A Basic Framework for Explanations in
Argumentation

AnneMarie Borg and Floris Bex

Abstract—We discuss explanations for formal (abstract and structured) argumentation — the question whether and why a certain
argument or claim can be accepted (or not) under various extension-based semantics. We introduce a flexible framework, which can
act as the basis for many different types of explanations. For example, we can have simple or comprehensive explanations in terms of
arguments for or against a claim, arguments that (indirectly) defend a claim, the evidence (knowledge base) that supports or is
incompatible with a claim, and so on. We show how different types of explanations can be captured in our basic framework, discuss a
real-life application and formally compare our framework to existing work.

Index Terms—Atrtificial intelligence, knowledge representation formalisms and methods, nonmonotonic reasoning and belief revision

1 INTRODUCTION

ECENTLY, explainable AI (XAI) has received much atten-
Rtion, mostly directed at new techniques for explaining
decisions of (subsymbolic) machine learning algorithms [1].
However, explanations also play an important role in (sym-
bolic) knowledge-based systems [2]. Argumentation is one
research area in symbolic Al that is frequently mentioned
in relation to XAl For example, arguments can be used
to provide reasons for or against decisions [2], [3]. The
focus can also be on the argumentation itself, where it is
explained whether and why a certain argument or claim
can be accepted under certain semantics for computational
argumentation [4], [5], [6], [7]. It is the latter type of expla-
nations we are interested in.

Two central concepts in argumentation are abstract ar-
gumentation frameworks [8] — sets of arguments and the
attack relations between them — and structured or logical
arqumentation frameworks (e.g., [9]) — where arguments are
constructed from a knowledge base and a set of rules and
the attack relation is based on the individual elements in the
arguments. For both abstract and structured argumentation
frameworks we can determine extensions, sets of arguments
that can collectively be considered as acceptable, under
different semantics [8]. In XAI terms [10], this is a global
explanation — what can we conclude from the model as
a whole? However, as argumentation is being applied in
real-life Al systems with lay-users, we would rather have
simpler, more compact explanations for the acceptability of
individual arguments — a local explanation for a particular
decision or conclusion. We noticed the need for such ex-
planations when deploying an argumentation system at the
Dutch National Police, which assists citizens in filing online
reports and complaints [11], [12].

We propose a basic framework for explanations in struc-

e Both authors are with the Department of Information and Computing
Science, Utrecht University, The Netherlands.
E-mail: {a.borg, f.j.bex}@uu.nl

e Floris Bex is also with the Department of Law, Technology, Markets, and
Society, Tilburg University, The Netherlands.

Manuscript received August 5, 2020.

tured and abstract argumentation, with which explana-
tions for (non-)accepted arguments and (sub-)conclusions
can be generated. Though some work on explanations for
argumentation-based conclusions exists in the literature ([4],
[5], [6], [7], Section 5), our framework is generic in that the
underlying argumentation framework does not have to be
adjusted and the definitions are semantics-independent —
for example, the explanations based on the new semantics
of Fan and Toni [4] are a special case of our framework.
The framework is also flexible, as the contents of expla-
nations can be varied. For example, rather than returning
all defending or attacking arguments, we can return only
those that can defend themselves, or the ones that directly
attack an argument. Furthermore, we are the first to use the
structure of arguments for explanations: not just arguments
for a conclusion, but also elements of these arguments (e.g.,
premises or rules) can be returned as an explanation.

2 PRELIMINARIES

An abstract argumentation framework (AF) [8] is a pair
AF = (Args, Att), where Args is a set of arguments and
Att C Args x Args is an attack relation on these arguments.
An AF can be viewed as a directed graph, in which the
nodes represent arguments and the arrows represent attacks
between arguments.

Example 1. Consider the AF AF;
Argsl = {A17A2’ A3, A4} and Att1
(As, Ay), (Ag, A3)}.

Given an AF AF, Dung-style semantics [8] can be ap-
plied to it, to determine what combinations of arguments
(called extensions) can collectively be accepted.

Definition 1. Let AF = (Args, Att) be an AF, S C Args a set
of arguments and let A € Args. Then:

o Sattacks A if there is an A’ € S such that (A’, A) €
Att;

o Sdefends A if S attacks every attacker of A4;

e S is conflict-free if there are no A;, A2 € S such that
(Al, AQ) € Att; and

= (Args,,Att;) where
= {(A27A1)a (A37A2)7

o Sisadmissible if it is conflict-free and it defends all of
its elements.

An admissible set that contains all the arguments that it
defends is a complete extension (cmp).

e The grounded extension (grd) is the minimal (with
respect to C) complete extension;

o A preferred extension (prf) is a maximal (with respect
to) complete extension; and

o A stable extension (stb) is a complete extension that
attacks every argument not in it.

Extsem (AF) denotes the set of all the extensions of AF
under the semantics sem € {cmp, grd, prf, stb}.

Where AF = (Args, Att) is an AF, sem a semantics and
Extsem(AF) # 0, it is said that A € Args is skeptically
[resp. credulously] accepted if A € [Extsem(AF) [resp. A €
(U Extsem (AF)]. These acceptability strategies are denoted
by N [resp. U]. A is said to be skeptically [resp. credulously]
non-accepted in AF if for some [resp. all] £ € Extsem(AF),
A ¢ £. When these are arbitrary, result in the same or are
clear from the context, we will refer to accepted respectively
non-accepted arguments.

The notions of attack and defense can also be defined
between arguments:

Definition 2. Let AF = (Args, Att) be an AF, A, B € Args
and £ € Extgem (AF) for some sem. A can defend B directly
or indirectly: A directly defends B if there is some C' € Args
such that (C, B) € Att and (4,C) € Att, and A indirectly
defends B if A defends C' € Args and C defends B. It is said
that A defends B in £ if A defends B and A € £.

