
FEATURED ARTICLE

(Edited by Andrew Granville)

From time to time the Fibonacci Quarterly will publish invited papers by suitable authors,
often well known mathematicians and scientists, describing how Fibonacci numbers or similar
recurrence sequences arise in their work. It is hoped that these articles will be of interest to
the wide variety of readers interested in Fibonacci numbers.

We are pleased to present here the second paper in the series, written by the distinguished
scholar and author Paulo Ribenboim, Professor Emeritus at Queen’s University in Kingston,
Ontario, and a Fellow of the Royal Society of Canada. In addition to a large number of research
papers, Professor Ribenboim has published numerous books in several languages, both research
monographs and expository texts aimed at a wider audience, among them his “Little Book of
Big Primes” which has recently appeared in a new and updated edition.

FFF:
(FAVORITE FIBONACCI FLOWERS)

Paulo Ribenboim

ABSTRACT

On the 800th anniversary of the publication of Liber Abaci, I wish to draw the attention of
the reader to some of my favorite facts about Fibonacci numbers concerning squares, multiples
of squares and powerful numbers amongst the Fibonacci numbers.

1. INTRODUCTION

The most pleasant promenades take place on a sunny spring day, walking in the coun-
tryside and picking the wild flowers that grow here and there. Those who walk regularly will
locate where the most beautiful flowers grow, so that the field will keep no more secrets from
them.

There are other kinds of promenades, practiced by mathematicians, stepping on numbers,
in search of “flowers”; that is, numbers with especially interesting properties.

There are many ways of walking on numbers, for example stepping on every number, one
after the other; although one finds all the beautiful flowers in this way, it is a tiresome journey
and we prefer more efficient, leisurely walks, perhaps by establishing a “guide to flowers”.

Consider the walk on numbers in arithmetic progression: a, a + d, a + 2d, a + 3d, . . . .
DIRICHLET discovered that if a and d have no common prime factor, then we may find as
many prime numbers as we could wish for on this walk.

Other walks do not have, as before, steps of the same length. Some walks are called
“recurring sequences” because the size of each step depends on the preceding steps. The
binary recurring sequences with parameter P,Q (not zero) are defined by

Un = PUn−1 −QUn−2,
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with given initial terms U0, U1. The study of the kinds of numbers (prime numbers, squares,
higher powers, etc. . . . ) that appear in these sequences is of arithmetical interest. The simplest
binary recurring sequences are the FIBONACCI numbers and the LUCAS numbers.

In his book Liber Abaci, published in the year 1202, Leonardo PISANO, also known as
FIBONACCI, proposed a problem about reproducing patterns of rabbits. The numbers of
individuals in the population formed the sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . .

These numbers are called FIBONACCI NUMBERS and are defined by the binary recurrence

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2

for all n ≥ 2.
The Fibonacci numbers have been the object of irrepressible curiosity for mathematicians,

who have discovered an unending series of identities, as well as algebraic and arithmetical
properties satisfied by the Fibonacci numbers. As it happens, their study involves also the
companion sequence of LUCAS NUMBERS, defined by

L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2

for all n ≥ 2. So the smallest Lucas numbers are

L0 = 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, . . . .

Note that Ln = Fn−1 + Fn+1 for all n ≥ 1. In this expository paper I do not attempt to
cover all known results about Fibonacci numbers, but rather to single out some of my favorite
topics.

To render the reading easier, I begin with a summary of preliminary basic facts. Then
I discuss squares, multiples of squares, higher powers and powerful numbers among the Fi-
bonacci numbers and the Lucas numbers. I finish by briefly touching on two lovely topics:
the construction of sequences of transcendental numbers, as wells as a zeta series, made out of
Fibonacci numbers!

2. PRELIMINARIES

For the convenience of the reader, we list some basic facts, which we present without
proof.
(2.1) The golden number

γ =
1 +

√
5

2
= 1.616 . . . ,

and its conjugate δ = 1−
√

5
2 = −0.616 . . . are the roots of X2−X−1, so that γ+δ = 1, γδ = −1,

and γ − δ =
√

5.
(2.2) BINET formulas: For every n ≥ 0

Fn =
γn − δn

√
5

, Ln = γn + δn.
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(2.3) The fundamental quadratic relation between Fibonacci numbers and Lucas numbers is

L2
n − 5F 2

n = 4(−1)n.

