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Posterior Crarar—Rao Bounds for
Discrete-Time Nonlinear Filtering
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Abstract—A mean-square error lower bound for the discrete- analogous to the CRB for random parameters was derived in
time nonlinear filtering problem is derived based on the Van [11]; this bound is usually referred to as the Van Trees version

Trees (posterior) version of the Craneér—-Rao inequality. This of the CRB, or posterior CRB (PCRB) [16]. Some properties
lower bound is applicable to multidimensional nonlinear, possibly ' . . . )

non-Gaussian, dynamical systems and is more general than theOf the PCRB are summarized ”_] Section ”'_
previous bounds in the literature. The case of singular conditional ~ Several lower bounds for nonlinear dynamical systems have

distribution of the one-step-ahead state vector given the present appeared in the literature; see the overview in [6]. However,
state is considered. The bound is evaluated for three important the continuous-time case has received heavy emphasis but not
examples: the recursive estimation of slowly varying parameters . discrete-time case, which is of greater practical impor-
of an autoregressive process, tracking a slowly varying frequency . .
of a single cisoid in noise, and tracking parameters of a sinusoidal tance,. Bobrovsky and Zakai _[2] were the first to apply the
frequency with sinusoidal phase modulation. Cramér—Rao theory to scalar discrete-time systems. The bound
was later improved and generalized to the multidimensional
case by Galdos [3]. Both of these bounds were obtained by
comparing the information matrix of the original system with
an information matrix of a suitable Gaussian system. The
bound in [3] is already quite general, but it still has some
ISCRETE-TIME nonlinear filtering or the associatedimitations (see the discussion in [6]), i.e., the assumption that
problem of adaptive system identification arise in varioube dimension of the system and measurements are identi-
applications such as adaptive control, analysis, and predicticad. Recently, the approach by Galdos has been generalized
of nonstationary time series. As is well known, the optimdbr nonlinear pth-order autoregressive processes driven by
estimator for this problem cannot be built in general, and aidditive Gaussian noise with state-dependent gain [4].
is necessary to turn to one of the large number of existingln Section Il of this paper, a novel and simple derivation of
suboptimal filtering techniques [1]. Assessing the achievalilee posterior CRB for the discrete-time multidimensional non-
performance may be difficult, and we have to resort to simullirear filtering problem that avoids any Gaussian assumptions
tions and comparing proximity to lower bounds corresponding presented. The derivation is obtained from first principles
to optimum performance. Lower bounds give an indication a@ind differs from other approaches that instead consider com-
performance limitations, and consequently, they can also parison of the original nonlinear system with an appropriate
used to determine whether imposed performance requiremditear Gaussian system. We present an example of a linear
are realistic or not. Gaussian system (which is different from those in [2] and
In time-invariant statistical models, a commonly used low¢B8]) that has the same associated information matrix as the
bound is the Craer—Rao bound (CRB), given by the inverseriginal system. In Section IV, the lower bound is extended
of the Fisher information matrix. In the time-varying systemfor a frequently occurring case of nonlinear filtering, where
context we deal with here, the estimated parameter vector hias conditional distribution of the state one step ahead, given
to be considered random since it corresponds to an underlythe current state, is singular. Note that a special case of a
nonlinear, randomly driven model. A lower bound that isimilar extension was proposed in [3]. Section V illustrates an
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the joint probability density of the pait, ), and letg(x) be holds, wherecy denotes a constant independent&af Then,
a function ofz, which is an estimate of. The PCRB on the the information matrix in (11) reads
timati has the fi
estimation error has the form J = (-1}, (13)
A T -1
P=E -0 -0 >J 1
{lg(@) = llglw) - 617} 2 @ 1t g is estimated by(z) = E(6]z), then (1) is satisfied with

where J is the » x » (Fisher) information matrix with the equality. This is exactly the case for the Kalman filter when

elements performing the task of linear filtering.
91 Assume now that the parametgiis decomposed into two
0° log p»4(X, 0) . T AT1T i i T i
Jiy =E|— : i,j=1,---,r (2) parts ast = [0, 63]", and the information matrix/ is
99; 00, correspondingly decomposed into blocks
provided that the derivatives and expectations in (1) and (2) Joe  Jus
exist. The superscriptI™ in (1) denotes the transpose of a J= { Jia J@'@}' (14)

matrix, and the inequality in (1) means that the difference
P — J~!is a positive semidefinite matrix. The proof given idt can easily be shown that the covariance of estimatioé;of

[10] or [11] holds under the additional condition of is lower bounded by the right-lower block of !, i.e.,
i B(O)ps(0) =0, lim B(O)pe(©) =0 Py = E{lgs(x) — 05]lgs(x) — 051"}
' i _ 1,7 3) > [Jas — Jpadmadap] ™" (15)

4 assuming that/;; exists. In the following, the matri¥ss —
JoadztJag Will be called the information submatrixfor

B(®) = / ) [9(X) — ©] puye(X|0©) dX. (4) Parameter;.