Similarly, A can attack B directly or indirectly: A directly
attacks B if (A, B) € Attand A indirectly attacks B if A attacks
some C' € Args and C' defends B.

Next we define two notions that will be used in the basic
definitions of explanations. The first, used for acceptance
explanations, denotes the set of arguments that defend
the argument A, while the last, used for non-acceptance
explanations, denotes the set of arguments that attack A and
for which there is no defense in the given extension.

Definition 3. Let AF = (Args, Att) be an AF, A € Args and
& € Exteem(AF) an extension for some semantics sem.

o DefBy(A) = {B € Args | B defends A};

e DefBy(A,E) = DefBy(A) N & denotes the set of
arguments that defend Ain & ;

o NotDef(A,€) = {B € Args | Battacks Aand &
does not attack B}, denotes the set of all attackers
of A for which no defense exists from &.

Example 2. In AF; (recall Example 1), example conflict-
free sets are {A;, A3} and {As, As}. Extemp(AF1) = {0,
{A1, A3}, {As, As}}, while Extp(AF1) = Extawn(AF1) =
{{A1, A3}, {A2, As}} and Extgq(AF1) = {0}. None of the
arguments in Args, is skeptically accepted, while all of them
are credulously accepted for sem € {cmp, prf, stb}.

Argument As directly attacks A4, and attacks Az both
directly and indirectly. A3 defends A; directly against As
and indirectly against A,. Moreover, DefBy(4;) = {43},
DEfo(Ah {Ah Ag}) = {Ag} and NOtDef(Ag, {AQ,A4}) =
{A4}.

21 ASPICT

We investigate explanations for a well-known approach to
structured argumentation: ASPIC™ [9], which allows for two
types of premises — axioms that cannot be questioned and
ordinary premises that can be questioned — and two types of
rules — strict rules that cannot be questioned and defeasible
rules. We choose ASPICT as the structured argumentation
approach in this paper since it allows to vary the form of the
explanations in many ways (see Section 4). The definitions
in this section are based on [9].

Definition 4. An argumentation system is a tuple AS =
(L, R,n), where:

o L is a propositional language closed under classical
negation (—), we denote ¢ = —¢ if) = ~¢ or ¢ =
b,

e R =TRs;UTR,is a set of strict (Rs) and defeasible
(Rq) inference rules of the form ¢4, ..., ¢, — @ resp.
@1,...,0n = ¢, such that {¢1,...,d,,¢} C L and
RsNRqg=0.

Where r € R, Ant(r) = {¢1,...,¢n} are the an-
tecedents of the rule and Cons(r) = ¢ is the consequent
of the rule. Moreover, Rules(R,¢) = {r € R |

Cons(r) = ¢}.
e n:Rgq — L is a naming convention for defeasible
rules.

A knowledge base in an argumentation system (£, R,n) is a
set of formulas ' C £ which contains two disjoint subsets:
K = K, UK,, the set of axioms K,, and the set of ordinary
premises JC,,.

Arguments in ASPICT are constructed in an argumenta-
tion system from a knowledge base.

Definition 5. An argument A on the basis of a knowledge
base K in an argumentation system (£, R, n) is:

1) ¢ if ¢ € K, where Prem(A) = Sub(4) =
Conc(A) = ¢, Rules(a) = 0 and TopRule(A
undefined;

2) Ay,...,A, ~ ¢, where ~€ {—, =}, if Ay,..., A,

are arguments such that there exists a rule
Conc(Ay),...,Conc(A,) ~ ¥ in Ry if ~ = — and
inRyif ~ = =.
Prem(A) = Prem(A;)U...UPrem(4,); Conc(A) =
1; Sub(A) = Sub(4;) U ... U Sub(A,) U {A};
Rules(4) = Rules(4;) U ... U Rules(A4,) U
{Conc(44),...,Conc(A,) ~ }; DefRules(A) =
{r € Rs | r € Rules(A)}; TopRule(A)
Conc(A4y),...,Conc(A,) ~ 1.

o},
) =

The above notation can be generalized to sets. For example,
where S is a set of arguments Prem(S) = (J{Prem(4) |
A € S}, Conc(S) = {Conc(A) | A € S} and DefRules(S) =
(U{DefRules(A4) | A € S}.

Example 3. ASy = (L3, R2,n) is an argumentation system
where Ry = R? UR?2 such that R2 = (), R2 = {d1,...,ds}
(the application of these rules is shown in the arguments

below), let Ky = K2 U K2 where K2 = {t} and K2 = {r}.
The following arguments can be constructed:

At By:r
A2:Ali§—\r BQ:Blgp
Ay A Ay &g By: By &~
Ay Az p

We denote the set of arguments constructed from AS;
and K2 by Args,. For A4 we have that Prem(4,) =
{t}, COHC(A4) = D SUb(A4) = {A17A2’A3’A4} and
Rules(44) = {d1,ds,ds}. Furthermore, Rules(Rz2,p) =
{dy,ds}.

Attacks on an argument are based on the rules and
premises applied in the construction of that argument.

Definition 6. An argument A aftacks an argument B iff A
undercuts, rebuts or undermines B, where:

o A undercuts B (on B') iff Conc(A) = —n(r) for some
B’ € Sub(B) such that B’’s top rule r is defeasible,
it denies a rule;

e A rebuts B (on B’') iff Conc(A) = —¢ for some
B’ € Sub(B) of the form BY,..., B = ¢, it denies
a conclusion;

e A undermines B (on ¢) iff Conc(A) = —¢ for some
¢ € Prem(B) \ K,, it denies a premise.

