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ABSTRACT

The paper studies the counting function
R2(n, k) =

∑
a1+a2+···+ak=n

(ai,aj)=1
i 6=j

1, ai ≥ 1, k ≥ 2

with ai, n and k positive integers and establishes a relationship between R2(n, k) and P2(n, k)
where

P2(n, k) =
∑

a1+a2+···+ak=n
1≤a1≤a2≤···≤ak≤n

(ai,aj)=1
i 6=j

1, ai ≥ 1, k ≥ 2

with ai, n, k positive integers.

1. PRELIMINARIES

Gould [4], studied the number-theoretic function
R(n, k) =

∑
a1+a2+···+ak=n
(a1,a2,··· ,ak)=1

1, ai ≥ 1, k ≥ 2 (1)

and showed amongst other results that:
Theorem 1:

R(n, k) =
∑
d|n

(
d− 1
k − 1

)
µ(

n

d
)

and
Theorem 2:

∞∑
j=1

R(j, k)
xj

1− xj
=

xk

(1− x)k
.

Motivated by definition 1, we now define

R2(n, k) =
∑

a1+a2+···+ak=n
(ai,aj)=1

i 6=j

1, ai ≥ 1, k ≥ 2. (2)
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From theorem 1, it follows that:

R(n, 2) = R2(n, 2) =
∑
d|n

(
d− 1

1

)
µ(

n

d
)

= n
∑
d|n

µ(d)
d

−
∑
d|n

µ(d).

And hence
Corollary 1: R2(n, 2) = φ(n), for all n > 1, where φ is Euler’s totient function.

Catalan [1], [2], [3, Vol. 2, 114, 126] proved in 1838 that the equation:

a1 + a2 + · · ·+ ak = n, (ai ≥ 0)

has
(
n+k−1

k−1

)
solutions. Further, he then noted in 1868 that

C(n, k) =
(

n− 1
k − 1

)
=

∑
a1+a2+···+ak=n

ai≥1

1. (3)

Consequently, with
(
n
k

)
=

∑n
j=k

(
j−1
k−1

)
, it now follows that

(
n

2

)
=

n∑
j=2

C(n, 2) =
n∑

j=2

∑
a1+a2=j

ai≥1

1

=
n∑

j=2

[
n

j

] ∑
a1+a2=j
(a1,a2)=1

1 =
n∑

j=2

[
n

j

]
φ(j).

Hence, using the results
∞∑

n=j

[
n

j

]
xn−j =

1
(1− x)(1− xj)

and
∞∑

n=j

(
n

j

)
xn−j = (1− x)−j−1 ; |x| < 1,

we may set
∞∑

n=2

(
n

j

)
xn =

∞∑
n=2

n∑
j=2

[
n

j

]
φ(j)xn

=
∞∑

j=2

∞∑
n=j

[
n

j

]
φ(j)xn

which simplifies to give the result
Theorem 3: The Lambert series for Euler’s totient function is

∞∑
j=1

φ(j)xj

(1− xj)
=

x

(1− x)2
.
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This is a known result, see Sivaramakrishnan [7, page 71] albeit our approach here is quite
different.

2. MAIN RESULTS AND PROOFS

The following lemma will be used in our subsequent investigations.
Lemma 4: Let P (n, n; r1, r2, · · · , rk) denote the number of n− permutations which may be
formed from the multiset S = {r1a1, r2a2, · · · , rkak}. Then

P (n, n; r1, r2, · · · , rk) =
n!

r1!r2! · · · rk!
.

Using this result, we give a selection of results and proofs as follows:
Example 1:

1. R2(k + 1, k) = k
2. R2(k + 2, k) = k
3. R2(k + 3, k) = k + k(k − 1)
4. R2(k + 7, k) = k + 2k(k − 1) + k(k − 1)(k − 2)
5. R2(k + 9, k) = k + 4k(k − 1) + 2k(k − 1)(k − 2)
6. R2(k + 11, k) = k + 5k(k − 1) + 2k(k − 1)(k − 2).

Proof:

R2(k + 1, k) =
∑

a1+a2+···+ak=k+1
(ai,aj)=1

i 6=j

1 =
k!

(k − 1)!
= k.

Here the only possible solutions arise from permutations of the sum: 11+12+13 · · ·+2k = k+1.
Similarly for R2(k +2, k) where the only possible solutions arise from permutations of the

sum 11 + 12 + 13 · · ·+ 3k = k + 2.
But

R2(k + 3, k) =
∑

a1+a2+···+ak=k+3
(ai,aj)=1

i 6=j

1 =
k!

(k − 1)!
+

k!
(k − 2)!

= k2.

Here the sum 11 + 12 + 13 · · ·+ 1k + 3 gives rise to precisely two possible compositions: 11 +
11 + · · ·+ 4k and 11 + 11 + · · ·+ 2k−1 + 3k.