— o0

where B(@) is the estimation bias conditioned By= ©, an

I1l. A L OWER BOUND FOR THE

Let V andé be operators of the first and second-order partial
NONLINEAR FILTERING PROBLEM

derivatives, respectively
Consider the nonlinear filtering problem

Ve = 9 o 1" 5
°=|356- """ 70 (5) Tt = Ful@ns wn) (16)
AQ = VeV, ©) 2 = b, ) an
Using this notation, (2) can be written as where _
Tn system state at time;
J = E[-AG log ps,6(X, O)]. M) Az} measurement process;

{w,} and{v,} independent white processes (i.e., se-
quences of mutually independent random
variables or vectors);

J=Jp+Jp (8) fnandh, (in general) nonlinear functions.

The functions f,, and h,, may depend on time:. Further
where Jp represents the information obtained from the datassume that the initial staig has a known probability density
and Jp represents tha priori information function p(xo). Let the dimension of the statds;,,} ber.

Equations (16) and (17) together with(xo) determine
_ R s
Jp =E{-A¢ log poe(X[O)} (1 x7) ) unambiguously the joint probability distribution af, =
Jp =E{-AY log ps(©)} (rxr) (10) (zo, -+, z,) @nd Z,, = (29, - -+, 2,) for an arbitraryn [2]

Sincep,, 9(X, ©) = p,1e(X|O) - ps(0), it can easily be seen
that J can be decomposed into two additive parts:

provided that the expectations in (9) and (10) exist. Note that _ & &
71 is an expectation of the standard Fisher information matrix 2(Xn> Zn) = p(zo) H p(ziles) 1] plorlan). (18)
over thea priori distribution of ©. =1 k=1

An alternative expression for the information matrix can by (18) as well as in the sequeb(-)’s refer to (uncondi-
derived from the equality,. ¢(X, ©) = pg.(©]|X) - p(X). tional and conditional) probability densities of the variables
Sincep,(X) is an integral ofp, 4(X, ©) over©, it does not depicted in the argument gfs. The conditional probability
depend any longer o®; therefore, we have densitiesp(xy|zr—1) andp(z|xy) follow from (16) and (17),

B o1 respectively, under suitable hypotheses.
J = E{-A¢ log p|.(O1X)}. 1D et J(X,) be the (nr x nr) information matrix of X,

For example, if the posterior distribution éfconditioned on d€rived from the above joint distribution. The problem that

the data vector: is Gaussian with meafi, and a (regular) we wish to solve in this section is the computation of the
covariance matrixs ‘ information submatrix for estimating,,, which is denoted,,,
xr

B B which is given as the inverse of tliex ) right-lower block of
—log pe+(O|X) = co+ 3(0 = 6,)TE;1(© - 6,) (12) [J(X,)]~ . The matrixJ; ! will provide a lower bound on the
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mean square error of estimating. In the sequelp(X,,, Z,) Using the definition ofJ, in (20), we obtain the desired

is denoted byp,, for brevity. formula (21). [ |
DecomposeX,, as X,, = [X!_,, zI]T and J(X,,) corre-  Note that the recursion in (21) involves computations with
spondingly as matrices of dimensiofr x ). The initial information subma-
A B trix Jo can be calculated from theepriori probability function
o [E-A% T log pa} E{-A%_ log pa} Jo=E{=As; log plao)). (9)

(19) At ks foll luci ial
E{—Ai{?_l IOg pn} E{—A“"” IOg pn} ew remarks follow to elucidate Special cases.

Ty

provided that the derivatives and the expectations exist. Cofn-Additive Gaussian Noise

parison of (16) and (20) gives Assume that the nonlinear filtering problem in (16) and (17)
_ has the form
J.=C,—BYA'B,. 20
Thus, computation of thér x r) matrix .J, involves either Zn =hp(T0) + vn (31)

calculation of the inverse dfn — 1)r x (n — 1)r] matrix A,
or inverse of the fulllnr x nr) matrix J(X,,).

The following proposition gives a recipe for computitig
recursively without manipulating large matrices suchasor
J(X,). In particular, an efficient method for computing the —log p(@n+1len)
limit of J, for n — oo follows from the recursion. = c1 + 2[Bng1 — Fo(@n)]T Qn engs — Falzn)] (32)
~ Proposition 1: The sequer_lce[Jn} of posterior informa- —log p(Zns1|Tnit)
tion submatrices for estimating state vectdrs,} obeys the B 1 T
recursion = o+ 3l ~ hnga ()]

and that the noise$w, } and {v,} are Gaussian with zero
mean and invertible covariance matria@s and R,,, respec-
tively. From these assumptions, it follows that

