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Abstract 

The commercial library Optimization 2.1 for interac-
tive multi-criteria optimization tasks has been re-
leased along with Dymola 2013. The library offers 
several numerical optimization algorithms for solv-
ing different kinds of optimization tasks. User de-
fined Modelica functions or models provide the basis 
for an interactive optimization process where the 
user keeps overview of complex multi-criteria opti-
mization tasks that can take discrete parameters, sev-
eral model operating points or trajectories into ac-
count. Computational performance of optimization 
runs can be significantly increased by parallel nu-
merical integrations of the Modelica model on multi-
core machines. 
Keywords: Modelica; Optimization; Multi-Criteria; 
Trajectory Optimization; Parallel Simulation 

1 Introduction 

In principle, numerical optimization algorithms may 
be very powerful tools in engineering design pro-
cesses like modeling, model validation or controller 
design. However, the fact that numerical algorithms 
are available does not necessarily encourage engi-
neers to apply them. A user-friendly, easy handling 
of a well integrated optimization tool is necessary to 
make the advantages of automatic optimization 
available for non-experts. The presented Optimiza-
tion library realizes this requirement in the Modelica 
world when working with Dymola [DS12b] or CAT-
IA [DS12a]. 

1.1 Related Work 

OMOptim [TNT+11] is an initiative to provide an 
open source optimization platform within OpenMod-
elica. The emphasis of this platform is on using ge-
netic algorithms, whereas interfacing gradient based 
optimization methods is planned for the future. The 
application is currently tailored to optimize model 
parameters of Modelica models. The library present-
ed in the paper at hand provides a variety of different 

optimization tasks solved by several sophisticated 
local and global optimization algorithms.  

In JModelica.org the Modelica extension Optimica is 
supported to solve dynamic optimization [AAG+10]. 
The approach in Optimica is different to the present-
ed one, because Optimica defines additional Modeli-
ca language elements to describe Optimization prob-
lems directly in Modelica. Consequently, special 
compilers are needed to generate code for the opti-
mization runs. JModelica.org supports collocation 
methods for dynamic optimizations. In the presented 
approach, (standard) Modelica models are compiled 
by Dymola. The well-proven numerical integration 
algorithms provided by Dymola are used in the op-
timization loop. Tailored graphical user interfaces 
support the user in several optimization tasks. 

The library Design.Optimization [EOM+05] is the 
forerunner of the presented library. For the new ver-
sion the library has been completely reimplemented 
with many new features. The new concept of differ-
ent optimization tasks is enhanced by specialized 
graphical user interfaces (GUIs). The primary con-
cept and the code of numerical algorithms for solv-
ing multi-criteria optimization problems are based on 
[JBL+02]. 

1.2 Optimization Problem Formulation 

The multi-criteria optimization problems considered 
in the Optimization library can be formulated as fol-
lows: 

min
𝑝∈𝐵

𝑓�diag(𝑟1)−1𝑐1(𝑝)� 

such that  𝑐2(𝑝) ≤ 𝑟2,   𝑐3(𝑝) = 𝑟3 

with  𝑐 = �
 𝑐1 
 𝑐2 
 𝑐3 

� ,  𝑟 = � 
𝑟1
𝑟2
𝑟3

 �   and 

𝑓 = �

 max   …  maximum of criteria values, or      

 ‖∙‖2 
2   …  sum of squared criteria values, or 

‖∙‖1    …  sum of absolute criteria values.     
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Free parameters 𝑝 (e.g. some Modelica parameters in 
models) to be varied during the optimization process 
are called tuner parameters or tuners. The first part 
of the criteria vector 𝑐 represents the objectives of 
the optimization (e.g. the overshoot of a variable in a 
model). The goal is to minimize all these objectives. 
The criteria components that define inequality or 
equality constraints are optional. They enable formu-
lation of conditions on some criteria components if 
needed. The demand values 𝑟 serve as reciprocal 
scaling factors of the criteria. They enable a different 
weighting of the individual criteria to be minimized. 
The tuner box 𝐵 defines minimum and maximum 
values for each tuner parameter, thus limiting the 
range in which the tuner parameters can be varied. 