(2.4) All solutions in positive integers of

x2 − 5y2 = 4, and of x2 − 5y2 = −4

are given by (x, y) = (L2n, F2n) for n ≥ 1, and (x, y) = (L2n−1, F2n−1) for n ≥ 1, respectively.
(2.5) Extension to numbers with negative indices: For n < 0 we define Fn = −(−1)nF−n and
Ln = (−1)nL−n. Then Fn = Fn−1 + Fn−2 and Ln = Ln−1 + Ln−2 for all integers n (whether
positive or not).

In the long series of algebraic identities we quote just a few, which hold for any integers
m, n:
(2.6) 2Fm+n = FmLn + FnLm.
(2.7) 2Lm+n = LmLn + 5FmFn.
(2.8) Fm+n = FmLn − (−1)nFm−n.
(2.9) Lm+n = LmLn − (−1)nLm−n.
(2.10) F 2

n = Fn−1Fn+1 − (−1)n.
(2.11) L2

n = Ln−1Ln+1 + 5(−1)n.
(2.12) Fm+n = Fn+1Fm + FnFm−1.
(2.13) Lm+n = Fn+1Lm + FnLm−1.
(2.14) F2n = FnLn.
(2.15) L2n = L2

n − 2(−1)n = 5F 2
n + 2(−1)n.

(2.16) F3n = Fn(5F 2
n + 3(−1)n) = Fn(L2

n − (−1)n).
(2.17) L3n = Ln(L2

n − 3(−1)n) = Ln(5F 2
n + (−1)n).

After the algebraic identities, we turn our attention to arithmetical properties.
(2.18) Let 1 ≤ m < n. Then:
a) Fm divides Fn if and only if m divides n.
b) Lm divides Ln if and only if m|n and the quotient n/m is an odd integer.

Concerning the greatest common divisor, let d =gcd(m,n). Then:

(2.19)
gcd(Fm, Fn) = Fd.

gcd(Lm, Ln) =


Ld when m/d and n/d are odd
2 when m/d or n/d is even and 3|d.

1 otherwise

(2.20)

gcd(Fm, Ln) =


Ld if m/d is even
2 if m/d is odd and 3|d.

1 otherwise
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(2.21) For k, n ≥ 1, Fkn = FnZ where gcd(Fn, Z) divides k.
(2.22) For k, n ≥ 1, Lkn = LnW where gcd(Ln,W ) divides k.

Now we consider the prime factorization of Fibonacci and of Lucas numbers.
(2.23) Fn is even if and only if 3|n. Ln is even if and only if 3|n.
(2.24) Let p be an odd prime. Then there exists n > 0 such that p|Fn. Let ρ(p) be the smallest
integer n > 0 such that p|Fn. ρ(p) is called the rank of appearance or entry point of p. Then
p|Fn if and only if ρ(p)|n.

LUCAS proved in 1878, in a seminal paper, the theorem (2.25) below. The proof is in
many books. Why not read it in my own “The Little Book of Big Primes”?
(2.25) Let p be an odd prime, p 6= 5. Then p|Fp−( 5

p ) where ( 5
p ) is the Legendre symbol.

Clearly F5 = 5, so ρ(5) = 5.
For Lucas numbers there are results of this kind though they are more complicated. For
example 5 does not divide Ln, for all n > 0.

We say that the prime p is a primitive factor of Fn if ρ(p) = n. The Fibonacci numbers
F1 = F2 = 1, F6 = 8, F12 = 144 do not have primitive factors. On the other hand, LUCAS
[13] proved:
(2.26) If n 6= 1, 2, 6, 12 then Fn has a primitive factor.
For a proof of a more general result (valid for other sequences than that of Fibonacci numbers),
see the paper of CARMICHAEL [3].

We conclude this section quoting results about the size of Fibonacci and Lucas numbers.
(2.27) For every n ≥ 1, since |δ| < 1:

γn

√
5
− 1 < Fn <

γn

√
5

+ 1, so Fn =
[

γn

√
5

]
or

[
γn

√
5

]
+ 1,

γn − 1 < Ln < γn + 1 so Ln = [γn] or [γn] + 1.