Ry b [z — B (zng)] (33)
— 22 21 11y—1 12
Jnr = D37 = Do (Jn + D)™ Dy (21) where¢; andc, are constants, and
where Dyt =E{[Va, fa (@)]Q7 Ve, f7 (@)]F} (34)
- D2 =_E{V. fHz)}Q;} 35
DI = E{~A%" log p(znsfes)} (rx1) @2 e Q_f+ E{fv(x e - (35)
= Trna1!itn Ln
Dy? =E{-A5+ log p(wni1|en)} (rxr) (23) " ;2_1 - ’;T (+1 ;]_;} (36)
’ Tpi1!iin Tn .
D =E{-AZ,, log plansilen)} = [DF]7 (24) ot Vo Bt e

D2 = E{— AT Tog plans|on)} The well-known solution of the problem in the linear case

n= zni1 108 Pint]dn [with linear functions f, and g, in (30) and (31)] is the

+E{-AZr1! log p(zntilons)t  (rx 7). (25) Kalman filter. This is an algorithm that computes parameters
of the conditional distribution of the state, given the data
Z,. The distribution is Gaussian, and its mean and covariance
matrix are usually denotedl,,, andX,,,,, respectively. It can
Prst = p(Xnst, Znsgt) easily be shown that the .recurS|c_)r11 (21) foris |dent|ca'l to
= p(Xn, Zn) - plnss| X Z0) those.that are usually derived fmnln from the Kalman filter
P(Xns Zn) - p(@nt1| Xy Zn equations [1].
P(Znt1|Tnt1, Xn, Zn) In order to compare the result (21) with the PCRB compu-
=P P(@pg1|n) - P(Zng1|Tag1)- (26) tations in [2] and [3], we find matriceg,,, H,, Q,, and R,

such that the linear system
Using (26) and the notations in (19) and (22)—(25), the

posterior information matrix foX,, ;1 can be written in block Tn+1 :1?@" + wn (37)
form as Zp = HpZp + 0p (38)

A, B, 0
BT Cn + Dll D12
On D21 " DTQLQ

Proof: The joint probability function ofX,,; and 7,
can be written as

A

has the same information matrix as the original nonlinear
(27) system;in (37) and (38)s0,, } and{#, } are independent white
Gaussian noises with zero means and covariance matpiges
_ _ ~andR,, respectively. The matricek,, H,, Q,,, andR, can
where 0’s stand for zero blocks of appropriate dimensions.pe determined by comparing the matrid@st, D12, and D22

The information submatrix,,,; can be found as an inverseys e original system, which are obtained from (34)—(37) to

J(Xny1) =

of the right-lower(r x r) submatrix of[./(X,+1)]™* those of the linear system in (37) and (38), yielding
J _D22 _ [0 D21] An Bn -t 0 Drlll :Fgérjlﬁn (39)
R "B G+ D] D Dy = - FIQ;! (40)

=D2 - D2 [C, + D}t = BYA'B, "' D2, (28) D2 =Q; '+ HE R} Hoqr. (41)
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One possible solution of the above system of equations is additive Gaussian noise considered in the previous section,
o= (DL2)~LpLL (42) this happens when the matri@, is singular. In order to
" " " deal with these cases, consider the following modification

A 2l 11\—1 12
Qn = Do (D50) " Dy (43) of the original problem.
Rn =R, (44)  Assume that the state vectar, can be written in block
= RYZDE, — (DI2,)7*DIL,(DI2) /2 (45) form as
WhereAl/ 2 denotes the square root of a positive semidefinite _ 3753) (50)
matrix A, assuming that the requisite inverses in (42)—(45) t 2
exist. Note that the above linear filter is different from those '
proposed in [2] and [3]. wherexﬁf) has the length;, j = 1, 2, with 7 +72 = 7. The
filtering is described by the set of equations
B. A Generalization
_ o | | o = fal@n, wn) (51)
Consider the generalization of the nonlinear system in (16)
(2) (1) 52
and (17) as Trg1 = In(Tns Tpi) (52)
Zn =hp(@n, vp) (53)
Tnt1 :fn(xna wn) (46)

47) where f,, g,, and h,, are (in general) nonlinear functions.

Again, the task is to calculate the information submatfjx
where m is an integer. It can easily be seen that for th#®r z». The partitioning restriction (51)—(53) of the problem
generalized system, the whole derivation of (21) can bga?somewg?t general and includes, among others, the case
repeated en masse, with only two small differences: First,(; = z» , which means that the second part of the state
in the initialization, it has to be assumed that,, ---, z_,, Vector is constant in time, and it can be considered for use
are known constants and second thét, 11|z, 41, X, Z,) When there are unknown constant parameters in the model.
in (26) cannot be reduced tg(z,41|7,+1) but merely to Note that in [3], the case was considered whgnis only a

Zn :hn(xna Uny Zn—1, """, Zn—rn)

P(Znt1|Tnt1s Zns * 05 Zn—m—+1). The latter term will also function of a:ﬁf).

replace the former one in (25). In this section, we present first an explicit solution—a
recursive equation for,,—for a special case of the system

C. Time-Invariant Solutions (51)—(53) with a linear functiory, and then a conceptual

solution for general,,.

