulo p.

This ends the proof. If ord β = p−1
2

, then the sequence (an)n>0 is an = βn and we check in
the same way as above the statement of the theorem. Therefore we have to prove only one
implication. In the sequel we suppose that p > 2 is a prime such that there exists a sequence
(an)n>0 such that an+2 ≡ an+1 +an (mod p) for any positive integer n, an is periodic modulo
p with period p−1

2
and {an|n ∈ N∗} = {b2|b ∈ F∗p}. From the last condition we deduce that

p does not divide an for any positive integer n. Replacing the sequence (an)n>0 with the
sequence (bn = an

a1
)n>0 which has the same properties as the initial one, we can suppose that

a1 = 1 and a2 = x 6≡ 1 (mod p). ¤

2. First step: Proving that p ≡ 1, 4 (mod 5).

We will now show the first statement of the theorem.

Proof. Obviously, the prime p = 5 does not have the properties stated in the theorem. Let

us suppose now that
(

5
p

)
= −1. We have

an+2 = Fn + xFn+1, (2.1)

for all positive integers n, where Fn is the Fibonacci sequence. We know that (an)n>0 modulo
p is periodic with period p−1

2
. Hence,

x = a2 ≡ ap+1 = Fp−1 + xFp (mod p), 1 + x = a3 ≡ ap+2 = Fp + xFp+1 (mod p). (2.2)

We have the well-known Catalan’s formula (see [1], p. 157)

2n−1Fn = C1
n + C3

n5 + C5
n52 + · · · (2.3)

where the Ck
n are the binomial coefficients

(
n
k

)
. If we put in the last equality n = p, then we

have
2p−1Fp = C1

p + C3
p5 + C5

p52 + · · ·+ Cp
p5

p−1
2 . (2.4)

Since 2p−1 ≡ 1 (mod p) and the binomial coefficients Cj
p are multiples of p for any j =

1, p− 1, from the equation (2.4) it follows that Fp ≡ 5
p−1
2 ≡

(
5
p

)
= −1 (mod p). If we put

in equation (2.3) n = p + 1, we obtain

2pFp+1 = C1
p+1 + C3

p+15 + C5
p+15

2 + · · ·+ Cp
p+15

p−1
2 . (2.5)

Since p divides Cj
p+1 for any 2 ≤ j ≤ p− 1 and 2p ≡ 2 (mod p) then 2Fp+1 ≡ 1 + 5

p−1
2 ≡

1 +
(

5
p

)
= 0 (mod p). We obtain

Fp ≡ −1 (mod p), Fp+1 ≡ 0 (mod p), Fp−1 = Fp+1 − Fp ≡ 1 (mod p).

Replacing these values in formula (2.2), it follows that 1+x = a3 ≡ ap+2 = Fp +xFp+1 ≡ −1
(mod p), so that

x ≡ −2 (mod p)

and x = a2 = ap+1 = Fp−1 + xFp ≡ 1 − x (mod p), 2x ≡ 1 (mod p). Combining this last
congruence with x ≡ −2 (mod p), it follows that 2(−2) ≡ 1 (mod p), p = 5, which is a
contradiction. We proved that p ≡ 1, 4 (mod 5). ¤
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3. The case p ≡ 3 (mod 4).

We will prove the second statement of the theorem in the case when p ≡ 3 (mod 4).

Proof. We have the classical Binet’s formula (see [1], p. 155)

Fn ≡ 1√
5

(
αn −

(
− 1

α

)n)
(mod p). (3.1)

Putting in the above formula n = p+1
2

and taking into account the fact that p+1
2

is an even
number and that αp−1 ≡ 1 (mod p) we obtain

F p+1
2
≡ 1√

5

(
α

p+1
2 − 1

α
p+1
2

)
≡ 1√

5

α2 − 1

α
p+1
2

≡ 1√
5

α

α
p+1
2

≡ 1√
5

1

α
p−1
2

(mod p). (3.2)

Putting in formula (3.1) n = p−1
2

and taking into account the fact that p−1
2

is an odd
number and that αp−1 ≡ 1 (mod p) we obtain

F p−1
2
≡ 1√

5

(
α

p−1
2 +

1

α
p−1
2

)
≡ 1√

5

2

α
p−1
2

(mod p). (3.3)

Since the sequence (an)n>0 modulo p has period p−1
2

we have

x = a2 ≡ a p+3
2

= F p−1
2

+ xF p+1
2

(mod p), x(1− F p+1
2

) ≡ F p−1
2

(mod p). (3.4)

Case 1. α
p−1
2 ≡ 1 (mod p). In this case, from formulas (3.2) and (3.3) it follows that

F p+1
2
≡ 1√

5
(mod p) and F p−1

2
≡ 2√

5
(mod p). Putting these values in formula (3.4) we obtain

x(1− 1√
5
) ≡ 2√

5
(mod p) and

x ≡ 2√
5− 1

≡
√

5 + 1

2
= α (mod p).

Therefore, a2 = x, a3 = 1 + x ≡ 1 + α ≡ α2 (mod p) and by induction we infer that an ≡ αn

(mod p) for any positive integer n. From the condition of the hypothesis it follows now
immediately that ord α = p−1

2
.