For multi-criteria optimization problems a whole set 
of optimal solutions generally exists: the Pareto op-
timal solutions [E05]. For these solutions it is not 
possible to decrease one of the components of the 
objectives vector 𝑐1 without increasing another one. 
It means the different criteria conflict each other. 
Finding all Pareto optimal solutions requires very 
high computational effort. In many cases it is suffi-
cient to transform a multi-criteria problem to an op-
timization problem with a scalar objective func-
tion 𝑓. This approach is applied to the Optimization 
library with the maximum of the objectives, the sum 
of the squares of the objectives or the sum of the ab-
solute values of the objectives. 

1.3 Discrete Tuner Parameters 

Discrete tuners are tuners that only have a finite 
number of values to be set. Examples for such tuners 
are configuration parameters that represent different 
topologies, e.g. switching modes in networks.  

Three possibilities are available to define discrete 
tuners in the Optimization library. At the level of 
each tuner parameter, one can define the number of 
equidistant discrete values within the interval [min, 
max]. Only these points can be selected by the opti-
mization algorithm to set the tuner value. 

 
Figure 1: Discrete values for tuner parameters in the opti-
mization setup GUI. 

For example, setting equidistant = 6 for min = −10, 
max = 0 enables the values −10, −8, −6, −4, −2, 0 for 

the tuner Ki in Figure 1. The second possibility to 
define discrete tuners is to give a Modelica vector of 
values that can be set to the tuner parameter, e.g. dis-
creteValues = {−7.8, −2.5, −9.3} for tuner parameter 
Kf. 

At the level of all tuner parameters a list of values of 
discrete tuner parameter sets can be defined in a ma-
trix. Each column corresponds to a tuner parameter, 
see Figure 2. It is possible to simply import the ma-
trix from and export it to file. This feature allows to 
automatically evaluate a long list of tuner values 
generated by a separate tool. 

 
Figure 2: Discrete tuner matrix in the optimization setup 
GUI. 

1.4 Optimization and Evaluation Algorithms 

The following numerical optimization algorithms are 
available in the Optimization library: Sequential 
Quadratic Programming (SQP), Quasi Newton 
(BFGS) method, Pattern Search, Simplex Method 
and Genetic Algorithm. SQP and BFGS algorithms 
rely on derivatives of the criteria with respect to the 
tuner parameters and have good convergence proper-
ties for smooth optimization problems. Pattern 
Search and Simplex Method are more robust against 
nonsmoothness but generally need more criteria 
evaluations to converge. Genetic Algorithm is the 
only approach to find a global solution whereas the 
others are local convergent methods. Further details 
to the implemented optimization algorithms can be 
found in [J11]. 

All the optimization algorithms have in common that 
they work more or less sequentially. Most values for 
tuners depend on criteria values of previous evalua-
tions. So, there are limited possibilities to parallelize 
the (time consuming) evaluations of criteria. In con-
trast to these algorithms, pure evaluation methods 
independently set tuner values at the beginning of the 
process. Of course, constraints fulfillment is there-
fore not guaranteed. 

Two evaluation methods are implemented in the Op-
timization library: Random Search and Systematic 
Tuner Variation. Random Search takes uniformly 
distributed random values between minimum and 
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maximum of each tuner parameter. Systematic Tuner 
Variation is based on discrete tuners. If the discrete 
tuner matrix is activated, the corresponding tuner 
values are used row by row of the matrix. If the dis-
crete tuner matrix is not used, all combinations of 
equidistant or given discrete tuner values are the ba-
sis for the criteria evaluations. For the example in 
Figure 1 there are 3 ∙ 6 ∙ 1 = 18 different sets of dis-
crete tuner values. 

Table 1: Overview of the optimization and evaluation algo-
rithms with their capability to support continuous and / or 
discrete tuners. 

Algorithm Continuous Discrete Mixed 
SQP    
BFGS    
Pattern Search    
Simplex Meth.    
Genetic Alg.    
Random Search    
Systematic Var.    
 
