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Planar L-Shaped Point Set Embeddings of Trees∗
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Abstract

In this paper we consider planar L-shaped embeddings
of trees in point sets, that is, planar drawings where
the vertices are mapped to a subset of the given points
and where every edge consists of two axis-aligned line
segments. We investigate the minimum number m,
such that any n vertex tree with maximum degree 4
admits a planar L-shaped embedding in any point set
of size m.

First we give an upper bound O(nc) with c =
log2 3 ≈ 1.585 for the general case, and thus answer
the question by Di Giacomo et al. [4] whether a sub-
quadratic upper bound exists.

Then we introduce the saturation function for trees
and show that trees with low saturation can be em-
bedded even more efficiently. In particular, we im-
prove the upper bound for caterpillars and extend
the class of trees that require only a linear number
of points. In addition, we present some probabilistic
results for either randomly chosen trees or randomly
chosen point sets.

1 Introduction

A point set embedding of a given graph G in a given
point set P is a drawing where all vertices are drawn
as points of P . In general, the decision problem
whether a graph admits a planar straight line point
set embedding in a given point set is NP-complete [3],
while for trees and outerplanar graphs there are ef-
ficient embedding algorithms; see for example [2].
Kaufmann and Wiese [7] have investigated a relax-
ation of this problem, namely point set embeddings
where edges can be drawn as polylines. They proved
that the decision problem remains NP-complete if at
most one bend per edge is allowed, and that any pla-
nar graph admits a planar point set embedding with
at most 2 bends per edge. Katz et al. [6] introduced
orthogeodesic point set embeddings, i.e., drawings
where edges have minimal L1-length and are drawn
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as unions of axis parallel line segments. They proved
that deciding whether a graph admits a planar ortho-
geodesic point set embedding is NP-complete. Di Gi-
acomo et al. [4] introduced L-shaped point set embed-
dings, i.e., orthogeodesic point set embeddings where
every edge has at most one bend, and investigated
orthogeodesic and L-shaped point set embeddings of
trees; in particular caterpillars, i.e., trees where the
removal of all leaves results in a path.

As in [4, 6], throughout this paper we assume that
every two points in any set of m points have distinct
x- and distinct y-coordinates. Moreover, we will only
consider planar L-shaped embeddings, and thus we
can further assume that for every set P of m points,
the x- and y-coordinates of every point in P are in
{1, . . . ,m}, i.e., that P = {(i, π(i))}mi=1 holds for a
permutation π : {1, . . . ,m} → {1, . . . ,m}.

For a tree T , let f(T ) be the minimum num-
ber m such that T admits a planar L-shaped em-
bedding in any point set of size m, and let further
fd(n) := max f(T ) where the maximum is over all
trees T on n vertices with maximum degree at most
d. Point sets admitting an embedding (of a certain
type) of every n vertex graph (of a certain class) are
referred to as universal point sets, see for example [4].
Obviously, only trees with maximum degree at most
4 admit planar L-shaped embeddings, and moreover,
any n vertex path admits a trivial embedding in every
set of n points. Therefore, only trees with maximum
degree 3 or 4 are of interest. The previously best
known upper bound on f4(n) is quadratic [4]. The
best lower bound so far is fd(n) ≥ n for d = 3, 4.

In Section 2, we prove f4(n) = O(nlog2 3), using a
recursive embedding algorithm, and hence answer the
question stated by Di Giacomo et al. [4] whether a
subquadratic upper bound on f4(n) exists.

In Section 3, we introduce the saturation function σ
for trees and prove that f(T ) ≤ 2σ(T )n holds for any
n vertex tree T . For trees with saturation bounded
by a constant this clearly gives a linear upper bound,
which enlarges the set of graphs that can be embedded
in point sets of linear size. In particular, for cater-
pillars we improve the upper bound f(T ) ≤ 3n− 2
provided in [4] to 2n, which can be further improved
to (4/3 + ε)n+O(1) for ε > 0. We further show that
f(T ) = O(n1.5+ε) holds with probability at least 2ε

1+2ε
if the tree T is chosen uniformly at random among all
rooted n vertex trees with maximum degree at most 4.

In Section 4, we show that a given n-vertex com-
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plete binary tree T can be embedded in a point set
P with probability at least 1/2, if P was chosen
uniformly at random among all point sets of size
O(n log2 n). A generalization to arbitrary trees, in-
cluding an improved bound on the size of the point
sets, can be found in [8]. Even though the question by
Di Giacomo et al. [4], whether a linear upper bound
on f3(n) exists, remains open, these results give more
insight into the problem.