Case 1—Lineap,:

Proposition 2: Consider the linear filtering in (51)—(53),
and assume that the functiap, is linear so that (52) can
be written as

22, =W+ GP2@ +a®3Y,. (54)

Now, assume that the functiorfs (-, -) andh,,(-) are time
invariant (independent of)). It can easily be seen that the
matricesD}!, - .-, D22 also do not depend on. It can be
shown that forn — oo, the matrix.J,, converges to a matrix
Joo, Which is given as a solution to the equation

Joo = D77 — DiN(Joo + DM D2 (48)

In addition, assume tha®'?) is invertible for alln. Put
Note that (48) is a discrete-time algebraic Riccati equation. A W -

more common form of the Riccati equation is obtained if the ]
recursion (21) is equivalently written as Xr(Ll) =1 : |. (55)
Jnp1 = D2(DIWY=1 ) (DI=1pl2 _ p2i(plly-1 s
11y—1 11\—1 12
'J"(i" + %f ) lljn(anm) D Let J(X", 2?) be an information matrix derived from the
+ D" =Dy (D, )" Dy (49) joint probability densityp(XS", 22, Z,), and let S, and
i i €]
which can be easily proved by simple algebraic manipulationéf be the information submatrices ffr, _,, x"] and forzy,
Then, putJoii = Jy, = Joo. respectively. ThensS,, and.J,, obey the recursions
Two popular methods for solving the Riccati equation are Sn+1 Sn+1 Sn+1
derived in [5] and [8], respectively; for a more comprehenswg 1 A 52 Sn+l Sn-|—l
survey, see [7]. In addition, note that there is an available”
software for solving the equation in Matlab, namely, a function Sn+1 S{lfrl 5;7{+1 L L L3
DARESOLYV or an older function DLQR. Joo+H, R+ H Hy
:M—T (J12 + H12)T J22 + H22 H23 M—l
IV. A FREQUENT SINGULAR CASE (H3)T (H2T  HP
Computation of the information submatrik,, as described 29 93 (56)
in the previous section, fails if the conditional distribution ;- [Sn+l Sn+1} |:Sn+l:|[ 1 -1g12 18
of z,41, given z,, is singular, and therefore, the probability s32,88, S3L nt et +

density p(z,y1|r,) is not defined. In the case of the (57)
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where or diverges to infinity when at least one of the eigenvalues of
JiL gLz (HPAHT(JL + HY)~! has magnitude larger or equal to one.
n = Lm J22:| (rxr) (58) The matrices/?? in (69) grow without any bound in general.
T 0 If this happens, then the limit PCRB for estimating” for
M, =] 0 0 I [(r+71) X (r +71)] n — oo is the same as i were known. Indeeql, these rlesults
b G o® can be expecteg begayse if thg da_ta bear any mformatlon_ about
(59) the parameterﬁl ), this information is accumulated as the time
n goes to infinity.
Hyt =E{-A", (1) ) log Pn} (r1 x71) (60)  Another example of application of Proposition 2 is given in
HY? ZE{—A% (1> log ) (r1 % 72) (61) Example 2 in the next section.

Case 2—Nonlineay,,: The main idea for handling the sin-
n I f th li filter in (51)—(53) is to “ larize”
HP® —E{-A Jl log 7, } (r1 % 11) (62) gu ar case of the nonlinear filter in (51)—(53) is to regu arize
the filter, e.g., to replace (52) by a perturbed equation

HZ2 =E{-A"} (2) > log 7} (12 X 72) (63) e " "
" 20, Tnir = (T, Tpiy) + wy (72)
H;® =E{-A ) log p,, } (ra x 71) (64)
H3 —E[_A =, o ) ) 65 Where{w,(f)} is a sequence of pairwise independéatussian
ey g Pn} (rexr1) (65)  random vectors with zero mean and covariance matfix
and independent of{w, } and {v,}, with £ close to 0. For the

modified system, it is possible to apply the result (21) from
B = plat) 1 |2n] - Plzngr|tn, ] (66) section IIl.

provided that the above derivatives and expectations exist. -6t P=()’s and E denote probability densities and the
(59), theI's and O’s stand for identity and zero matrices ofXpectation operator induced by the perturbed system (51),
appropriate dimensions. (53), and (72). Note that

Proof. See the Appendix.

Note that the conditional probability function
Plzn+1]Tn, a:SJ)rl] in (66) is obtained fromp(z,t1|n+1) by
substituting forz), from (54).