(2.28) If α0, α1, . . . , αn are real numbers, with αi > 0 (for i = 1, . . . , n), define the continued
fraction

[α0, α1, . . . , αn] = α0 +
1

α1 +
1

α2 +
1

· · ·+
1

αn

.

Now γ = [1, 1, 1, 1, . . . ] and so

lim
n→∞

Fn

Fn−1
= γ, lim

n→∞

Ln

Ln−1
= γ.

It follows that F2n/F2n−1 < γ < F2n+1/F2n and L2n+1/L2n < γ < L2n/L2n−1 for all n ≥ 1.
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3. SQUARES AND POWERS

The symbol shall denote an unspecified non-zero integer which is a square, or also the
set of such numbers.

COHN [4, 5] and WYLER [31] showed independently that

{n ≥ 1|Fn = } = {1, 2, 12}. (1)

COHN also proved

{n ≥ 1|Fn = 2 } = {3, 6},
{n ≥ 1|Ln = } = {1, 3},
{n ≥ 1|Ln = 2 } = {6}.

(2)

We now give a simple proof of (1) and (2).
(3.1) Proof of (1). Clearly, F1 = F2 = 1, F12 = 144 are squares and if n ≤ 12 and n 6= 1, 2, 12
then Fn 6= . Now let n > 12 and assume that Fn = . So Fn is a square modulo 8, thus
Fn ≡ 0, 1 or 4 (mod 8). The sequence Fn mod 8 is equal to

1 1 2 3 5 0 5 5 2 7 1 0 . . .

hence it has period 12. Since Fn ≡ 0, 1, or 4 (mod 8), then n ≡ 0, 1, 2, 6 or 11 (mod 12).
First Case: n is odd. Then n = 12g ± 1 with g ≥ 1. By (2.8), F12g±1 = F6g±1L6g −
(−1)6gF±1 = F6g±1L6g − 1.

We write 6g = 2 · 3jh with j ≥ 1, h - 3. Since 2h|6g and 6g/2h is odd, then L2h|L6g.
The sequence of Lucas numbers modulo 8 is equal to

1 3 4 7 3 2 5 7 4 3 7 2 . . .

hence it has period 12. Since 3 - 2h, then L2h ≡ 3 (mod 4), hence there exists a prime p|L2h

such that p ≡ 3 (mod 4). From Fn = and the above expression, −1 ≡ (mod p), which is
impossible, since p ≡ 3 (mod 4).
Second Case: n is even. Now n = 6g or n = 12g + 2. If = F12g+2 = F6g+1L6g+1 with
gcd(F6g+1, L6g+1) = 1, then F6g+1 = , which is impossible by the first case.

Let F6g = . We write 6g = 2h · 2i3j with i ≥ 0, j ≥ 1, 2 - h, 3 - h. By (2.21),
F6g = F2hZ with gcd(F2h, Z)|2i3j . Since 3 - h, then 2 - F2h and since 2 - h, then 3 - F2h.
Hence gcd (F2h, Z) = 1 and so F2h = . But 3 - h, so 2h ≡ 2 (mod 12) and this was already
shown to be impossible.
(3.2) Proof of (2). L1 = 1 and L3 = 4 are squares, but L2 = 3 is not a square. Now we
assume that n > 3 nd that Ln = . We choose n minimal. Hence Ln ≡ (mod 8), that is
Ln ≡ 0, 1 or 4 (mod 8). Comparing with the sequence of Lucas numbers modulo 8 (see the
preceeding proof), n ≡ 1, 3 or 9 (mod 12).

If n = 12g + 1, then by (2.9), L12g+1 = L6g+1L6g − (−1)6gL1 = L6g+1L6g − 1. We write
6g = 2 · 3jh with j ≥ 1, 3 - h, so 2h|6g and 6g/2h is odd, hence L2h|L6g. But 3 - 2h, hence
L2h ≡ 3 (mod 4), so there exists a prime p|L2h such that p ≡ 3 (mod 4). ¿From Ln =
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and the above relation, we deduce that −1 ≡ (mod p), which is impossible because p ≡ 3
(mod 4).