Most of the interfaced algorithms are designed to 
handle continuous tuner parameters. It means that the 
tuner values can be arbitrarily varied inside a given 

interval. Table 1 gives an overview which algorithm 
also supports discrete tuners or problems with both 
continuous and discrete tuner parameters. 

1.5 Optimization Process 

For each of the GUI supported optimization tasks the 
process to configure the task, to start the optimiza-
tion and to handle the results is nearly the same and 
is discussed in the following by means of Figure 3. 

By starting the corresponding setup GUI for an op-
timization task, the user gets a hierarchical list of 
settings to be configured. For each task one has to 
specify tuners and criteria depending on the type of 
the task. For optimization tasks requiring a model, 
additional settings for the model simulation have to 
be provided. All the information given in the setup 
GUI can be saved to a Modelica file. The file con-
tains a call starting the corresponding setup GUI 
filled with the saved entries. Of course, the textual 
file can be edited before starting the setup GUI. So, 
loading an optimization setup is simply running the 
Modelica function generated when saving the setup.  

After the optimization setup is configured, the opti-
mization run is started. During the run the current 

Updated 
Tuner values 

Load Setup 

Save Setup 

Optimization Run 
Logging 

Setup GUI 

How to 
proceed 

with 
results? 

Figure 3: Optimization process for GUI supported Optimization tasks. 
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solutions may be logged to an HTML-file, also inter-
actively displayed in Dymola’s Command window. 
The logging has two intentions. Firstly, the history of 
a complete optimization run can be reconstructed. 
Secondly, optimization runs may last hours or days. 
It is very important in these cases to have a feedback, 
what the optimization algorithm is currently doing, 
to quickly react on non-intended intermediate opti-
mization results. The HTML-logging lists the current 
tuner and criteria values and visualizes them in dif-
ferent colors in comparison to values at the begin-
ning of the optimization.  

Beside the HTML-logging there is a logging of pure 
numeric data to be processed after the optimization 
run if it is necessary. After the optimization run is 
finished, the user is asked how he wants to proceed. 
There is the possibility to reset the tuner parameters 
by values generated by the optimization process. For 
example, one can select the tuner values of the best 
evaluation (= solution) of the optimization run. The-
se settings can be used to proceed the optimization 
process with different settings, e.g. using another 
optimization algorithm. In any case, after an optimi-
zation run the setup GUI is displayed (with possibly 
changed tuner values) and can be configured as de-
scribed above. 

2 Function based Optimization 

Two optimization tasks based on user-defined Mod-
elica functions are described. Whereas Function Op-
timization is an interactive task, Realtime Optimiza-
tion is designed to be called in model equations dur-
ing the numerical integration. 

2.1 Function Optimization 

The task Function Optimization is designed for the 
most general case of an optimization problem in 
Modelica. The user has to provide a Modelica func-
tion that evaluates the criteria (and constraints) func-
tions. Optionally, a user-defined function for the 
evaluation of the Jacobian matrix can be incorpo-
rated. The task can be used for simple academic op-
timization problems resulting in a criteria function of 
a few lines of code, or for every complex optimiza-
tion problem including simulations and linearizations 
of several models. The user has to program and con-
trol the simulations and linearizations by available 
functions in Modelica and Dymola. 

The main part of a function optimization problem is 
to program the criteria function in Modelica. The 

criteria function returns a criteria vector depending 
on the tuner values. The criteria can either be parts of 
the optimization's objective function or be one of the 
constraints of the optimization problem. A criteria 
function has to have defined interface variables from 
the partial function PartialCriteriaVariables: 

partial function PartialCriteriaVariables         
  input Real tuners[:]; 
  output Real criteria[:]; 
end PartialCriteriaVariables; 

A typical criteria function looks like the following 
prototype. One can add own input variables to the 
criteria function. The values for these inputs have to 
be declared in the name of the criteria function in the 
setup, e.g. ”myCriteriaFunc(myVar=<value>)”.  

function myCriteriaFunction 
  extends PartialCriteriaVariables; 
  input <AnyType> myVar; 
algorithm 
  criteria := ...(tuners, myVar); 
end myCriteriaFunction; 
 
