[go: up one dir, main page]

edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[1]=>0 [2]=>1 [1,1]=>-1 [3]=>2 [2,1]=>0 [1,1,1]=>-2 [4]=>3 [3,1]=>1 [2,2]=>0 [2,1,1]=>-1 [1,1,1,1]=>-3 [5]=>4 [4,1]=>2 [3,2]=>1 [3,1,1]=>0 [2,2,1]=>-1 [2,1,1,1]=>-2 [1,1,1,1,1]=>-4 [6]=>5 [5,1]=>3 [4,2]=>2 [4,1,1]=>1 [3,3]=>1 [3,2,1]=>0 [3,1,1,1]=>-1 [2,2,2]=>-1 [2,2,1,1]=>-2 [2,1,1,1,1]=>-3 [1,1,1,1,1,1]=>-5 [7]=>6 [6,1]=>4 [5,2]=>3 [5,1,1]=>2 [4,3]=>2 [4,2,1]=>1 [4,1,1,1]=>0 [3,3,1]=>0 [3,2,2]=>0 [3,2,1,1]=>-1 [3,1,1,1,1]=>-2 [2,2,2,1]=>-2 [2,2,1,1,1]=>-3 [2,1,1,1,1,1]=>-4 [1,1,1,1,1,1,1]=>-6 [8]=>7 [7,1]=>5 [6,2]=>4 [6,1,1]=>3 [5,3]=>3 [5,2,1]=>2 [5,1,1,1]=>1 [4,4]=>2 [4,3,1]=>1 [4,2,2]=>1 [4,2,1,1]=>0 [4,1,1,1,1]=>-1 [3,3,2]=>0 [3,3,1,1]=>-1 [3,2,2,1]=>-1 [3,2,1,1,1]=>-2 [3,1,1,1,1,1]=>-3 [2,2,2,2]=>-2 [2,2,2,1,1]=>-3 [2,2,1,1,1,1]=>-4 [2,1,1,1,1,1,1]=>-5 [1,1,1,1,1,1,1,1]=>-7 [9]=>8 [8,1]=>6 [7,2]=>5 [7,1,1]=>4 [6,3]=>4 [6,2,1]=>3 [6,1,1,1]=>2 [5,4]=>3 [5,3,1]=>2 [5,2,2]=>2 [5,2,1,1]=>1 [5,1,1,1,1]=>0 [4,4,1]=>1 [4,3,2]=>1 [4,3,1,1]=>0 [4,2,2,1]=>0 [4,2,1,1,1]=>-1 [4,1,1,1,1,1]=>-2 [3,3,3]=>0 [3,3,2,1]=>-1 [3,3,1,1,1]=>-2 [3,2,2,2]=>-1 [3,2,2,1,1]=>-2 [3,2,1,1,1,1]=>-3 [3,1,1,1,1,1,1]=>-4 [2,2,2,2,1]=>-3 [2,2,2,1,1,1]=>-4 [2,2,1,1,1,1,1]=>-5 [2,1,1,1,1,1,1,1]=>-6 [1,1,1,1,1,1,1,1,1]=>-8 [10]=>9 [9,1]=>7 [8,2]=>6 [8,1,1]=>5 [7,3]=>5 [7,2,1]=>4 [7,1,1,1]=>3 [6,4]=>4 [6,3,1]=>3 [6,2,2]=>3 [6,2,1,1]=>2 [6,1,1,1,1]=>1 [5,5]=>3 [5,4,1]=>2 [5,3,2]=>2 [5,3,1,1]=>1 [5,2,2,1]=>1 [5,2,1,1,1]=>0 [5,1,1,1,1,1]=>-1 [4,4,2]=>1 [4,4,1,1]=>0 [4,3,3]=>1 [4,3,2,1]=>0 [4,3,1,1,1]=>-1 [4,2,2,2]=>0 [4,2,2,1,1]=>-1 [4,2,1,1,1,1]=>-2 [4,1,1,1,1,1,1]=>-3 [3,3,3,1]=>-1 [3,3,2,2]=>-1 [3,3,2,1,1]=>-2 [3,3,1,1,1,1]=>-3 [3,2,2,2,1]=>-2 [3,2,2,1,1,1]=>-3 [3,2,1,1,1,1,1]=>-4 [3,1,1,1,1,1,1,1]=>-5 [2,2,2,2,2]=>-3 [2,2,2,2,1,1]=>-4 [2,2,2,1,1,1,1]=>-5 [2,2,1,1,1,1,1,1]=>-6 [2,1,1,1,1,1,1,1,1]=>-7 [1,1,1,1,1,1,1,1,1,1]=>-9
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The Dyson rank of a partition.
This rank is defined as the largest part minus the number of parts. It was introduced by Dyson [1] in connection to Ramanujan's partition congruences $$p(5n+4) \equiv 0 \pmod 5$$ and $$p(7n+6) \equiv 0 \pmod 7.$$
References
[1] Dyson, F. J. Some guesses in the theory of partitions MathSciNet:3077150
Code
def statistic(L):
    return L[0] - len(L)
Created
Jul 03, 2013 at 14:34 by Olivier Mallet
Updated
May 29, 2015 at 16:57 by Martin Rubey