If n = 12g± 3 = 3(4g± 1) then = Ln = L4g±1(L2
4g±1 − 3(−1)4g±1) = L4g±1(L2

4g±1 + 3)
with d =gcd (L4g±1, L

2
4g±1 + 3) dividing 3. We note that if 3|Ln then n ≡ 2 or 6 (mod 8).

Hence d = 1 and both L4g±1 = , L2
4g±1 + 3 = . Since n was chosen minimal, n > 3, this

implies that 4g ± 1 = 3, so n = 9. However L9 6= , which concludes the proof.
In view of (1) and (2), the results indicated above have interpretations in terms of solutions

of certain diophantine equations:
(3.3) The only solutions in positive integers of:

x2 − 5y4 = 4 (x, y) = (3, 1), (322, 12)
x2 − 5y4 = −4 (x, y) = (1, 1)
x2 − 20y4 = 4 (x, y) = (18, 2)
x2 − 20y4 = −4 (x, y) = (4, 1)
x4 − 5y2 = 4 ∅
x4 − 5y2 = −4 (x, y) = (1, 1), (2, 2)
4x4 − 5y2 = 4 (x, y) = (9, 8)
4x4 − 5y2 = −4 ∅ .

The same method used to prove (1) and (2) leads to

{n ≥ 1|Fn = 3 } = {4}
{n ≥ 1|Fn = 5 } = {5}
{n ≥ 1|Fn = 6 } = ∅ .

For any square-free integer A > 1, if Fm = A and Fn = A , then FmFn = . In this
case we say that Fm and Fn are square-equivalent. This is indeed an equivalence relation,
because FmFn = and FnFq = imply that FmFq = . The equivalence classes are called
the square-classes of Fibonacci numbers. They were determined in my paper [20].
(3.4) The square-classes of Fibonacci numbers consist of only one number, except the classes
{F1, F2, F12}, {F3, F6}. Thus, for every square-free integer A > 2 the set {n ≥ 1|Fn = A } is
either empty or consists of only one number. So if Fn = Fn0 holds, then n = n0.

The square-equivalence and square-classes of Lucas numbers are defined in the same way.
In the paper quoted above it was also proved:
(3.5) The square classes of Lucas numbers consist of only one number, except {L1, L3}, {L0, L6}.
Once again, for every square-free integer A > 2, the set {n ≥ 1|Ln = A } is either empty or
consists of only one number. Thus, if Ln = Ln0 , then n = n0.

These results may be interpreted in terms of diophantine equations.
(3.6) Let A > 2 be a square-free integer; then each of the diophantine equations

x2 − 5A2y4 = ±4

has at most one solution in positive integers, where Fn = Ay2 and x = Ln. Similarly each of
the diophantine equations

A2x4 − 5y2 = ±4
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has at most one solution (x, y), where Ln = Ax2 and Fn = y.
In my paper [23] there is an algorithm to determine the set {n ≥ 1|Fn = A }, where

A > 1 is a given square-free integer. We already know that

{n ≥ 1|Fn ∈ { , 2 , 3 , 5 , 6 }} = {1, 2, 3, 4, 6, 12}.

A general theorem of SHOREY and STEWART [29], also proved independently by PETHÖ
[19], states, in particular,
(3.7) For every square-free integer A ≥ 1 there exists an effectively computable number N(A) >
0 (which depends on A and such that if Fn = A , then n ≤ N(A)).

The bound N(A) produced in the proof of the theorem is far larger than the actual
maximal index n0 such that Fn0 = A .
(3.8) The algorithm runs as follows:

1. Let H be the set of prime factors of A. If H ⊆ {2, 3} the answer is already known, so we
assume that H contains some prime p ≥ 5. We obtain the set H1 by adjoining to H all the
prime divisors of ρ(p) for every p ∈ H. Since ρ(5) = 5 and ρ(p) divides p± 1 (for p > 5)
by the theorem of Lucas, the largest primes in H and H1 are the same. Then we repeat
the same procedure with H1 to obtain H2. Eventually there exists i such that Hi = Hi+1

and we work with this set H̄ = Hi. Let H̄ −{2, 3} = {p1, . . . , pk} with 5 ≤ p1 < · · · < pk.
Note that k ≥ 1 by hypothesis.