A stationary solution fot/,, would be obtained by inserting
Jo for J,, andJ,, ;. Note that the resulting equation no longer

Pe(@nprlen) = pla' |20) - pe(@l |2, 25) (73)

herep(z n+1|a:n) is determined by (51), and

has the form of a Riccati equation, unlike (48) in the previous —log p.(x n+1|az:n7 a:SJ)rl)
section. _ (2) 1) 112 74
For example, consider the above-mentioned case wffén =G % lents = glzn, 2]l (74)

is a constant unknown parameter. Comparing the equation

27}y = 2 with (54), we haveG{Y = 0, G = I, and wherec; is a constant. The matricd3t!,,
GY = 0, where 0's and’s stand again for zero and identityregularized system can be written as
matrices of appropriate dimensions. Utilizing the special form

of the matrixM,, in (59), from (56) and (57), the recursions

T = HE — (I B A (67)
Jn-l—l (Jn-l-l)

=(H)T = (H2) [+ 72+ H?) (68)

-+, D2, for the

DY, =D¥,+-KJ, i j=12  (75)
s ’ I3 ’

where D“ is given as an Eexpectation of the second-

n

order derivative of—log p(z n+1|a:n) w.rt. z, andz,4;, as

TR =P Y = (2 )T in (22)—(25), D%, contains, in addition, an Eexpectation
IR+ HETYIRE 4+ HE. (69) of the second-order derivative of log p(z,41|Zni1) W.LL
can be derived. Note that in the stationary case, whefg L’ anch b J =1, 2(26)“6 gven as(l?nﬁfxpectatlon of
H1l ..., H33donotdepend on, the matrix sequencg/it} the same derivatives dff|z,.} , —g(zn, z,,{,)||>. In particular
converges fom — oo to the solution of the Riccati-type of
equation K, =EAVe, 0" [Ve, 9T} (76)
JE=HP - (IS +HTHS. (710) K, = [Ea{[angT][VlegT]T} E{V..9"}] (D)
The sequencg.J}?} either converges to a constant matrix - EE{[Vm&)lgT][Vm&)lgT]T} _EE{wafllgT}
JE = U+ HELE + BT L BT, T 1

HP)T = (HHT (T + H )T G (71) (78)
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where the arguments ¢f are omitted for brevity. The infor-
mation submatrix for the original system will be obtained from
the result (21) in the limit — 0

_ 1 — 1
Jpg1 = lim [D?Qn + K22 — <D§1n + - K31n>
e—0 : e @ ’ e ©
7ll 1 11 - ml2 1 12
: JN+D5,n+gKa,n Da,n+gKa,n . ~107
(79)

An example of application of (79) is given in Example 3 in
the following section.

1 L 1 1. i i 1
V. EXAMPLES 105 0.2 04 06 08 1
Example 1—AR Process with Time-Varying Parameters: X

Consider a scalar-valued random procéss} and introduce Fig. 1. Fisher information for slowly varying parameter of an AR(1) process
the notation as a function of this parameter f6) = 10~2, 10=3: and10~* (from the

bottom up), respectively.
Zn = [va Bp—1y """ Zn—r—l—l]T- (80)
that z,, fluctuates around a mean val@efor a considerably
long period of time. Then, the covariance function {af, }
Zngl = $Z+1én + v, (81) is approximately equal to the covariance function of an AR

process with parametet. The matrix Z, in (85) can be
wherex, 1 is a vector of instantaneous autoregressive cogkplaced by a covariance matri£ of the above process,
ficients at time instant, and{v, } is a Gaussian white noisewhich is a function ofz. Note thatZ is independent of the
with zero mean and variane€. Further, assume that, has variance of innovations2. Some methods for calculating the
Gaussian random increments covariance matrix of an AR process are presented, e.g., in
[14]. For example, for the first-order autoregressive process

Let z, obey the recursion

Tntl = Tn o+ Wn (82) [abbreviated as AR(1) in the sequel]
where {w,} is white, independent ofv,}, zero mean, and . 1
has covariance matrice8,,}. Z = 3 (87)

The system (81) and (82) has the form of (46) and (47). The 1-%

information submatrix/,, can be obtained by a straightforwarcholds. Herez is restricted to the interval—1, 1) to assure
application of (21) and (34)—(37). The result is stability of the model. If, in addition, the matrix sequence
{Q.} is constant,,, = @, and it is possible to calculate

11 pl2 _ -1
DSQ B 11)" = @n (83)  the limit information matrix (which is a scalar, in the case of
D=0y +2n (84) » = 1) from the equation
where Joo = Q_l +7 _ Q_I[Joo + Q_l]_lQ_l- (88)
_ =2 T
Zn= o " Blnzn} (85) In particular, for the AR(1) process, we obtain the solution
so that .
Joo = —— |1 +4/1+4Q71(1 - 3%)|. 89
Tot1 = Q7 4+ Zn = Q' [T+ Q7117'QRY. (86) 21— 27) [ Vi+ioa- (89)

Note that the optimum estimate af, from the dataZ, in Numerical values of (89) fo€) = 102, 103, and10—* are

the mean-of-square sense is the Kalman filter; the conditioqdbtted in Fig. 1. It is shown that the information about the

distribution of z,, given Z,, is Gaussian. Let,, andX,,, parameter increases rapidly if the pole approaches unity. For

denote parameters of this distribution, namely, the mean ahé pole well separated frontl, i.e., z ~ 0, it holds that

the covariance matrix. As mentioned in the introduction, thé, ~ Q—1/2.