Argumentation theories and their corresponding Dung-
style argumentation frameworks can now be defined.

Definition 7. An argumentation theory is a pair AT =
(AS, K), where AS is an argumentation system and K is
a knowledge base.

A structured arqumentation framework (SAF) defined by an
argumentation theory AT is a pair AF(AT) = (Args, Att),
where Args is the set of all arguments constructed from AT
and (A, B) € Att iff A attacks B according to Definition 6.

Dung-style semantics, as in Definition 1, can be applied
to SAFs in the same way as they are applied in AFs.

Example 4. (Example 3 continued) Consider the argumenta-
tion theory ATy = (ASy, KCs). Figure 1 contains the graphical
representation of AF(ATz) = (Args,, Atty). In this frame-
work there are no undercuts, all the attacks from A, are
underminers and all the other attacks are rebuts.

Fig. 1. Graphical representation of AF(AT2).

Then: Extgrd (AF(AT2)) = and

{A1};
Exteem (AF(AT2)) = {{A1, A2, A3, As},{A1, B1, B2, Bs}},
for sem € {prf, stb}.

Entailment relations, induced by the structured argu-
mentation framework and a semantics, are defined by:

3

Definition 8. Let AF(AT) = (Args, Att) for a semantics sem,
Extsem (AF) # 0 and let some ¢ € L. We define:

e Credulous entailment: AT .. ¢ iff for some £ €
Extsem(AF) there is an argument A € & with
Conc(A) = ¢, it is said that ¢ is credulously accepted;

o Skeptical entailment: AT .. ¢ iff for each & €
Extsem(AF) there is some A € & such that

Conc(A) = ¢, it is said that ¢ is skeptically accepted.

When arbitrary or clear from the context, the superscript
will be omitted (e.g., (4 as |~;d and I’Vgrd coincide).

Example 5 (Example 4 continued). For AF(ATy) =
(Args,, Atty) we have that:

1) AT: P44 ¢ and AT, bé;m ¢ for ¢ € {q,—q,r,r},
and sem € {cmp, prf, stb}; while

2) AT, lNgem ¢ for any ¢ € {p,q, ~q,r,—r,t} and sem €
{cmp, prf, stb};

3) ATylvgqtand ATs pvil
and

4) ATy ML p for sem € {prf,stb} but AT, gra P-

t for sem € {cmp, prf,stb};

This follows since each argument from Args, is part of at
least one extension, but only A; is part of every extension.
The last item follows since each sem-extension of AF(ATs)
contains either A, or By for sem € {prf,stb}.

2.2 Necessary Notation

This notation is meant to keep the definitions of explana-
tions in Section 3 general and short.

Notation 1. Let AF = (Args, Att) be an AF, A € Args and
S C Args. Then, for some sem € {grd, cmp, prf, stb}:

o M = {€ € Exteem(AF) | A € £} denotes the set of
sem-extensions of AJF which contain A4;
e = {€ € Exteem(AF) | A ¢ £} denotes the set of
sem-extensions of AJF which do not contain A.

The set of arguments that can be used to explain the
acceptance of a formula differs depending on the acceptance
strategy. For this the following notation will be applied.

Notation 2. Let AF(AT) = (Args, Att) be an SAF, ¢ € £ and
let sem € {grd, cmp, prf,stb}. Then:

o Args, = {A € Args | Conc(A) = ¢} denotes the set
of all arguments of AF (AT) with conclusion ¢;

o Argsi™" = {A € UExtem(AF(AT)) | Conc(A) =
¢} denotes the set of all arguments of AF(AT)
with conclusion ¢ that are part of at least one sem-
extension (i.e., that are credulously accepted);

. n
i Argszfm’m = {® sem,U if AT bé.sem ¢
Args P otherwise

is the same as Argss™" if ¢ is skeptically accepted

and 0 if it is not skeptically accepted.

Example 6. (Example 4 continued) Whenever Args;em’m £,
there is no difference between U and N. But Args, =

Argse™Y = {As} while Args;™" = () for sem €

q
{cmp, prf, stb}.
Next it is defined what it means for two formulas to be

connected in an argumentation system.

Definition 9. Let AS = (£,R,n) be an argumentation
system. Then, ¢ is connected to 1 if ¢ =), or:

o there is some r € R with Cons(r)
Ant(r);

o thereis some v € L such that ¢ is connected to v and
7 is connected to .

= 1 and ¢ €

The set of all connected formulas of % is denoted by:

o Connected(y)) = {¢ € L | ¢ is connected to 1 }.

In explanations for formulas for which no argument
exists the following notation will be used:

Notation 3. Let AF(AT) = (Args, Att) be an SAF and let
¢ € L be such that there is no argument for it in Args. Then:

o NoArgAnt(¢) = {¢ | v € U{Ant(r) | r €
Rules(R, ¢)} and A € Args s.t. Conc(A) = 9} de-
notes the set of formulas in antecedents of rules for
¢ for which no argument exists.

o NoArgPrem(¢) = {¢ € Connected(¢) |
Rules(R,v) = @andy ¢ K} denotes the set of
formulas that are connected to ¢ but that are not part
of K and for which no rules exist.

Intuitively, NoArgAnt determines the formulas for which
arguments are missing in order for an argument for ¢ to be
available, while NoArgPrem determines the formulas that
are not derivable from AF(AT) (neither from K nor as a
conclusion of some rule) and which could be part of the
derivation of an argument for ¢.

Example 7. Consider AS; from Example 3, but let), = IC2
(i-e., K2 = (). It follows that the arguments Ay, Ay, A3 and
A4 no longer exist. Thus there is no argument for —r nor
for g (though there is still an argument for p: By). We have
that: NoArgAnt(q) = {t,—r}, Connected(q) = {t,—r} and
NoArgPrem(q) = {¢}.