2. If 2, 3 6∈ H̄ let N0 = {n ≥ 1|Fn = } = {1, 2, 12} and let N1 = {n ≥ 1|Fn = p1 }. If
2 ∈ H̄ or 3 ∈ H̄ let

N0 = {n ≥ 1|Fn ∈ { , 2 , 3 , 6 }} = {1, 2, 3, 4, 6, 12}

and let
N1 = {n ≥ 1|Fn ∈ {p1 , 2p1 , 3p1 , 6p1 }.

Let n1 = ρ(p1). According to the algorithm established in the paper mentioned above,
N1 ⊆ n1N0 ∪ n2

1N0 ∪ n3
1N0 ∪ . . . . Using a table, or any other convenient means, it is easy

to determine the sets N1 ∩ n1N0, N1 ∩ n2
1N0, . . . . Moreover, by the theorem of SHOREY

and STEWART there exists j ≥ 1 such that N1 ∩ nj
1N0 = ∅; then it may be shown that

N1 ⊆ n1N0 ∪ · · · ∪ nj−1
1 N0.

3. Let N̄1 = N0∪N1 and let N2 = {n ≥ 1|Fn = p2B , where B is square-free, B ≥ 1, and if q
is a prime dividing B, then q ∈ H̄ and q ≤ p1}. If n2 = ρ(p2), then N2 ⊆ n2N̄1∪n2

2N̄1∪. . . .
4. The successive determination of similarly defined sets N3, . . . , Nk is done with the same

algorithm. In particular, {n ≥ 1|Fn = A } ⊆ Nk.
It is worth illustrating the algorithm with a couple of numerical examples:

(3.9) Example: We assume that a table of Fibonacci numbers Fn, for n ≤ 50, is available.
We shall determine the integers n ≥ 1 (if any exists) such that Fn = 209 . Since 209 = 11 ·19,
then H = {11, 19}.

Noting that ρ(11) = 10, ρ(19) = 18, adding to H the primes dividing 10,18 we obtain
the set H̄ = {2, 3, 5, 11, 19}, which cannot be further enlarged with this procedure. Let N0 =
{1, 2, 3, 4, 6, 12}, let p1 = 5, so ρ(5) = 5 and let N1 = {n ≥ 1|Fn ∈ {5 , 10 , 15 , 30 }}. By
the algorithm indicated, N1 ⊆ 5N0 ∪ 25N0 ∪ . . . . We have 5N0 = {5, 10, 15, 20, 30, 60}. By
consulting the table (for n ≤ 50), we see that 5 ∈ N1 and 10,15,20,30 6∈ N1. As for 60, by
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(2.21), F60 = F10Z where gcd (F10, Z)|6; in fact 2,3 do not divide F10. So 60 ∈ N1 would
imply that F10 = 55 = B , where B|60, which is impossible. It is equally easy to see that
N1 ∩ 25N0 = ∅, hence N1 = {5}, N̄1 = N0 ∪N1 = {1, 2, 3, 4, 5, 6, 12}.

Let p2 = 11, so ρ(11) = 10. Let N2 = {n ≥ 1|Fn = 11B , where B is square-free,
B ≥ 1, each prime factor q of B is in H̄ and q ≤ p2 = 11}. Then N2 ⊆ 10N̄1 ∪ 100N̄1 ∪ . . . .
Similar considerations imply that already N2 ∩ 10N̄1 = ∅, hence N2 = ∅ and N̄2 = N̄1 ∪N2 =
{1, 2, 3, 4, 5, 6, 12}.

Let p3 = 19 so ρ(19) = 18. Let N3 = {n ≥ 1|Fn = 19B , where B is square-free, B ≥ 1,
and every prime factor q of B is in H̄ and q ≤ 19}. Then N3 ⊆ 18N̄2∪182N̄2∪ . . . . Once again
it may be verified that N3∩18N̄2 = ∅, hence N3 = ∅. In particular, for every n ≥ 1, Fn 6= 209 .
(3.10) Example: We propose that the reader show that Fn = 3001 if and only if n = 25.