Gradient based optimization algorithms (SQP, 
BFGS) need the Jacobian matrix of the criteria with 
respect to tuner parameters. The user can select be-
tween symmetric finite differences and forward dif-
ference quotients. There is also the possibility to 
program the Jacobian matrix by oneself, e.g. if one 
knows the analytical Jacobian matrix. The interface 
variables are defined in the following partial func-
tion: 
  
partial function PartialJacobianVariables 
  input Real tuners[:];   
  input PartialCriteriaVariables CritFunc; 
  output Real Jacobian[:,size(tuners,1)];   
end PartialJacobianVariables; 

To a Jacobian function one can also add own input 
variables, see the following prototype of a typical 
Jacobian function: 

function myJacobianFunction 
  extends PartialJacobianVariables; 
  input <AnyType> myVar;  
algorithm 
  Jacobian := ...(tuners, myVar); 
end myJacobianFunction; 

2.2 Realtime Optimization 

Realtime Optimization is in some way different to 
the other optimization tasks. Realtime Optimization 
provides the framework for an optimization function 
to be called during the numerical integration of a 
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model. A possible application of this optimization 
task is a discrete controller that solves an optimiza-
tion problem to predict new controller values every 
sample time. The optimization problem itself is very 
similar to that of Function Optimization. User de-
fined functions for criteria evaluation and optional 
functions for the Jacobian matrix provide the basis 
for the optimization task. Because Realtime Optimi-
zation is active during a simulation many times, 
there is no GUI support for it. A Modelica model 
calling the optimization function typically has the 
following structure: 

model myModel 
  Real resultTuners[...]; 
  Real resultCriteria[...]; 
  KernelProblem problem(...); 
  ... 
equation  
  ... 
  when sample(0, 0.1) then 
   (resultTuners,resultCriteria) =  
   run(problem, CriteriaFunc = 
      function myCriteriaFunction); 
  end when; 
  ... 
end myModel; 

At each sample point the optimization run is started 
by the function run. The optimization problem is 
described by the record problem that includes the 
tuner and criteria definitions as well as the optimiza-
tion options. The approach is currently used in model 
predictive control for an electric vehicle [K10]. 

3 Model based Optimization 

This section deals with optimization tasks based on 
the numerical integration of a Modelica model. The 
computation of the optimization criteria is part of the 
numerical integration. Because model simulation is 
the main application of dealing with Modelica mod-
els, the following optimization tasks and their fea-
tures may be considered as the core of the Optimiza-
tion Library. 

3.1 Criteria Library 

To support all model based optimization tasks the 
sub-library Optimization.Criteria is part of the 
whole package. The library (see Figure 4) provides 
models that compute typical criteria from time de-
pendent model variables. The collection of criteria 
models helps the user to prepare his system model 
for conducting an optimization on it. For Real sig-
nals the following models are included: minimum, 

maximum, mean value, moving average and integral 
norm. In Figure 5, some examples are illustrated. 
Computing deviations between two signals may be 
handled by the corresponding criteria models. In the 
field of controller design typical design criteria are 
overshoot, rise time and settling time. Each of them 
is represented by a corresponding criteria model. 
Some of the criteria models require the input signals 
to be differentiated. 

 
Figure 4: Criteria library. 

 
Figure 5: Typical signals of criteria models. 

In some cases only parts of the whole time interval 
shall be used to compute a certain criterion, or some 
time areas shall be weighted more than others. For 
such needs several weighting models are provided: 
Step, Ramp, Triangle, etc. 

3.2 Model Optimization 

The task Model Optimization is designed to optimize 
parameters of a Modelica model. The user can select 
from a list of model parameters to define tuners, see 
Figure 6. Also it is possible to get a list of all time 
depending model variables to be selected for criteria 
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variables. The value of the criterion is defined by the 
final value of the criterion variable at the end of the 
integration interval. 

 
Figure 6: GUI for selecting model parameters as tuners. 

The simulation of the model to be optimized has to 
be specified by usual simulation preferences like 
start and stop time or the numerical integration algo-
rithm. Additionally, different modes to accelerate the 
numerical integration of the model equations are im-
plemented, see Section 3.5. 