3 BAsic EXPLANATIONS

We now define basic explanations in terms of two functions.
D determines the depth of the explanation, how “far away”
we should look when considering attacking and defending
arguments as explanations. F determines the form of the
explanation, whether we want, for example, an argument
as an explanation or only its premises. A formal definition
of these functions is not provided since domain (F) and
codomain (D and F) are not fixed. We will sometimes use the
superscriptes acc and na to denote the function used in the
context of acceptance [resp. non-acceptance] explanations.

3.1 Basic Explanations for Acceptance

We define two types of acceptance explanations, where M-
explanations provide all the reasons why an argument or
formula can be accepted by a skeptical reasoner, while
U-explanations provide one reason why an argument or
formula can be accepted by a credulous reasoner. For the
purpose of this section let D**(A,S) = DefBy(A4,S) and
F2<¢(T) =id(T) =T (i.e., id(S) = S for any set S).

3.1.1 Explanations for Accepted Arguments

An argument explanation for an accepted argument A con-
sists of the arguments that defend it, depending on the ex-
tensions considered according to the acceptability strategy.

Definition 10 (Argument explanation). Let AF =
(Args, Att) be an AF and let A € Args be an accepted
argument, given some sem € {cmp,grd, prf,stb} and an
acceptance strategy (N or U). Then:

Accll (A) = U D*°(A, E);
E EExtsem (AF)
Accgm(A) € {D*°(A,E) | € € €5™}.

Accli(A) provides for each sem-extension £ the argu-
ments that defend A in &, and Accg,,(A) the arguments

that defend A in one of the sem-extensions.

Example 8 (Example 2 continued). Recall AF; =

(Args,, Att;). We have that:
2) = {As};
3) = {As}.

3.1.2 Explanations for Accepted Formulas

In structured argumentation explanations for the acceptance
of a formula ¢ can be requested, in addition to argument
explanations. For ¢ to be accepted, at least one argument for
¢ must exist. Therefore, the existence of such an argument
is part of the explanation as well.

. Accprf(

. Accprf

Definition 11 (Formula explanation). Let AF(AT) =
(Args, Att) be an SAF and let ¢ € £ be such that AT 7 ¢,
for sem € {cmp,grd, prf,stb} and x € {N,U}. Here S =

Argss™", A € Argsy ™" and Sa € {D*(4,€) | € € e5m}:
Accf:em((b) — <]Facc [Facc U U]D)acc B 8 >
BeSEeegm

ACCeem(9) = <1F“°(A), F2(Sa) >

The first part of the explanation denotes arguments for ¢
(recall Notation 2) — all arguments in the case of AccL,(#)
and one argument in the case of Acci.,(¢). The second
part of the explanation is similar to the set of arguments
in an argument explanation, although now the function F is
applied to it. This makes it possible to change the form of the
explanation (e.g., premises instead of arguments). The main
difference with argument explanations is that more than one
argument for ¢ may be considered in the N-explanation. The
(skeptical) N-explanation again takes all extensions in 5™
into account to determine the arguments that defend B,
while for the (credulous) U-explanation again the defending

arguments for A from just one extension in €™ are taken.

Example 9. (Example 5 continued) Con51der the SAF
AF(ATs) for ATy = (ASs, K2). Recall that AT, |~ orf P, hence:

o Acche(p) = ({As, Bo}, {Az, A3, B1}).

For other formulas the Accl -explanation does not apply,
since none of these are skeptically accepted. However:

e Aci(a) = ({As} {4 As});
o Accyi(—q) = ({Bs}.{B1, Bs}).

3.2 Basic Explanations for Non-Acceptance

Similar to acceptance explanations, there are two types of
non-acceptance explanations: N-explanations for why an
argument or formula is not accepted in some extensions (i.e.,
is not skeptically accepted), and U-explanations for why
an argument or formula is not accepted in all extensions
(i.e., is not credulously accepted). For this let D"*(A,S) =
NotDef(A,S) and F"*(T) = id(T) = T.

3.2.1 Explanations for Non-Accepted Arguments

In any Dung-style semantics based on the complete seman-
tics, an argument is not accepted if it is attacked and it is not
defended by an accepted argument. Hence, intuitively, the
explanation for the non-acceptance of an argument is the set
of arguments for which no defense exists.

Definition 12 (Non-acceptance argument explanation). Let
AF = (Args, Att) be an AF and let A € Args be an argument
that is not accepted, given some sem € {cmp, grd, prf,stb}
and some x € {N,U}. Then:

NotAcc,(A) = | J D"™(4,€);
geesem
NotAcc(4A)= |J D™(4¢).

E EExtsem (AF)

So the non-acceptance argument explanation contains
all the arguments in Args that attack A and for which no
defense exists in: some sem-extensions (for N) of which A
is not a member; all sem-extensions (for U). That for N only
some extensions have to be considered follows since A is
skeptically non-accepted as soon as 6;%’" # (), while A is
credulously non-accepted when @;f(Xtsem (AF).

Example 10. (Example 5 continued) Recall AF(ATz) shown
in Figure 1. Then:

. NotAccgrd(3) = {B1, Bs};

. NotAccprf(3) = {Az, As}.

3.2.2 Explanations for Non-Accepted Formulas

The non-acceptance of a formula ¢ can have two causes:
either there is no argument for ¢ at all (ie. it is not
derivable) or all arguments for ¢ are attacked. In the first
case ¢ is not part of the knowledge base K. Moreover, if
there are rules with ¢ as consequent, for each rule there is at
least one antecedent for which no argument exists.