2 A Subquadratic Bound for the General Case

For this section, we define the integer sequence
(un)n∈N0 recursively by

u0 := 0, un+1 := max
a≥b≥c

a+b+c=n

1 + ua + 2ub + 2uc,

where N0 = N ∪ {0} denotes the set of non-negative
integers. We use a recursive approach to find a planar
L-shaped embedding of a given tree T with n vertices
and maximum degree at most 4 in a given point set
P of size un. In the recursive step subtrees of sizes a,
b, and c will be embedded in sub point sets of sizes
ua, ub, and uc, respectively. As un ≤ nlog2 3 holds for
every n, this will give a proof for f4(n) ≤ nlog2 3.

Lemma 1 un ≤ nlog2 3 holds for any n ∈ N0.

Proof. Let g(x) = xlog2 3 on [0,∞). We give a proof
by induction that un ≤ g(n) holds for n ∈ N0.

For the induction base, u0 = 0 and u1 = 1 clearly
fulfill the inequality. For the induction step, let n ≥ 1.
We assume that uk ≤ g(k) holds for any k ≤ n, and
prove that un+1 ≤ g(n+ 1) holds. Let

S = {(x, y, z) ∈ R3 : x ≥ y ≥ z ≥ 0, x+ y + z = n}.

By definition, un+1 = 1 + ua + 2ub + 2uc holds for
some integers a ≥ b ≥ c ≥ 0 with a + b + c = n. By
the induction assumption, we can write

un+1 ≤ 1 + g(a) + 2g(b) + 2g(c),

and since (a, b, c) ∈ S,

un+1 ≤ max
(x,y,z)∈S

1 + g(x) + 2g(y) + 2g(z)︸ ︷︷ ︸
=h(x,y,z)

.

As g is a convex function on [0,∞), h is a convex
function on S. Moreover, S is a convex set since
S is spanned by s1 = (n, 0, 0), s2 = (n2 ,

n
2 , 0), and

s3 = (n3 ,
n
3 ,

n
3 ); a proof can be found in [8, Lemma 10].

According to the Maximum Principle, h attains its
maximum over S in s1, s2, or s3. We now show that
h(si) ≤ g(n+ 1) holds for i = 1, 2, 3:

s1: Due to the Mean Value Theorem it holds
that g(n + 1) − g(n) = g′(ξ) for some ξ ∈
(n, n + 1). Since log2 3 > 1 and 1 ≤ ξ,
we have g′(ξ) = (log2 3)ξlog2 3−1 ≥ 1, and thus
h(s1) = 1 + g(n) ≤ g(n+ 1).
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Figure 1: The recursive embedding: lines partitioning
P are drawn dashed black; the dotted line illustrates
how to choose C ′; lines partitioning A, B, and C in
the next recursion are drawn dashed gray. Only points
used in the first and second recursive step are shown.

s2: h(s2) = 1+3(n/2)log2 3 = 1+nlog2 3 = 1+g(n) ≤
g(n+ 1).

s3: h(s3) = 1 + 5(n/3)log2 3 ≤ 1 + g(n) ≤ g(n + 1)
holds, since 5/3log2 3 < 1.

As a consequence, we have un+1 ≤ g(n+ 1). �

From the definition of un, we derive the following
algorithm:

1. Let T be an n vertex tree with maximum degree
at most 4, rooted at some degree-1-vertex r, and
let P be a set of un points.

2. We place r at the bottommost point q of P .

3. Let v be the child of r, and let TA, TB , TC be the
subtrees of v of sizes a, b, and c respectively, with
a ≥ b ≥ c ≥ 0 and a+ b+ c+ 1 = n− 1.

4. Recall that un ≥ un−1 + 1 holds by definition of
un. We partition P = A ∪ (B1 ∪ C ∪ B2) ∪ {q}
such that A contains the topmost ua points,
q is the bottommost point, |B1| = |B2| = ub,
|C| = 2uc + 1, B1 is on the left of C, and C is
on the left of B2. Figure 1 gives an illustration.

5. At least uc+1 points in C have x-coordinates less
(greater) than q. We denote this set as C ′. We
embed v as the topmost vertex q′ in C ′. As long
as not all subtrees are empty, we continue recur-
sively by embedding TA in A, TB in B1 (resp.,
B2), and TC in C ′\{q′}. The subtrees are em-
bedded with respect to an according rotation as
illustrated in Figure 1.

Together with Lemma 1 we get the following:

Theorem 2 f4(n) ≤ nlog2 3.
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For further improvements on the multiplicative fac-
tor of the nlog2 3 term we refer to [8, Chapter 3], where
f3(n) ≤ 0.5nlog2 3 +O(n) and f4(n) ≤ cnlog2 3 +O(n)
with c ≈ 0.508 have been shown.