A typical application of Model Optimization is the 
identification of model parameters by comparing 
simulation results and corresponding measurements 
from a test bench. A further application is well 
known in the field of controller synthesis. To im-
prove the controller performance automatic optimi-
zation is applied to the system model. 

3.3 Multi Case Model Optimization 

Multi Case Model Optimization is an extension of 
the task Model Optimization and has its origin in the 
field of model based controller design. Most control-
lers do not only have to guarantee performance and 
stability of a system in one, but in several operating 
points. The optimization of the controller parameters 
includes the simulation of a system model in differ-
ent operating points that are characterized by differ-
ent values of special model parameters, the case pa-
rameters. These model parameters are disjoint with 
the tuner parameters and are not varied by the opti-
mization algorithm. The different model simulations 
that are defined by the case parameters are called 
cases. In Figure 7 main parts of the corresponding 
task setup GUI are shown. 

Each case should have a name to distinguish it from 
the other cases. In Figure 7 there are three cases: 
nominal, worstOvershoot and worstSettlingTime. 
The case parameters (e.g. Ma, Md, …, Zd) can be 
selected from a list of all independent model parame-
ters. For each case every case parameter gets a value, 
see the matrix in Figure 7. The model is simulated 
with these case parameter values for each case. The 
criteria of the optimization task are similarly speci-
fied as for the task Model Optimization. 

 
Figure 7: Optimization setup GUI for Multi Case Model 
Optimization. 

In summary, every case contributes to the overall 
criteria vector of the optimization problem, see Fig-
ure 8 for an example. Depending on the objective 
function type all these criteria values are combined 
to the objective function value. In the example the 
value is the maximum of all criteria values: riseTime 
for the case worstSettlingTime. 

 
Figure 8: Logging of multi case criteria. 

3.4 Trajectory Optimization 

Problems of Optimal Control arise in different fields 
of applications. The goal is to minimize an objective 
functional with respect to one or more time depend-
ent control trajectories. Various constraints are typi-
cal for optimal control problems. Dynamic model 
equations appear in most of the problems in technical 
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applications. Consequently, an optimization task 
Trajectory Optimization is provided in the library. 

There are many techniques [B01] to numerically 
solve an infinite dimensional optimal control prob-
lem. In the Optimization library the solution proce-
dure is according to the task Model Optimization. It 
means that tuners are varied by the optimization al-
gorithm and for each computation of the criteria a 
model simulation is performed. This Single Shooting 
Technique is based on a finite dimensional optimiza-
tion problem approximating the original problem.  

The control trajectories are approximated by B-
splines of degree 𝑘. The number of samples 𝑁 and 
the interpolation degree 𝑘 define the construction of 
a B-spline as control trajectory [DH02]. The B-spline 
has 𝑁 equidistant knots on the time interval the 
spline is defined (normally this is the integration in-
terval of the model). Further there are 𝑁 + 𝑘 − 1 de 
Boor control points that parameterize the spline. A 
spline 𝑠(𝑡) is a piecewise polynomial function be-
tween the knots. The individual polynomials have at 
most the degree 𝑘. The polynomials are appended 
such that the complete spline is 𝑘 − 1 times continu-
ously differentiable on the whole interval it is de-
fined. Because a B-spline is contained in the convex 
hull of its de Boor points 𝑁, the box constraints 
𝑢Min ≤ 𝑁 ≤ 𝑢Max (for lower and upper bounds 𝑢Min, 
𝑢Max) are valid for the whole spline function: 
𝑢Min ≤ 𝑠(𝑡) ≤ 𝑢Max. Therefore, the control points 𝑁 
are selected as tuners to be varied by the optimiza-
tion algorithm. 

 
Figure 9: Polygon of B-spline control points and corre-
sponding B-spline trajectory. 

In Figure 9 the polygon of 13 control points and the 
corresponding B-spline of degree 3 (𝑁 = 11, 𝑘 = 3) 
are shown. The control points correspond to the 13 
time values 0.0, 0.033, 0.1, 0.2, …, 0.8, 0.9, 0.967, 

1.0. Additional to the given time grid 0.0, 0.1, …, 1.0 
there are two values at the boundaries: 0.033 and 
0.967. They represent the free boundary conditions 
of the B-spline. 