Definition 13 (Non-derivability explanation). Let AF(AT)
be an SAF and let ¢ be some non-derivable formula. Then:
(Rules(R,),

NoArgAnt(¢), NoArgPrem(¢)) .

NotDer(¢) =

The idea is that the explanation points out the gaps
in the argumentation theory: the missing knowledge base
elements and/or missing rules. If there are rules for ¢ these
are collected in the first part of the explanation, the second
part contains the missing antecedents of these rules (if there
would be arguments for all antecedents, there would be an
argument for ¢) and the third part contains the formulas
that are connected to ¢ but for which no rule exists (i.e.,

5

formulas which are neither part of the knowledge base nor
the consequent of a rule).

Example 11. (Example 7 continued) Consider again AS,
from Example 3, with the knowledge base K} from Exam-
ple 7 (ie., K5 = K2 \ {t}). There are no arguments for —r
and ¢:

o NotDer(—r) = ({ds}, {t}, {t});
o NotDer(q) = ({da}, {t, —r}, {t}).

This follows since, although there is a rule for g (i.e., ds €
R2) [resp. for —r (i.e., d3 € R2)], there is some ¢ € Ant(dy)
[resp. ¢ € Ant(ds)] (ie., ¥ = t [resp. ¥p = —r]) such that
there is no argument for ¢ [resp. —r] in AF(ATz) and when
looking at the missing premises to derive ¢ [resp. —r] the
formula ¢, necessary for ds is found.

Like for non-acceptance argument explanations, if an
argument for ¢ exists but it is not accepted, there has to
be an attacker for which there is no defense.

Definition 14 (Non-acceptance formula explanation). Let
AF(AT) = (Args, Att) be an SAF and let ¢ € L be such
that AT [£7 ¢, given some sem € {cmp, grd, prf,stb} and

* € {N,U}. Here, Sy = Args,,.
na A g >>

NotAccim (¢) = < (U U
]D)"Q(A,S)>) .

Aes, geesm

These explanations consist of the existing arguments for
¢ and the arguments for which no defense exists from &
under D". Similar to non-acceptance argument explana-
tions, for N only the extensions without any argument for
¢ have to be considered, while for U all extensions have to
be accounted for. By assumption Sy # (), since otherwise
the explanation for the non-acceptance of ¢ would be its
non-derivability.

NotAcceam(¢) =

<Fna(s¢)’w (JoU

A€ESy EEExtsem(AF)

Example 12. (Example 9 continued) Consider again
AF(AT5). Recall that all arguments are credulously ac-
cepted, we do however have:

o NotAccys(q) = ({As}, {B1, Bs});
o NotAccy¢(—q) = ({Bs}, {Az, As}).

4 VARYING D AND F

This section proposes several variations for I and F, the
main purpose of which is to show the flexibility of the
basic framework. We focus on notions of defense, which are
suitable for the completeness-based semantics in this paper.
For, for example, naive semantics, one might want to base
D on conflicts instead. In Section 4.4 these variations are
discussed in the context of a real-life application.

4.1 Notions of Defense

We start by only considering the arguments that defend
themselves against all attacks.

Definition 15. Let AF = (Args, Att) be an AF, A, B € Args
and let £ € Exteem (AF) for some semantics sem. Then:

FinalDef(A, &) = {B € DefBy(A, &) | VC € Args s.t. (C, B)
€ Att, (B,C) € Att} U J{DefBy(B, &) | B € DefBy(4,£),
VC € DefBy(B, £), DefBy(C, £) = DefBy(B, £) and 3D

€ DefBy(B, &) s.t. VE € Args s.t. (E, D) € Att, (D, E) € Att}

denotes the set of arguments that defend A in £ and that are
not attacked at all, defend themselves against any attacker
or are part of an even cycle that is not attacked.

Intuitively this means that these arguments that defend
A do not need other arguments to be defended and, given
&, can be considered as safe to be accepted. To see why
even cycles should be regarded, take a look at the following
example:

Example 13. (Figure 2(a)) Note that here Extgq(AF3) =
(0, while Exteem(AF3) = {{A,D,F,H},{A,D,F,I},{B,
C,E,H},{B,C,E,I}} for sem € {prf,stb}. Let & =
{A,D, F,H}. Then FinalDef(F,€) = {A, D, H}. This fol-
lows since H defends itself against the attack from I and
{4, D} is part of an even cycle that is not attacked. If even
cycles would not be covered by FinalDef, the defense of the
attack (F, F') would not be accounted for.

Another option is to consider only the arguments that
directly defend the considered argument.

Definition 16. Let AF = (Args, Att) be an AF, A, B € Args
and let £ € Exteem(AF) for some semantics sem. Then:
DirDef(A,&) = {B € £ | B directly defends A}, denotes
the set of arguments in £ that directly defend A.

One reason for looking at direct conflicts might be that
direct conflicts are often more clear from the context than
indirect conflicts.

Example 14. (Figure 2(c)). Here Extsem(AF4) = {{A1, 43,
As}} for any sem € {grd, cmp, prf, stb}. Moreover:

o Acc(A4;) = {43, A5} for D = DefBy;
o Acc(A4;) = {45} for D = FinalDef; and
o Acc(A4y) = {43} for D = DirDef.

This minimal example can be seen as a discussion in the
form of a sequence of arguments attacking and defending
the topic A;. When at the end an explanation for the
acceptance of A; is requested: DefBy returns all arguments
that defend Aj;; FinalDef returns the last argument that was
put forward, which is uncontested; and DirDef returns the
argument against the direct attacker of the topic.