3 Bounds for Special Cases

In this section, we introduce the saturation function σ
for trees and show how to handle trees with low sat-
uration in a more efficient way.

Definition 1 (Saturation) Let T = (V,E) be a
tree. For the rooted version T r of T with root r ∈ V ,
we define σr : V → N0 recursively, such that

σr(v) = max{0, σr(u1), σr(u2) + 1, . . . , σr(uk) + 1}

holds for every vertex v with children u1, . . . , uk
(k ≥ 0) and σr(u1) ≥ . . . ≥ σr(uk). We define the
rooted saturation σ(T r) := σr(r) = maxv∈V σr(v).
For the unrooted tree T , we define the saturation
σ(T ) := minr∈V σ(T r).

Theorem 3 f(T ) ≤ 2σ(T )n holds for every tree T
with n vertices and maximum degree at most 4.

Proof. We slightly modify the algorithm proposed in
Section 2. For the recursion, we embed a subtree with
maximum saturation in the top area instead of the
largest subtree. By definition of σ(T ), 2σ(T ) copies of
every point are sufficient for the algorithm to succeed,
and thus, the statement follows. �

We remark that it is straightforward to show that
σ(T ) ≤ log2(n+ 1)−1 holds for every n vertex tree T
(see [8, Chapter 3.3.2]), which directly gives an alter-
native proof for f4(n) = O(n2).

Di Giacomo et al. [4] have already proven that,
for caterpillars with maximum degree at most 4, any
point set of size 3n − 2 is sufficient to find a planar
L-shaped embedding. Since caterpillars have satura-
tion at most 1, 2n is an upper bound. Moreover, this
upper bound can be improved to (4/3 + ε)n + O(1)
for any fixed ε > 0; we refer to [8, Chapter 5.2].

3.1 Probabilistic Analysis

In this subsection, we make use of the register
function ρ (see e.g. Auber et al. [1]) to handle
the saturation function σ: ρ(T ) is defined analo-
gously to the saturation σ(T ), where the expres-
sion max{0, σr(u1), σr(u2)+1, σr(u3)+1, . . . , σr(uk)+
1} is changed to max{0, σr(u1), σr(u2) + 1, σr(u3) +
2, . . . , σr(uk)+k−1}. By definition, the register func-
tion gives an upper bound on the saturation function.

For n ∈ N let Tn denote the set of rooted trees
with n vertices and maximum degree at most 4. If we

suppose that every rooted tree in Tn is equally likely,
then Tn can be interpreted as a random variable.

Drmota and Prodinger [5] have shown that the
expected value of the random variable ρ(Tn) ful-
fills E(ρ(Tn)) = log4 n+O(1). It is straightforward
to deduce that a constant c ∈ R exists such that
E(σ(Tn)) ≤ log4 n+ c holds for every n.

Theorem 4 Let ε > 0. Then the probability
P[f(Tn) = O(n1.5+ε)] is at least p = 2ε

1+2ε > 0.

Proof. Let sn = E(σ(Tn)). According to Markov’s
inequality we have P[σ(Tn) ≥ sn(1 + 2ε)] ≤ 1

1+2ε , or
equivalently, P[σ(Tn) ≤ sn(1 + 2ε)] ≥ p.

Since sn ≤ log4 +c1 holds for a constant c1,
2σ(Tn) ≤ 2sn(1+2ε) ≤ 2(log4 n+c1)(1+2ε) = c2n

0.5+ε

holds with probability at least p, where c2 = 2c1(1+2ε).
The statement follows from Theorem 3. �

4 Probabilistic Approach for Trees

For a tree T let f1/2(T ) be the minimum number m
such that T admits a planar L-shaped embedding in
at least half of all point sets of size m. Furthermore,

let f
1/2
d (n) := max f1/2(T ) where the maximum is

over all trees T on n vertices with maximum degree
at most d.

4.1 Complete k-Ary Trees

We prove that f1/2(T ) ≤ 2(n+ 1) log2(n+ 1) holds if
T is a complete binary tree on n vertices. To do so,
we consider the following algorithm:

1. Let T be a complete binary tree on n ver-
tices, rooted at r, and let P be a set of
2(n+ 1) log2

2(n+ 1) points.

2. Since T is complete, ñ := n + 1 = 2h holds with
h := log2 ñ ∈ N. We define α := 2h and write
|P | = αñ log2 ñ.

3. We partition P = (A ∪ B1 ∪ B2) ∪ C such that
|A| = |C| = α( ñ2 ), |B1| = |B2| = α( ñ2 ) log2( ñ2 ),
(A ∪B1 ∪B2) is above C, A is to the left of B1,
and B1 is to the left of B2. Furthermore, let
B = B1 ∪B2. Figure 2 gives an illustration.