The optimization setup for Trajectory Optimization 
includes the selection of model inputs that represent 
the control trajectories. For these trajectories the 
number of sample points 𝑁 and the interpolation de-
gree 𝑘 has to be specified by the user. Any starting 
trajectory may be provided in a separate file. An ex-
ample using the Trajectory Optimization task is giv-
en in Section 4. 

3.5 Parallel Numerical Integration 

Because the numerical integration of model equa-
tions normally is the most time intensive part of any 
model based optimization tasks, several techniques 
are applied to reduce the computation time of the 
numerical integration inside the optimization loop. 
The default case is a sequential execution of the nu-
merical integration runs by calling Dymola’s simula-
tion executable for each new set of model parame-
ters. We call it single simulation technique.  

An optimized version of sequential integration runs 
is provided by Dymola. The executable is started 
only one time and independent model parameter val-
ues are sequentially read from file and processed by 
the numerical integration. Especially for many simu-
lation runs with very short elapsed real times for one 
model simulation, this multi simulation approach 
accelerates the numerical integration in summary, 
because process overhead is avoided. 

Independent simulation runs of a model may be exe-
cuted in parallel. Especially for multi-core machines 
this may reduce the computation time of the whole 
optimization run. In the Optimization library the 
simulation runs are parallelized in different threads 
by calling several copied simulation executables in 
an OpenMP program. OpenMP is a software inter-
face for shared-memory parallel programming on 
different platforms. It is supported by many comput-
er hardware and software vendors [CJP08]. For par-
allel simulations the user can specify the number of 
threads up to the double of the number of available 
cores. Table 2 shows execution sequences for differ-
ent simulation modes in principle. 

To measure the acceleration in computation time, a 
test is performed for different simulation modes. The 
model Electrical.Analog.Examples.Rectifier 
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from the Modelica Standard Library 3.2 is simulated 
1000 times with identical parameter values. To in-
crease the elapsed real time of one numerical integra-
tion run, the stop time of the integration is increased. 
The test is executed on a PC with an Intel Xeon 
X5550 quad-core processor (2.67 GHz) with activat-
ed hyper-threading. 

Table 2: Execution sequence for single, multi and parallel 
(with 3 threads) simulations. 

Single Multi Parallel 3 
 

 

 

 Thread 1 Thread 2 Thread 3 

   

In Figure 10 the results of the test are illustrated. De-
pending on the execution time for one model simula-
tion, the speed factor with respect to the single simu-
lation technique is plotted for multi and parallel sim-
ulations. Parallel simulations are performed with 2, 4 
and 8 threads. For very fast model simulations the 
multi simulation approach is clearly superior. Com-
pared to single simulation the multi simulation is up 
to 4 times faster although no parallelization tech-
nique is applied. The parallel execution of 1000 
model simulations results in maximum speed factors 
of 1.9, 3 and 4 for 2, 4 and 8 threads. These maxi-
mum factors are reached if the execution time for 
one model simulation is greater than 1 second. Be-
low this bound the speed factor is decreasing due to 
the process overhead. For machines with many cores 
the limiting influence for parallelization is probably 
memory access. 

An important assumption for the performance test is 
the independency of all evaluated model parameter 
values. The Optimization library supports two algo-
rithms that fulfill this assumption: Random Search 
and Systematic Tuner Variation (see Section 1.4). 
For these algorithms the tuner values of all evalua-
tions may be determined before running any simula-
tion, therefore full parallel evaluations are possible. 
So, speed factors as shown in Figure 10 can be 
reached. 

Accelerating the computation time in nonlinear op-
timization by parallel evaluations of the criteria has 

been investigated since several years, e.g. see 
[LAS97]. The optimization algorithms of the Opti-
mization library partially support parallel criteria 
evaluations. During an optimization run there are 
both evaluations of the criteria that can be parallel-
ized and such ones that cannot be parallelized. The 
evaluation of numerical Jacobian matrices typically 
needs the most computation time for optimization 
runs with SQP and BFGS methods. Consequently, 
the Optimization library supports computing numeri-
cal Jacobian matrices by parallel model simulations. 
It also supports parallel criteria evaluations of multi 
case optimization tasks (see Section 3.3). The simu-
lation runs of a model with different case parameter 
values are independent and therefore can be comput-
ed in parallel. It is planned to support parallel model 
simulations for independent criteria evaluations of 
the genetic algorithm. 