Example 15. (Example 9 continued) Consider AF(ATs).
Then, for F2<¢ = id:

. ACCQrf(p) = <{A4,B2},{A2,A3,Bl}>, for D¢ =
DirDef;

. Accgrf(p) = ({A4,B2},{A42,B1}), for D*c
FinalDef.

In the case of non-acceptance explanations, D was de-
fined as the set of all attacking arguments against which
no defense exists. The next definition considers only those
attackers that A does not (in)directly attack itself.

6

Definition 17. Let AF = (Args, Att) be an AF, A, B € Args
and let £ € Exteem(AF) be an extension for some se-
mantics sem. Then: NoDir(A,€) = {B € NotDef(A,&) |
A does not (in)directly attack B} denotes the set of argu-
ments that attack A for which no defense exists in £ and
which are not attacked by A itself.

Intuitively, the members of NoDir(A, £) attack A but in
order to defend A against the attack another argument than
A itself is necessary.

Example 16. Let AF5s = ({4, B},{(A,B),(B,A)}). Here
Extore(AF5) {{A},{B}}, NotAcc"(A) = {B} for
D NotDef but NotAcc(A) () for D NoDir
since by accepting A, A can indeed be concluded.
Now let AF; as in Figure 2(d). Then Extys(AF5)
{{A,D},{B,C},{B, D}}, NotAcc,((A) = {B,C} for D =
NotDef and NotAccgnc(A) = {C} for D = NoDir, since in
order to defend A, just accepting A is not enough, D is
needed to defend against the attack from C'.

Example 17. (Example 12 continued) Consider AF(AT3)
from Example 3. Then, for [**“ = id and D™ = NoDir:

» NotAccyr(g) = ({As}, {B1});

e NotAccy(ng) = ({Bs}, {A2}).

4.2 Element Explanations

In structured argumentation, one can provide full argu-
ments as the explanation (e.g., F = id), but the structure
of the arguments provides other possibilities as well.

Definition 18. Let AJF(AT) (Args, Att) be an SAF
and S C Args a set of formulas. Then AntTop(S)
{Ant(TopRule(A)) | A € S} denotes the set of antecedents
of the top rule of all arguments in S.

The above definition, combined with the introduced
notation in Definition 5, provides some ideas of how F can
be defined. For example, explanations in terms of premises
explain the conclusion in terms of knowledge base items.
The notion AntTop provides explanations in terms of closely
related information and the rule with which the conclusion
is derived from that information.

Example 18. (Examples 9 and 12 continued) Consider
AF(ATs) from Example 3. Then, for D* = DefBy and
D" = NotDef:

o Acchi(p) = ({t,r}, {t,r}) for F< = Prem;

prf
o Acche(p) = ({g, 7}, {t,~r}) for F> = AntTop;
o NotAccy¢(q) = ({t},{r}) for F** = Prem;

o NotAccye(q) = ({-r,t}, {r}) for F"* = AntTop.

4.3 Comparing the Size of Explanations

When choosing a definition for D and F the size of the
resulting explanation might be one of the considerations.
While for F this depends on the argumentation framework
(e.g., an argument might have many premises or the top
rule might have only one antecedent), for D the size of the
different definitions can be compared. We will apply < to
the size of the sets, i.e., S; < Sy denotes |S1] < [Sa].

(a) AFs3, Example 13.

ORORORON0

(c) AF 4, Example 14.

Fig. 2. Graphical representations of the AFs in Section 4.

Proposition 1. Let AF = (Args, Att) be an AF, let A € Args
and let € € Exteem (AF) be an extension for it. Where <€ {<
,Ch:

1) DirDef(A, &) < DefBy(A, E);
2) FinalDef(A, &) < DefBy(A, E);
3) NoDir(4,€&) < NotDef(A4,).

This follows since DirDef(A,E) and FinalDef(A,E) are
always subsets of DefBy (A4, £) and, similarly, NoDir(A, £) is
always a subset of NotDef(4, £). Indeed, Accp¢(p) is both
<- and C-smaller for D** = DirDef than for D> = DefBy
(see Example 15). Similarly, NotAcch(q), is <- and C-
smaller for D" = NoDir than for D" = NotDef (see

Example 17).

4.4 Applying the Basic Framework

One of the inspirations for this paper is an argumentation-
based system in use by the Dutch National Police, which
assists citizens who might have been the victim of internet
trade fraud (e.g., malicious web shops or traders) in filing a
criminal report [11], [12]. From this report basic observations
such as ‘money was paid by the complainant to the coun-
terparty” or ‘no package was delivered to the complainant’
are collected, and these observations are used as premises in
legal arguments to infer whether or not the report concerns
a possible case of fraud. This conclusion is then provided
to the complainant who filed the report. The system is
based on ASPIC* [9], with axioms (the observations) and
defeasible rules (based on Dutch law concerning fraud), and
all attacks are rebuts. The next example illustrates such an
argumentation framework.

Example 19. Let AS¢ = (L6, R¢,n) be an argumentation sys-
tem, where L contains the propositions p (the complainant
paid), w (the wrong package arrived), fk (the product is fake),
su (the product looks suspicious), re (counterparty states that
the product is real), cd (the complainant delivered), cpd (the
counterparty delivered) and f (it is fraud) and their negations

7
(b) AF(ATg), Example 19.