4. If there exists a candidate point q, i.e., a point
in C which is to the left of B, we place r in q
and continue recursively by embedding the two
subtrees in B1 and B2, respectively. Otherwise,
no solution is found and the algorithm stops.

If there exists a candidate point in every recursion
(step 4), then the algorithm clearly admits a planar L-
shaped embedding; one only needs to draw the edges
as depicted in Figure 2 after all points have been
placed.



32nd European Workshop on Computational Geometry, 2016

A B1

C

B2

r

Figure 2: Embedding of a complete binary tree: black
dashed lines illustrate the partition of P and gray
dashed lines illustrate the partition of B1 and B2 in
the next recursion, respectively.

It remains to show that all desired candidate points
exist with probability at least 1/2.

The probability that a candidate point exists is ex-

actly p := 1−
∏|C|
i=1

(
1− |A|+1

|A|+|B|+i

)
, because assum-

ing that neither of the points c1, . . . , ci−1 is placed on
the left of B, there are |A|+ |B|+ i positions in which
ci can be placed, and |A|+ 1 of which are to the left
of B. Since i ≤ |C| and by the partition of P , we have

p ≥ 1−
(

1− |A|
|P |

)|C|
= 1−

(
1− 1

2 log2 ñ

)α ñ
2

=: p̃,

which we can also write as

p̃ = 1−

((
1− 1

2 log2 ñ

)2 log2 ñ
)α ñ

4 log2 ñ

.

Recall that the function g(x) = (1 − 1
x )x on [2,∞)

fulfills 1
4 ≤ g(x) ≤ 1

e with e being Euler’s number,
and that the function h(x) = x

ln x on (1,∞) has its
minimum at x = e with h(e) = e. As a consequence

ñ
4 log2 ñ

≥ e ln 2
4 ≥ ln 2

2 holds, and thus we can bound

p ≥ p̃ ≥ 1− (1/e)
(αln 2)/2

= 1− (1/2)
α/2

.
Obviously, this lower bound on p does not depend

on the recursion level but only on α, which was chosen
depending only on the initial number of points.

Since T is a complete binary tree on n = ñ− 1
vertices, T has ñ

2 − 1 inner vertices. Furthermore,

since (1/2)α/2 = 1/ñ holds by definition of α, the
probability for the algorithm to succeed is at least

(1− 1/ñ)
ñ/2−1 ≥ (1− 1/ñ)

ñ/2 ≥ (1/4)
1/2

= 1/2.
This gives a proof of the following:

Theorem 5 f1/2(T ) ≤ 2(n + 1) log2(n + 1) holds if
T is a complete binary tree on n vertices.

In [8, Chapter 4.1], this upper bound is improved
to O(n log n(log log n)2), and in [8, Chapter 4.2]
O(n log n(log log n)2) is shown to be an upper bound
for complete ternary trees as well.

4.2 The General Case

Unfortunately, the algorithm stated in Section 4.1
can not be applied for arbitrary trees since sub-
trees might differ heavily in size. In [8, Chap-
ter 4.3] a slightly modified algorithm is proposed,
which makes use of a tree’s Jordan center to han-
dle this problem. Using that algorithm, they show

f
1/2
3 (n) = O(n log n(log log n)2).
Even though the question by Di Giacomo et al. [4],

whether a linear upper bound on f3(n) exists, remains
open, we gain some more insight by this result: as
any tree T admits an embedding in P with probabil-
ity at least 1/2 if P was chosen uniformly at random
among all point sets of sizem = O(n log n(log log n)2),
T admits an embedding in Q with probability at least
1−(1/2)k if Q was chosen uniformly at random among
all point sets of size mk. Thus, we can get arbitrary
close to probability 1. In particular, to get probability
at least 1− ε we can choose k = dlog2(1/ε)e.

Trees with maximum degree 4 are a bit tougher to
handle; while f1/2(T ) has a quasilinear upper bound
when T is a complete ternary tree, the best bound

so far for the general case is f
1/2
4 (n) = O(nc+ε) with

c ≈ 1.332; we refer to [8, Chapter 4.3.3]. The question
remains open whether a quasilinear upper bound on

f
1/2
4 (n) exists.

References

[1] D. Auber, J.-P. Domenger, M. Delest, P. Duchon,
and J.-M. Fédou. New strahler numbers for rooted
plane trees. In Mathematics and Computer Science
III, pages 203–215. Birkhäuser Basel, 2004.
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