 
Figure 10: Speed factors for different simulation modes. 

Depending on the used optimization algorithm, the 
Modelica model and the number of tuners, the speed 
factor for a complete optimization run differs. On the 
test machine a factor of 3 in computation time has 
been observed for optimization examples using a 
model that needs more than 1 second of elapsed real 
time per simulation, see Section 4.3 for an example. 

4 Application Example 

In [EOM+05] the full robot model of the Modelica 
standard library is used to demonstrate a multi case 
optimization for controller design. Of course, the 
current version of the Optimization library can still 
handle this kind of optimization task (see Section 
3.3). In the following a trajectory optimization setup 
for the robot model is presented to find reference 
trajectories for the robot’s movements from one 
point to another point in space. 
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4.1 Robot Model 

The robot model (see Figure 11) mainly consists of a 
3-D mechanical structure model and 6 axis models 
including electrical motors, controllers and mechani-
cal components of the axes (gear and friction). The 
reference trajectories for the angles and velocities of 
the axes are provided by a separate path planning 
model. The path planning is based on an algorithm 
that finds trajectories for the fastest movement for a 
given start position 𝛼 to a given end position 𝛽 under 
kinematical constraints. The constraints are defined 
by the maximum velocity and the maximum acceler-
ation of the axis movements. 

 
Figure 11: Animation of robot model from Modelica Stand-
ard Library. 

The drawback of the path planning model is that the 
available maximum torque of the electrical motors is 
not considered. We may include them in the path 
planning by solving a trajectory optimization prob-
lem with the inverse dynamics model [R11] using 
the Optimization library. For these purposes we have 
to adapt the robot model. The motor, controller and 
friction model of the axes are removed. The rotation-
al power train of each axes is driven by a signal 
based torque source. The non-causal approach of 
Modelica automatically leads to the inverse dynam-
ics model when giving input signals for the robot 
positions [TOB01]. 

4.2 Trajectory Optimization Problem 

The goal of the trajectory optimization problem is to 
find movements for the axes’ angles 𝑞(𝑡). The 
movement from the start angles 𝛼 to the end angles 
𝛽 should be as fast as possible under the constraints 
that the maximum velocity and the maximum motor 
torques are bounded by given values. Additionally, 
the angular accelerations shall be zero at the start and 

the end position to avoid oscillations for the con-
trolled robot using the computed paths as reference 
motion. 

The mathematical formulation is as follows: 

min
𝑡𝐸𝑛𝑑,   𝑢(𝑡)

𝑡𝐸𝑛𝑑        w. r. t. 

𝑞(0) = 𝛼,      𝑞(𝑡𝐸𝑛𝑑) = 𝛽,        𝑞̈ = 𝑢, 
𝑞̇(0) = 𝑞̇(𝑡𝐸𝑛𝑑) = 𝑞̈(0) = 𝑞̈(𝑡𝐸𝑛𝑑) = 0, 

 |𝑞̇(𝑡)| ≤ 𝑣𝑀𝑎𝑥,     |𝜏(𝑡)| ≤ 𝑇𝑀𝑎𝑥    for   𝑡 ∈ [0, 𝑡𝐸𝑛𝑑]. 

In our investigations we only consider the main axes 
1, 2 and 3. Axes 4, 5 and 6 are fixed and do not 
move. Reasonable values for the maximum angular 
velocities 𝑣𝑀𝑎𝑥 and the maximum torques 𝑇𝑀𝑎𝑥 can 
be found in [OT88]. We use 𝑣𝑀𝑎𝑥 = (3, 1.5, 5) 𝑟𝑟𝑟/
𝑠 and 𝑇𝑀𝑎𝑥 = (950, 1950, 540) 𝑁𝑁 for axis 1, 2 
and 3. The adapted robot model is prepared in such a 
way that 𝑞(0) = 𝛼, 𝑞̇(0) = 0 is inherently fulfilled. 
The trajectory 𝑞(𝑡) is implicitely defined by B-
Splines for the controls 𝑢(𝑡) ∶= 𝑞̈(𝑡). The trajecto-
ries for 𝑞̇(𝑡) and 𝑞(𝑡) are automatically computed in 
the robot model by the numerical integration algo-
rithm during the simulation of the model. 