Case 2. α
p−1
2 ≡ −1 (mod p). In this case, from formulas (3.2) and (3.3) it follows that

F p+1
2
≡ − 1√

5
(mod p) and F p−1

2
≡ − 2√

5
(mod p). Putting these values in formula (3.4) we

obtain x(1 + 1√
5
) ≡ − 2√

5
(mod p) and

x ≡ − 2√
5 + 1

≡ −√5 + 1

2
= β (mod p).

Therefore, a2 = x, a3 = 1 + x ≡ 1 + β ≡ β2 (mod p) and by induction we infer that
an ≡ βn (mod p) for any positive integer n. From the condition of the hypothesis it follows
immediately that ord β = p−1

2
. ¤

4. The case p ≡ 1 (mod 4).

We will show first that
(

α
p

)
= 1 in this case.
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Proof. From formula (3.1) it follows that

F p−1
2
≡ 1√

5

(
α

p−1
2 − 1

α
p−1
2

)
≡ 0 (mod p) (4.1)

and from formula (3.4) we infer that F p+1
2
≡ 1 (mod p). Let us suppose that

(
α
p

)
= −1.

From formula (3.1) it follows that

F p+1
2
≡ 1√

5

(
α

p+1
2 +

1

α
p+1
2

)
≡ − 1√

5

α2 + 1

α
≡ − 1√

5

α
√

5

α
≡ −1 (mod p). (4.2)

In the above proof we used α2 + 1 ≡ α
√

5 (mod p). Formula (4.2) does not fit with what

we obtained above: F p+1
2
≡ 1 (mod p). Therefore we have proved that

(
α
p

)
= 1 in this case.

We will show that ord α = p−1
2

or ord β = p−1
2

. Let us denote d = ord α in F∗p. Since(
α
p

)
= 1, we infer from Euler’s Criterion that α

p−1
2 ≡ 1 (mod p) and therefore d divides p−1

2
.

We have p−1
2

= kd, where k ∈ N∗. If k = 1, we have proved the theorem. Let us suppose now
that k ≥ 2. From formula (3.1) it follows that Fn+2d ≡ Fn (mod p) for any positive integer n
and that an+2d ≡ an (mod p) for any positive integer n. Since the period of (an)n>0 modulo
p is p−1

2
, it follows that 2d ≥ p−1

2
= kd, 2 ≥ k ≥ 2, k = 2, d = p−1

4
. Let us show now that

in this case d = p−1
4

is odd. Indeed, if d would be even, then from formula (3.1) it would
follow that Fn+d ≡ Fn (mod p) for any positive integer n and that an+d ≡ an (mod p) for
any positive integer n. It would result that the period of (an)n>0 modulo p would be smaller
than d = p−1

4
which is false since the period of (an)n>0 modulo p is p−1

2
. Then d is odd. We

will show now that ord β = p−1
2

. Let us denote d1 = ord β in F∗p. We have

β
p−1
2 =

(
− 1

α

) p−1
2

=
1

α
p−1
2

≡ 1 (mod p) (4.3)

and therefore d1 divides p−1
2

. We have

1 ≡ β2d1 =

(
− 1

α

)2d1

=
1

α2d1
(mod p)

and therefore, α2d1 ≡ 1 (mod p) and p−1
4

= d = ord α divides 2d1. Since d is odd, it follows

that d divides d1 and from (4.3) it follows that d1 divides p−1
2

. We infer that d1 = p−1
4

or

d1 = p−1
2

. If d1 = p−1
4

, then (since d = d1 is odd)

1 ≡ βd1 =

(
− 1

α

)d1

= − 1

αd
≡ −1 (mod p),

which is a contradiction. Therefore, d1 = p−1
2

= ord β and we finished the proof of the
theorem. ¤
Remark. The first prime number p ≡ 1, 4 (mod 5) which does not have the property stated

in Theorem 1.1 is p = 41. In this case
√

5 is 13 since 132 ≡ 5 (mod 41). Hence, α = 1+
√

5
2

=

7 and β = 1−√5
2

= −6. We have α20 ≡ (
7
41

)
= −1 (mod 41), β20 ≡ (−6

41

)
= −1 (mod 41)

and α and β do not have order 20.
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5. Another result and a Conjecture.

Following the same path as above we can prove the following result.

Theorem 5.1. If p > 2 is a prime number, there exists a sequence (an)n>0 such that an+2 ≡
an+1 + an (mod p) for any positive integer n, an is periodic modulo p with period p− 1 and
{an|1 ≤ n ≤ p− 1} = F∗p if and only if
i) p ≡ 1, 4 (mod 5) and

ii) ord α = p− 1 or ord β = p− 1, where α = 1+
√

5
2

and β = 1−√5
2

. As above,
√

5 means the

unique positive integer m ≤ p−1
2

such that 5 ≡ m2 (mod p).

The above two results suggest to study the following.

Conjecture. If p > 2 is a prime number and k is a divisor of p− 1, there exists a sequence
(an)n>0 such that an+2 ≡ an+1 +an (mod p) for any positive integer n, an is periodic modulo
p with period p−1

k
and {an|1 ≤ n ≤ p−1

k
} = {bk|b ∈ F∗p} if and only if

i) p ≡ 1, 4 (mod 5) and

ii) ord α = p−1
k

or ord β = p−1
k

, where α = 1+
√

5
2

and β = 1−√5
2

. As above,
√

5 means the

unique positive integer m ≤ p−1
2

such that 5 ≡ m2 (mod p).
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