Now we indicate results about Fibonacci and Lucas numbers which are cubes. LONDON
and FINKELSTEIN [12] and, later, LAGARIAS and WEISSEL [11] proved:
(3.11) Fn is a cube if and only if n = 1, 6.
(3.12) Ln is a cube if and only if n = 1.

No Fibonacci or Lucas numbers of the form ak, with a > 1, k ≥ 5, has ever been found.
It has been shown (but, as far as I know, never published) that the equations x2 − 5y10 = ±4
have no solution in integer, with y > 1; that is, Fn is never a fifth power (different from 1).

The general theorem of SHOREY and STEWART, already quoted, implies that if A ≥ 1,
there exists N > 1, which is effectively computable, such that if Fn = Axk, respectively,
Ln = Axk with x > 1 and k > 2, then n, k ≤ N .

4. POWERFUL FIBONACCI AND LUCAS NUMBERS

Let p be any prime number. For each non-zero integer n let k ≥ 0 be the unique integer
such that pk|n but pk+1 does not divide n. The integer k is denoted k = vp(n) and called the
p-adic value of n. The factorization of |n| is therefore written as

|n| =
∏
p

pvp(n)

(product over all primes, with vp(n) = 0, except for the finitely many primes which divide n).
(4.1) The radical of n is by definition

rad(n) =
∏
p|n

p.

(4.2) The integer n is said to be powerful when vp(n)] 6= 1 for every prime p. Thus if n is
powerful then rad(n)2 ≤ |n|. Every proper power is, of course, a powerful number. It is not
known if there exists any Fibonacci number or Lucas number that is not a proper power, but
which is a powerful number.

In this respect I shall include a result which follows from the so-called
(4.3) ABC Conjecture: For every real number ε > 0 there exists a real number K > 0
(depending on ε) such that if A, B, C are arbitrary non-zero coprime integers such that
A + B + C = 0, then

max{|A|, |B|, |C|} < KR1+ε

where R =rad(ABC).
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The ABC Conjecture was formulated by MASSER [14] and in a revised form by
OESTERLÉ [17]. It has many interesting implications; see, for example, my own papers
[25], [26] and ELKIES [7].

The result below seemed to be well-known to the experts; a somewhat incomplete proof
for Fibonacci numbers was published by MOLLIN [16] (see also RIBENBOIM and WALSH
[28]):
(4.4) The ABC Conjecture implies that there are only finitely many Fibonacci numbers, re-
spectively Lucas number, which are powerful.

Proof: We only give the proof for Fibonacci numbers; the proof for Lucas numbers is
similar.

We recall that L2
n − 5F 2

n = 4(−1)n; from this relation it follows the inequality L2
n ≤ 9F 2

n ,
so Ln ≤ 3Fn valid for every n.

Let d =gcd(L2
n, 5F 2

n , 4), so d = 1 when 3 - n and d = 4 when 3|n. We apply the ABC
Conjecture. Let ε = 1/4, so there exists K > 0 such that

5F 2
n

d
≤ KR1+ε

where R =rad
(

L2
n

d · 5F 2
n

d · 4
d

)
≤ rad(L2

n)rad(5F 2
n)2. If Fn is powerful then rad(F 2

n) ≤ F
1/2
n . So

R ≤ Ln · 5F 1/2
n · 2 ≤ 30F 3/2

n .

Hence there exists K ′ > 0 such that

F 2
n ≤ K ′F

3
2 (1+ 1

4 )
n ,

and so F
1/8
n ≤ K ′. Therefore, if Fn is powerful, then Fn is bounded. �

As a matter of fact, a sharper result may be obtained just as simply.
(4.5) For each integer n 6= 0 the powerful part of n is, by definition, n∗ =

∏
p∈T pvp(n) where

T is the set of primes p such that vp(n) ≥ 2.
So n = n∗n′ where gcd(n∗, n′) = 1, n∗ is powerful and n′ is square-free. In the paper

of RIBENBOIM and WALSH [28], a corollary of a rather general theorem stated (which also
follows from simple modificaitons of the proof above):
(4.6) Assuming that the ABC Conjecture is true, for every ε > 0 there are only finitely
many Fibonacci numbers Fn, respectively Lucas numbers Ln, such that F ∗

n > F ε
n, respectively

L∗n > Lε
n.