Further,

R2(k + 7, k) =
∑

a1+a2+···+ak=k+7
(ai,aj)=1

i 6=j

1 =
k!

(k − 1)!
+

k!
(k − 2)!

+
k!

(k − 2)!
+

k!
(k − 3)!

.

Here the sum 11 + 12 + 13 · · ·+ 1k + 7 gives rise to precisely four possible compositions:

11 + 12 + · · ·+ 1k−1 + 8k,

11 + 12 + · · ·+ 2k−1 + 7k,

11 + 12 + · · ·+ 4k−1 + 5k,

11 + 12 + · · ·+ 2k−2 + 3k−1 + 5k.
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The enumeration is now effected as follows: first we define the function

P2(n, k) =
∑

a1+a2+···+ak=n
1≤a1≤a2≤···≤ak≤n

(ai,aj)=1
i 6=j

1. (4)

We then compute P2(9, 2) and P2(10, 3) and apply lemma 4.
The arguments above can be generalised to give the following result.

Lemma 5:

R2(n + k, k) =
k∑

j=1

k!
(k − j)!

(P2(n + j, j)− P2(n + j − 1, j − 1))

with conditions P2(n, 1) = 1, P2(n, 0) = 0 in order to initialize the counting process. Further,
for consistency we shall also require the condition R2(n, 1) = 1 for all n ≥ 1.

Proof: The process proceeds in stages as follows: first we start off by filling each of the
k positions with a 1. We then count how many times the last two positions can be filled in,
such that ak−1 + ak = n + 2, ak−1 < ak ≤ n + 1, (ak−1, ak) = 1. This is precisely P2(n + 2, 2)
where we note that the case when ak−1 = 1 and ak = n+1 counts k!

(k−1)! times, and the

other cases count k!
(k−2)! times each. Next, we count how many times the last three positions

can be filled in, such that ak−2 + ak−1 + ak = n + 3, ak−2 < ak−1 < ak < n, (ai, aj) =
1, i 6= j. This is precisely P2(n + 3, 3). To find the total count thus far we therefore compute
(P2(n + 3, 3)− P2(n + 2, 2))+P2(n+2, 2). The process stops when we fill in all the k positions
such that a1 +a2 + · · ·+ak = n+ k, 1 ≤ a1 ≤ a2 ≤ · · · ≤ ak−1 < ak ≤ n+ k, (ai, aj) = 1, i 6= j.

Below is table 1 of values of R2(n, k).

n
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8
3 0 0 1 3 3 9 3 15 9 21 9 39 9 45 21 45
4 0 0 0 1 4 4 16 4 28 16 52 16 100 16 100 68
5 0 0 0 0 1 5 5 25 5 45 25 105 25 205 25 225
6 0 0 0 0 0 1 6 6 36 6 66 36 186 36 366 36
7 0 0 0 0 0 0 1 7 7 49 7 91 49 301 49 595
8 0 0 0 0 0 0 0 1 8 8 64 8 120 64 456 64
9 0 0 0 0 0 0 0 0 1 9 9 81 9 153 81 657
10 0 0 0 0 0 0 0 0 0 1 10 10 100 10 190 100
11 0 0 0 0 0 0 0 0 0 0 1 11 11 121 11 231
12 0 0 0 0 0 0 0 0 0 0 0 1 12 12 144 12
13 0 0 0 0 0 0 0 0 0 0 0 0 1 13 13 169
14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 14 14
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 15
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 1: Values of R2(n, k)

319



COMPOSITIONS WITH PAIRWISE RELATIVELY PRIME SUMMANDS WITHIN A RESTRICTED SETTING

Remark: Since P2(k+1, k) = P2(k, k−1) = 1 we immediately retrieve the result R2(k+1, k) =
k from theorem 4.

The main difficulty however is in the computation of the function P2(n, k). Does there
exist a closed form solution to this function? It would appear that this is a very difficult
problem and a search of the literature has not yielded any positive results in this regard. The
case k = 2 obviously gives P2(n, 2) = φ(n)

2 for all n ≥ 2.
A somewhat similar function,

Pr(n, k) =
∑

a1+a2+···+ak=n
1≤a1≤a2≤···≤ak≤n

(a1,a2,··· ,ak)=1
i 6=j

1. (5)

was studied by the author in [6], where it was shown that: Pn,k =
∑

d|n Pr(d, k), where P (n, k)
is the partition of n into exactly k parts.