PCRB is tight in this case, and, is equal to the expected The matrix.J,, in (88) [or the corresponding scalar in (89)

value ofE;ﬁl. Note thatE;ﬁl in the Kalman filter obeys the in the special case] describes the information content that

same recursion ag,, with the exception thatZ,, in (85) is the AR process bears about the fluctuating AR parameter.

replaced byo—2 z,z1" without the expectation operator. This information content depends on the actual value of the
In order to achieve practical conclusions from the abowstimated parameter. If it happens that, is small and,

theory, assume that drift of the autoregressive parameterc@sequently, that the limit PCRBL! is large, it indicates

slow, i.e., that the trace of}, is much lower than 1, and that the assumed data model might not be appropriate.
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Example 2—Sinusoidal Frequency Estimatidn: this sub- 2 _ o3 2m3 s 2mg 1
: oI . HP =HP =20 HE = S04 50 (@)
section, the developed methodology is applied to computation o? o2

of the posterior CRB for tracking parameters of a single no'?Xsertmg the above relations into (56) and (57) and we get,

cisoid with slowly varying frequency. This computation Siter some simplifications, (98), shown at the bottom of the
easier than those recently presented in [16]. Second, as avj% e where

cial case of a single time-invariant frequency, the well known
Craner—Rao bound by Rife and Boorstyn [9] is derived. dy, = det J, = Jo¥J2P — [J<9]2 (99)
The signal is assumed to have the form
4 In (98) and (99),J¥«, J¥¥, and J¢¥ denote elements of the
Zn = Mo €9 + vy, n=0,1,2,--- (90)  matrix J,,.
where The stationary solution of (_98) can be found by putting
Jn = Jny1 = Jso. After excluding the termg/s¥ and J£¥,
a fourth-order polynomial equation fof* is obtained. This
equation can be shown to have only one positive real-valued

mg Magnitude;
@, instantaneous phase of cisoid at time instant

{vn} noise. root. The final result is
The instantaneous frequency (denoteg) is defined as the ' B2
one-step increment op,,. Thus, the signal with randomly h -
varying frequency can be described by the state vector I = 1 4+h (100)
Tn = (wns on)T 91) A I i
| Lo | ith @rhp
and time update of;,, is given by the pair of the equations where
ek = j:e s 293; h=w+ v + 4w (101)
Pnt+l —=Pn T Wntl = Pn T Wn T Cn. w=T 1 m (102)
It is assumed thafv, } and{e, } are independent sequences ) mo
of independent random variables with zero mean values and =7 2 (103)

variancesr? and~?, respectivelyfe, } is Gaussian, anfl,, } limi he | ; . o th
is complex circular Gaussian (i.e., the real and imaginary pafge imit PCRB onlt e mstzr;t_aInQOUS requency Is equal to the
of {v,} are independent normally distributed with zero mean$ t-upper corner element of.c", 1.e.,

and equal variances?/2). Next, assume that the probability . ow we\2 / Topl—1 4
distribution of the initial instantaneous phase and frequency LPCRB(&n) = [J55* = (ST = h
is known. +2 5

Obviously, in the standard formulation, the covariance ma- =0 (—w +Vw:+ 4w) (104)

trix of the system noisav, = (e,, ¢,) is not invertible,

o . L which coincides with the result derived in [16].
and the conditional probability(x,,+1|z,) is singular. The . . . .
FlnaIIy, let us consider estimation of stationary frequency,
calculation of the information submatrix as in Section Il fails,

but it is possible to apply the approach developed in Section 'Iﬁ" puty? = 0. Then, (98) is reduced to

with 2 = w,, andz'?) = ¢,,. Comparing (93) with (54), we L[ Jee
getG(l) =0, andG(Q) G = 1. The assumed probability nL JoE T8
distributions of the noisde,,} and {v,,} imply that Jew — 2 4 Je JUe — Je¥
~log ple}]an) = ~10g p(wns|wn) - Jee — Jee Jee + 2m3 |- (109)

1
=ca+ 5 (wn — wny1)? (94) N .
2y For Jo = 0 (no a priori information about the frequency and

—10g p(Znt1|Tn, ’EL-I)—I) —10g p(Znt1|@ns Wrt1) phase), the recursion (105) has a solution
1 ) 2
=5+ — [moctPrtent) — 4 2 Je¢ —p 2mg (106)
o2 n o2
(95) n—1 2
we e —_1)20
wherec, andc; are normalization constants. A straightforward St = Z Jim=—nln=1) o2 (107)
calculation of (60)—(65) gives B 2
1 1 PP _ Q) =
1 _ 12 _ 13 _ J 2J;7)=n(n-1)2n -1 108
1 Vi + J5© = 205 + JE¢ —72dn + JW — Jge
Iny1 = (98)

wWw ) } 2 W
L+~2J3 2y + JE = T YR+ JEY + =0 (1+ S od)
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The PCRB on the frequency is equal to the left-upper corner 10 0
element ofJ; %, i.e., p2 |00 0 (120)
g,n 9 2
PCRB(G) =[5 = (J#)? /]! 00 =30
6  o° 0o 0 0
= = 109