(d) AF%, Example 16.

and where R is such that the following arguments can be
derived from K¢ = K8 = {p, w, su, re}:

By:p Ci:B1=cd

By :w Ay By = —f Ayt As = —cpd
Bs :su As : By = cpd As : By = —fk
By e Az By = fk Ag : C1, Ay = f

Figure 2(b) shows the corresponding SAF AF(ATg). The
preferred extensions of AF(ATs), only mentioning the A ar-
guments, are {A17 AQ, Ag}, {Al, AQ, A5}, {A17 Ag, A4} and
{43, A4, Ag}. So none of Ay, ..., Ag is skeptically accepted
and all are credulously accepted. Take conclusion f, where
£ = {Ag, A4, A67 Bl7 Bg, Bg, B4, Cl} Then:

. Acc;f(f) = ({As}, {43, A4, Ag}) for F** = id and
D2 € {DefBy, DirDef};

. Acc;f(ﬁ = ({p,su},{p,su}) for F** = Prem and
D2<c € {DefBy, DirDef};

o Accye(f) = ({cd, ~cpd}, {su}) for F> = AntTop and
D2 = FinalDef;

o NotAccye(—f) = ({A1},{4s, As, Ag}) for F™ = id
and D3 = NotDef;

o NotAccye(—f) = ({A1},{As, A4}) for F** = id and
D2 = NoDir.

Looking at the different possibilities for I, we see that
instead of the full arguments we can also return just the
premises (observations) of the supporting arguments, so * f
because p and su’. This is what the police system currently
does. The reasoning behind this is that citizens understand
these more factual observations better than more legal con-
cepts such as delivering under a contract. On the other
hand, for the public prosecutor involved in the processing
of complaints, an explanation in legal terms — * f because cd
and —cpd’ (based on AntTop) — might make more sense.

For D there are also different options. For example,
FinalDef returns arguments that do not need other argu-
ments to defend them. That A3 is such an argument w.r.t.
Ag means that this argument A3 for fk is the ‘main reason’
we accept f, that is, without A3 the conclusion f will never
be accepted. With NoDir, no directly conflicting arguments

are given (e.g., A which directly conflicts with A;). This
avoids explanations such as ‘(the argument for) —f is not
accepted because (there is an argument for) f”.

4.5 Overview

In this section we have considered variations for the func-
tions D and FF. Acceptance explanations can be given in
terms of all the defending arguments (D = DefBy), the
arguments that need no further defense (D = FinalDef), and
arguments that defend against direct conflicts (D = DirDef).
Non-acceptance explanations can be given in terms of all
the attackers for which no defense exists (D = NotDef)
and those arguments that need to be defended by another
argument (D = NoDir). In a structured setting (e.g., in
ASPICT), the form of each of these explanations can be
varied. We discussed sets of arguments (I = id), sets of
premises/observations (F = Prem) and sets of antecedents
of the rule that was last used (F = AntTop).

5 RELATED WORK

Fan and Toni [4] define relevant explanations for a single
topic argument in the form of a new related admissibility
semantics, and show how explanations can be derived from
related admissible sets for abstract argumentation and ABA.
A set of arguments is called related admissible if it is
admissible and each argument in it defends the topic. An
explanation for an argument A (called here RA-explanation to
avoid confusion) is then defined as a related admissible set
of arguments with topic A. In the next proposition we show
how RA-explanations can be expressed in our framework.

Proposition 2. Let AF = (Args, Att) be an AF and let A €
Args. Then {DefBy(A,&) | € € &™) is the set of all RA-
explanations for A.

Proof. Let AF = (Args, Att) be an AF and let A € Args.
Suppose that ¢3m =£ (). Let S € {DefBy(4,€&) | € € ¢3m},
we first show that S is related admissible:

S defends A. This follows immediately by the definition
of S = DefBy(A4, €).

S is admissible. Note that S C £ for some &£ € Qiffm,
therefore S is conflict-free. Suppose that there is some B € S
such that B is not defended against an attack from C €
Args. By definition of DefBy, C' (in)directly attacks A. Since
A, B € &, there is some D € & such that D defends A
and B against the attack from C. By assumption, D ¢ S.
A contradiction with the definition of DefBy. Therefore S
defends all of its arguments and is thus admissible.

Now suppose that there is some S’ which is an RA-
explanation for A but S’ ¢ {DefBy(4,&) | & € ¢¥m}.
By definition of related admissible sets A € S/, §' € ¢3gm
and for each B € S/, B = A or B defends A in Y,
thus B € DefBy(A4,€&), a contradiction. Hence any RA-
explanation for A is in {DefBy(A4, &) | € € e¥m}. O

This shows that any Accsy,-explanation is an RA-
explanation and that therefore our framework is a more
general version of [4].

Garcia et al. [6] study explanations for abstract argu-
mentation and DELP. Explanations for a claim are defined
as triples of dialectical trees that provide a warrant for

8

the claim, dialectical trees that provide a warrant for the
contrary of the claim, and dialectical trees for the claim and
its contrary that provide no warrant. This means, on the
one hand, that explanations might contain many arguments
and, on the other hand, that the receiver of the explanation
is expected to understand argumentation and dialectical
trees. With real-life applications in mind, we believe that
explanations that rely less on the underlying argumentation
framework and that can be adjusted to the application
would be more useful. Therefore, in our framework an
explanation consists of a set of (parts of) arguments, that
could be embedded in a natural language sentence to be
presented to a user, as suggested in Section 4.4.

Explanations for non-accepted arguments in abstract
argumentation are studied in [5], [7], both of which focus on
the structure of the AF and credulous non-acceptance under
admissible semantics. Note that we consider skeptical and
credulous non-acceptance for several Dung-style semantics.
In [5] an explanation consists of either a set of arguments
or a set of attacks, the removal of which would make the
argument admissible. In structured argumentation it is not
always possible to remove exactly one argument (or attack).
In the AF of Figure 1, A3 would become skeptically accept-
able for any semantics, if B; would be removed. However,
when looking at the underlying argumentation theory (re-
call Example 3), when B is removed, the arguments B> and
B3 do no longer exist and thus —¢ is no longer a credulous
conclusion. Therefore, in this paper the basic definition for
non-accepted arguments is defined in terms of the argu-
ments for which no defense exist and no suggestion is made
how to change the argumentation framework in order to
get the considered argument accepted. In [7], explanations
are sub-frameworks, such that the considered argument is
credulously non-accepted in that sub-framework and any
of its super-frameworks. Though a note was added on the
applicability of such explanations in a structured setting,
this is not formally investigated in that paper.