However, it is easily shown that P2(k +2, k) = 1, P2(k +3, k) = 2, P2(k +4, k) = 1, P2(k +
5, k) = 3, P2(k + 6, k) = 2, P2(k + 7, k) = 4, etcetera. Further, in table 2, we give some values
for P2(n, k) for 1 ≤ n, k ≤ 13.

n
k 1 2 3 4 5 6 7 8 9 10 11 12 13
1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 1 2 1 3 2 3 2 5 2 6
3 0 0 1 1 1 2 1 3 2 4 2 7 2
4 0 0 0 1 1 1 2 1 3 2 4 2 7
5 0 0 0 0 1 1 1 2 1 3 2 4 2
6 0 0 0 0 0 1 1 1 2 1 3 2 4
7 0 0 0 0 0 0 1 1 1 2 1 3 2
8 0 0 0 0 0 0 0 1 1 1 2 1 3
9 0 0 0 0 0 0 0 0 1 1 1 2 1
10 0 0 0 0 0 0 0 0 0 1 1 1 2
11 0 0 0 0 0 0 0 0 0 0 1 1 1
12 0 0 0 0 0 0 0 0 0 0 0 1 1
13 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 2: Values of P2(n, k)

We now let B(n, j) = (P2(n + j, j)− P2(n + j − 1, j − 1)) and R2(n, x) =
∑∞

k=1 R2(n +
k, k)xk be the generating function for R2(n + k, k).

Then,

R2(n, x) =
∞∑

k=1

k∑
j=1

k!
(k − j)!

B(n, j)xk
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=
∞∑

j=1

∞∑
k=j

k!
(k − j)!

B(n, j)xk

=
∞∑

j=1

B(n, j)j!
∞∑

k=j

(
k

j

)
xk

=
∞∑

j=1

B(n, j)j!
xj

(1− x)j+1
.

Thus,
Theorem 6: The generating function for R2(n + k, k) is

=
∞∑

j=1

B(n, j)j!
xj

(1− x)j+1
.

It now follows from theorem 2 that

∞∑
j=1

B(n, j)j!
xj

(1− x)j+1
=

∞∑
j=1

B(n, j)j!
∞∑

i=j

R(i, j)
xi

(1− x)(1− xi)

=
∞∑

i=1

i∑
j=1

B(n, j)j!R(i, j)
xi

(1− x)(1− xi)

and hence,

(1− x)
∞∑

i=1

R2(n + i, i)xi =
∞∑

i=1

xi

(1− xi)

i∑
j=1

B(n, j)j!R(i, j).

From this, after adjusting the summation variables on the left we obtain

∞∑
i=1

(R2(n + i, i)−R2(n + i− 1, i− 1))xi =
∞∑

i=1

xi

(1− xi)

i∑
j=1

B(n, j)j!R(i, j).

Now, it is known, Hardy and Wright [5, page 257] that the Lambert series

∞∑
n=1

an
xn

(1− xn)
=

∞∑
n=1

bnxn

is equivalent to bn =
∑

d|n ad.
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We may therefore summarize the above as
Theorem 7:

R2(n + k, k)−R2(n + k − 1, k − 1) =
∑
d|k

d∑
j=1

B(n, j)j!R(d, j)

=
∑
d|k

B(n, d)d!.

From this we obtain through Möbius inversion the result

k!B(n, k) =
∑
d|k

µ(
k

d
) (R2(n + d, d)−R2(n + d− 1, d− 1)) ,

where we have used the condition, R(j, k) = 0 if k < j.
Using this and lemma 5, we obtain the result;

Theorem 8:

R2(n + k, k) =
k∑

j=1

(
k

j

) ∑
d|j

µ(
j

d
) (R2(n + d, d)−R2(n + d− 1, d− 1))

and

P2(n + j, j) = P2(n + j − 1, j − 1) +
1
j!

∑
d|j

µ(
j

d
) (R2(n + d, d)−R2(n + d− 1, d− 1)) .

Example 2:

P2(n + 2, 2) = P2(n + 1, 1) +
1
2

∑
d|2

µ(
2
d
) (R2(n + d, d)−R2(n + d− 1, d− 1))

= 1 +
1
2

(−R2(n + 1, 1)−R2(n + 1, 1) + R2(n + 2, 2))

=
φ(n + 2)

2

as expected.
Further, on using the result: if

F (n) =
∑
d|n

f(d), then
N∑

n=1

F (n) =
N∑

n=1

f(j)
[
N

j

]
,
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it follows that

N∑
k=1

(R2(n + k, k)−R2(n + k − 1, k − 1)) =
N∑

k=1

k∑
j=1

B(n, j)j!R(k, j)
[
N

k

]

=
N∑

k=1

B(n, k)k!
[
N

k

]
.

Thus the original investigation has led us into yet another problem, specifically that of the
structure of P2(n, k). Investigations of this function and the implications for theorems 7 and
8 will be presented in a follow-up paper. We also note the fact that some diagonal sequences
in table 1 have been studied before. Further information on these can be viewed under; The
On-Line Encyclopedia of Integer Sequences, at www.research.att.com/∼njas/sequences/.
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