(1) 2 (109) K% =0 a.., b] (121)

which coincides with the CRB for the problem [9]. :O be,n 1
Example 3—Sinusoidal Signal with Sinusoidal Phase Mod- 0 0 0

ulation: Consider a sinusoidal signal as in (90), define the K2, =|acn -1 —b.n (122)
instantaneous frequency, of the carrier as a one-step back- [b:n O -1
ward difference of the instantaneous phageas in (93), and [aen -1 —b.p
assume that the frequency evolves in time like a sinusoid K2 = 1 1 0 (123)
within the range(—m, 7). We refer to this sinusoid as a ’ ~b., O 1

message and assume that the frequency of the message evolves
like a random walk. Note that an algorithm for trackingVhere
parameters of signals of this kind was proposed in [17]. e =14+ 7?E{sin®(¢, + vny1)} (124)
At each time instant, the signal can be characterized by a b = —nEASin(bn + 1)} (125)
state vector with three components e = nor Pl
An available but tedious method of computing an approximate

T
Zn = [n, én, 0] (110 Value of J,, is to choose a small fixegl do a number of inde-
where pendent simulations of the data according to the “regularized”
¢, instantaneous phase of the carrier; model, and replace the expectations in (124) and (125) by
¢, instantaneous phase of the message; corresponding sample averages. Then, evalal_gtas i_n (79).
v, frequency of the message. Another approach for computing, can be utilized in cases

i i i 2
Assume that the instantaneous frequency of the carrier eqL{V%Psen the rate of evolution O’f’f“ €., .the variancey”, and .
€ variance of the observation noise are small. Consider
Wy = We 41 COS P (111) sequences(v,}, {¢,}, {®,} that obey (112)—(114) with
) _ {e, = 0} (this is called an “equilibrium state” in [15]), and
wherew. is the central frequency of the carrier, ands the 55sume that the probability densities f,}, {¢n}, {¢n}

maximu'm deviation of the carrier frequgncy fram. are concentrated in neighborhoods{af, }, {¢, }, and {3, }.
The time update of the state vector is given by the set ®hen . andb. ,, are approximated by

equations

~m A 2 . 2,7 -
Vn4l =Vn +€n (112) e Niln ; L Slil (P +Prit) (120
Prt1 = Pn + Vnt1 (113) beyn Rby = =7 sin(e, + Vni1). (127)
On+1 =@n +we + 1 COS Gpt1 Using the above approximation the limit in (79) can be
= + we + 1 co8(¢p + Vny1). (114) evaluated analytically. The result, which is obtained with the

aid of symbolic Mathematica, is
As in the previous subsection, assume that} is a Gaussian v L 700 vo | 2 _—
white noise with variance?. The filtering in (112)—(114) and T =T+ I7 =207 +7d) (L7 T (128)
(90) is an example of the singular case from Section IV With’ﬁl =[J¥® — J9® — 32d; + 42 dab,, + (JP — JV9)D,]

nonlinear functiong,, and /(1 + ,y?J;:V) (129)
2O =, (115)  JZ9, = (J¥P — JEP —22do) /(1 4+ 42 T2Y) (130)
«@ = [, on]” (116) 2% =[J2? +B2J2% — 2b, J2° + 4*(dy — 2bpdy + bl ds)]
g pihle) =es b gy Gne—n)? @11 ) i a3n
v JEEL =29 — b JEP + 4% (do — byds)]

and o " /(1 + ,YQJ;:V) (132)

1 2 2
e TEE = R 40P ) /(L0 + 0 (133)

+ %[9%-1—1 — n — we — 1 cos(Pp + 1/n+1)]2, (118) where

_ v g _ [ rép2
A straightforward calculation gives dy = J7 I8 = [J577] (134)
dy = JVV J%% — JUoJre (135)
100 nn’ = dn In
D =-D2 =0 0 0 (119) dg = J;" I = [0 (136)
’ " loo oo

and Jxv, .-, J£¢ are the elements of,,.
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, 3 . . . . . rerenamy . . matrix
(&}
5 J(x) = E{-A7 log p(z, 2)}. (137)
2
E exists. Lety = Mz, where M is a constant invertible
w matrix. Then, the probability density(y, z) exists, and the

, . . ‘ . ‘ . corresponding information matrix for estimatiggs given by

0 100 200 300 400 500 7 .
TIME Jy)=M=" J@)M~". (138)

Proof: The proof is based on the well-known rule for
change of coordinates of the estimated parameters (see, e.g.,
[13]), is straightforward, and is therefore omitted here. m

Proof of Proposition: Let p,, denote the probability den-
sity of the triplet [X,(LI), a:ﬁf), .

o 100 200

* ) * . * A
TIME 300 400 500 Pn = p(XT(Ll)7 -’17;2)7 Zn) :p(Xr(Ll—)lv ‘/E’gll)7 -’1722)7 Zn) (139)

Fig. 2. Instantaneous frequency of the carrier of a sinusoidal signal and fhewill be shown by induction thap,, exists.
PCRB on the signal frequency as functions of time in the model considered-[-he information matrix that corresponds to the triplet
in Example 3. . .