Summarizing, our basic framework is (formally) shown
to be more general, more flexible and specifically adjustable
to the receiver of the explanation. Furthermore, none of
the above-mentioned works consider the structure of the
arguments when providing explanations.

6 CONCLUSIONS AND FUTURE WORK

We have introduced a generic, flexible basic framework for
explanations in structured and abstract argumentation. With
this framework, specialized local explanations for the (non-
)acceptance of arguments can be given, taking into account
credulous and skeptical reasoners.

In future work, we plan to extend our framework with
preferences — although showing preferences is sometimes
considered less effective when providing explanations [3],
the (non-)acceptance of arguments very often depends di-
rectly on them, making a preference the direct reason for
(not) accepting an argument.

Given our basic framework, we will further study how
our explanations formally relate to acceptance strategies
and different semantics, and investigate the necessity and
sufficiency of arguments and how to implement this in
explanations.

Aside from formal investigations, we also want to look
at how findings from the social sciences on what good
explanations are (see e.g., [1], [3]) can be integrated, and
how different types of explanations are evaluated by hu-
man users. Important in this respect is that explanations
are contrastive: while people may ask why A?, they often
mean why A rather than B?, where A is called the fact and
B is called the foil. The goal is then to explain as much
of the differences between fact and foil as possible. One
of the challenges for an Al system is that the foil is not
always explicit. We plan to study contrastive explanations
within our framework by combining acceptance and non-
acceptance and the knowledge of conflicting arguments and
contraries in the case of an implicit foil.

ACKNOWLEDGMENTS

This research has been partly funded by the Dutch Ministry
of Justice and the Dutch National Police.

REFERENCES

[1] W. Samek, T. Wiegand, and K.-R. Miiller, “Explainable artificial
intelligence: Understanding, visualizing and interpreting deep
learning models,” arXiv preprint arXiv:1708.08296, 2017.

[2] C. Lacave and E.]. Diez, “A review of explanation methods
for heuristic expert systems,” The Knowledge Engineering Review,
vol. 19, no. 2, pp. 133146, 2004.

[3] T. Miller, “Explanation in artificial intelligence: Insights from the
social sciences,” Artificial Intelligence, vol. 267, pp. 1 - 38, 2019.

[4] X. Fan and F Toni, “On computing explanations in argumen-
tation,” in Proceedings of the 29th AAAI Conference on Artificial
Intelligence (AAAI'15), B. Bonet and S. Koenig, Eds. AAAI Press,
2015, pp. 1496-1502.

[5] ——, “On explanations for non-acceptable arguments,” in Proceed-
ings of the 3rd International Workshop on Theory and Applications
of Formal Argumentation, (TAFA'15), ser. LNCS 9524, E. Black,
S. Modgil, and N. Oren, Eds. Springer, 2015, pp. 112-127.

[6] A. Garcia, C. Chesfievar, N. Rotstein, and G. Simari, “Formaliz-
ing dialectical explanation support for argument-based reasoning
in knowledge-based systems,” Expert Systems with Applications,
vol. 40, no. 8, pp. 3233 — 3247, 2013.

[7]1 Z. Saribatur,]. Wallner, and S. Woltran, “Explaining non-
acceptability in abstract argumentation,” in Proceedings of the 24th
European Conference on Artificial Intelligence (ECAI'20), ser. Frontiers
in Artificial Intelligence and Applications, vol. 325. IOS Press,
2020, pp. 881-888.

[8] P. M. Dung, “On the acceptability of arguments and its funda-
mental role in nonmonotonic reasoning, logic programming and
n-person games,” Artificial Intelligence, vol. 77, no. 2, pp. 321-357,
1995.

[9] H. Prakken, “An abstract framework for argumentation with
structured arguments,” Argument & Computation, vol. 1, no. 2, pp.
93-124, 2010.

[10] L. Edwards and M. Veale, “Slave to the algorithm: Why a ‘right to
an explanation” is probably not the remedy you are looking for,”
Duke Law & Technology Review, vol. 16, no. 1, pp. 18-84, 2017.

[11] E Bex, B. Testerink, and J. Peters, “Al for online criminal com-
plaints: From natural dialogues to structured scenarios,” in Work-
shop proceedings of Artificial Intelligence for Justice at ECAI 2016, 2016,
pp- 22-29.

[12] D. Odekerken, A. Borg, and F. Bex, “Estimating stability for
efficient argument-based inquiry,” in Proceedings of the S8th
International Conference on Computational Models of Argument
(COMMA'20), 2020, to appear.

9

AnneMarie Borg is a postdoctoral researcher in the Police-lab Al at
Utrecht University. Her research interests include formal argumentation
and logic. She received her PhD from Ruhr University Bochum in 2019.
Contact her at Politielab Al, Departement Informatica, Pincetonplein 5,
3508 TB Utrecht, The Netherlands, a.borg@uu.nl.

Floris Bex is scientific director of the Police-lab Al at Utrecht University,
and professor of Data Science and the judiciary at Tilburg University.
His interests include argumentation and Al & Law. He received his PhD
from the University of Groningen in 2009. Contact him at Politielab
Al, Departement Informatica, Pincetonplein 5, 3508 TB Utrecht, The
Netherlands, f.j.bex@uu.nl.