The existing tables confirm this statement, which however has never been proved without
assuming the truth of the ABC conjecture.

5. IRRATIONAL AND TRANSCENDENTAL NUMBERS

A real number that can be “too-well” approximated by rational numbers must be irrational
or even be transcendental:

11
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(5.1) Let α be a real number. We say that α is approximable by rational numbers to the order
ν if there exists a real number C > 0 such that there are infinitely many rational numbers a

b ,
with b ≥ 1, gcd(a, b) = 1, such that ∣∣∣α− a

b

∣∣∣ <
C

bν
.

The rational numbers are approximable by rational numbers to the order 1, but not to
the order 1 + ε, for any ε > 0. Thus, if α is approximable to an order 1 + ε (for some ε > 0),
then α is an irrational number.

The important theorem of ROTH (see, for example, my book My Numbers, My Friends
[24]), implies the following:
(5.2) If α is approximable by rational numbers to an order ν > 2, then α is a transcendental
number.

Let I1 =
∑∞

n=0 1/Fn. ANDRÉ-JEANNIN [1] proved:
(5.3) I1 is an irrational number.

In [10] KNUTH constructed an infinite sequence of transcendental numbers, obtained
from the Fibonacci numbers by building infinite continued fractions.
(5.4) Let a be an integer, with a ≥ 2, let ξa = [0, 1, aF1 , aF2 , . . . ]. Then ξa is approximable by
rationals to the order γ + 1 > 2 (where γ = 1.616 . . . is the golden number), so that ξa is a
transcendental number.

Proof: Let pn/qn = [0, 1, aF1 , aF2 , . . . , aFn−1 ]. Since q0 = 1, q1 = 1 and qn = aFn−1qn−1+

qn−2 for n ≥ 2, an easy induction argument shows that qn = aFn+1−1
a−1 for all n ≥ 0. It is

well-known that (for any continued fraction)
∣∣∣ξa − pn

qn

∣∣∣ < 1/qnqn+1, and so the result follows.

6. ZETA SERIES

We recall (see (2.26)) that each Fibonacci number of the set H = {Fn|n 6= 1, 2, 6, 12} has
a primitive factor. We deduce:
(6.1) Let r ≥ 0, s ≥ 0, let n1 < · · · < nr, m1 < · · · < ms, let ei ≥ 1 (for i = 1, . . . , r) and
fj ≥ 1 (for j = 1, . . . , s). Assume that each Fni

, Fmj
∈ H and that F e1

n1
. . . F er

nr
= F f1

m1
. . . F fs

ms
.

Then r = s, ni = mi, ei = fi for all i = 1, . . . , r.
Proof: If the statement is not true, dividing the given relation by common factors, we

would obtain a similar relation where ni 6= mj (for all i 6= j), with r ≥ 1, s ≥ 1. Say
nr > ms. Let p be a primitive factor of Fnr

, so p|Fm1 · · ·Fms
; but this is impossible, because

m1 < · · · < ms < nr. Hence the statement is true. �
Let 〈H〉 denote the set of all integers h ≥ 1 of the form h = F e1

n1
· · ·F er

nr
with Fni

∈ H, ei ≥
1, r ≥ 0.
(6.2) The zeta series associated with the Fibonacci numbers is defined to be

ζF (s) =
∞∑

n=1

1
hs

n

,

where s = σ + iτ ∈ C and 〈H〉 = {h1 = 1, h2, . . . } with 1 = h1 < h2 < . . . .
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The series ζF (s) can be shown to converge absolutely and uniformly on the half-plane
where Re(s) > 0.

It is a remarkable but easy consequence of the uniqueness of the product representation
of the integers in 〈H〉 that
(6.3) ζF (s) has an Euler product:

ζF (s) =
∏
n=1

1
1− 1/F s

n

valid for Re(s) > 0.
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