(XY 2P 2{P] can be written in block form as

To illustrate the above result, consider a signal of the length An Bn Gy
N = 500 with the following parametersm?/o? = 1/2, JXP 20 2®y=|BT D, E, (140)
7 =002, w,=16,n1n=1,+2=10"%, ¢o = 0. Fig. 2 shows or BT F
the posterior CRB on parametey, which was derived from " " "
Jn, as a function of time. Simultaneously, the instantaneow$ere the blocksA,,, B,, ---, F}, are obtained as expecta-
frequency of the carrier is plotted. Note that the nonlinedions of the second-order derivatives-eflog p,, with respect
character of the signal model implies that the PCRB does rtotX,(Ll_)l, a:gll), and a:ﬁf).
converge to any limit value fon — oo, but it is periodic in The information submatrix for the state vectay, can
time with the frequency that is twice greater than the frequenbg obtained as the inverse of the right-lower submatrix of
of the message,,. In particular, if the frequency of the carrier{J(X" = z2)}-1, ie,

n—1

is close to its minimum or maximum and its rate of change gL g12
is low, the amount of information that the signal bears about ;. 4 |7n n }
the possible changes of, is small, the PCRB increases, and L2 J22
vice versa. _ [Dn En} {Bﬂ A= By, O]

BT F, cr|mm o

VI. CONCLUSIONS _ [Dn- BYAL B, En, - BUAC, (141)
A simple and straightforward derivation of the posterior LES — CR AL B, o — CTALC,

_Crarrer—Rao lower bound for the o_Ils_crete_-Um_e nonllnegr f"te'éonsider the probability density of the quari{éf,ﬁl), x%2)7
ing problem was presented. Explicit realizations of this lowery)

bound were calculated for three important examples. T,41, Zn+1], denoted byp, 1. Note that two vectors
1) tracking a slowly varying AR parameter; xM, I 0 0 0 xM,
2) track?ng a slowly varying sinusoidal frequgncy; ey 0 I 0 0 1)
3) tracking a slowly varying frequency that is modulated ’ll =g o 0 I En
by a sinusoid. xilll 0 @ ®) zP
The derived lower bound can be used for evaluating the $(2J)rl 0 Gn' Gn' G xgll)rl
performance of existing suboptimal methods of nonlinear " @
filtering. It is believed that a similar bound can be derived n—l
for a more general model of nonlinear autoregressive systems A -~ 2P 5
as well =Moo, (142)
. In
375114)—1
APPENDIX . . ) )
PROOF OF PROPOSITION 2 obey the linear relationship. Sina@;,”’ is assumed to be

regular, it follows thatVf,, is regular as well. Applying Lemma

The proof of Proposition 2 utilizes the following lemma. 1 ‘it o110ws by induction thap,, in (139) exists for each, and
Lemma 1: Consider the problem of estimating a random

vector = from an observation vector. Let p(z, z) be the  J(X 28 o@) ) = M7 TJ(xXD, 2@ 28wt

joint probability density of z, z), and assume that information (143)
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Using conditional densitieg,,+; can be written as the product

- 1
Prt1 =pnp(w5~),1

: P(Zn+1 |X7(11)7

XM, @, Zn)

$£12)7 ‘77511—1)—17

Zn)

= prp(a ) on] sl 2H). (144)

(6]
(7]

(8]

El

The second equality in (144) follows from the formulation of1oj

the filtering problem. From (140) and (144), it follows that

J(Xr(Ll)v -’1722)7 37511-1)—1)
Ay B, Cn 0
BT  D,+H}' E,+H? HE
= CT (B, +H)T F,+H? H? (145)
0 (H3)T (H2)T g%

where H¥, i, j = 1,2, 3 were defined in (60)—(65). The
information submatrix fofz, i, z(! ] then equals

D,+H} E,+H? HS3
Spi1 2 |(Bo+HT F,+H2 H2
(H13)T (H23)T H33
BTTL n n
— |7 | AN By, G, 0], (146)
0
This can be rewritten using (141) as
Jll +H11 J12 +H12 H13
Swar= |(JR2HHRT Ry HZ HP|. (147)
(H13)T (H23)T H33

Combining (143) and the form d¥/,, in (59) and (142) implies - L

(11]
(12]
(13]
[14]

(18]

(16]

(17]
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Sn1 = My S M (148)

The statement follows.
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