 
Figure 12: Criteria of robot path planning in Optimization 
setup GUI. 

The trajectory optimization setup (see Figure 12) 
consists of three input controls 𝑞̈(𝑡) and the free pa-
rameter 𝑡𝐸𝑛𝑑. The criterion to be minimized is the 
end time 𝑡𝐸𝑛𝑑, whereas 6 (= 2 ∙ 3 axes) inequality 
constraints are defined for 𝑞̇𝑀𝑎𝑥 and 𝜏𝑀𝑎𝑥. The robot 

Session 6A: Optimization 

DOI Proceedings of the 9th International Modelica Conference    677 
10.3384/ecp12076669 September 3-5, 2012, Munich, Germany   



Time 𝑡 in 𝑠 
  Figure 13: Result trajectories with different number 𝑁 of 

sample points for the B-splines. 
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model includes criteria models (see Section 3.1) to 
compute the absolute maxima 𝑞̇𝑀𝑎𝑥 of 𝑞̇(𝑡) and  
𝜏𝑀𝑎𝑥 of 𝜏(𝑡). There remain 12 equality constraints 
for 𝑞(𝑡𝐸𝑛𝑑), 𝑞̇(𝑡𝐸𝑛𝑑), 𝑞̈(0) and 𝑞̈(𝑡𝐸𝑛𝑑).  

The advanced feature to handle a free end time 𝑡𝐸𝑛𝑑 
for the trajectory optimization is implemented and 
will be available in the next release of the Optimiza-
tion library. 

4.3 Trajectory Optimization Results  

We set the start trajectories for 𝑞̈(𝑡) equal to 0 and 
choose 𝑡𝐸𝑛𝑑 = 5 at the beginning of the optimiza-
tion. These start conditions lead to violated optimiza-
tion constraints for 𝑞(𝑡𝐸𝑛𝑑). The SQP algorithm suc-
ceeds in finding input functions 𝑞̈(𝑡), such that all 
constraints are fulfilled. Important for SQP is a high 
accuracy of the criteria, therefore we set the error 
tolerance of the integration to 10−12. The error toler-
ance for the solution of SQP is set to 10−6. 

Depending on the number 𝑁 of sample points for the 
B-splines, different solution are found, see columns 
1 and 2 in Table 3. The degree 𝑘 of the polynomials 
is always set to 𝑘 = 3. We tested the developed par-
allelization techniques (see Section 3.5) for this 
benchmark problem. In Table 3 the computation 
times for the single simulation approach are docu-
mented. Further, the speed factors using parallel 
simulations with 2, 4 and 8 threads are given. Since 
the computation of the numerical Jacobian matrix 
dominates the overall computation time, speed fac-
tors of pure independent simulations (compare Fig-
ure 10) can be reached for 2 and 4 parallel threads. 
The optimization with 8 threads is faster than using 4 
threads, but the difference is smaller than in Figure 
10. 

Table 3: Results of the trajectory optimization with different 
number 𝑁 of sample points for the B-splines. 

N 𝑡𝐸𝑛𝑑 
Single Parallel speed factors 

Elapsed time 2 threads  4 threads 8 threads 

5 1.60 s 30 min 1.85 2.95 3.15 
8 1.48 s 150 min 1.96 3.11 3.38 
10 1.42 s 251 min 1.95 3.12 3.34 
20 1.40 s 908 min 2.00 3.33 3.58 
30 1.40 s 1228 min 2.02 3.37 3.68 

Figure 13 illustrates the solutions 𝑞2(𝑡), 𝑞̇2(𝑡) and 
𝑞̈2(𝑡) for 𝑁 = 5, 8, 10 and 20. It is obvious, that the 

velocity constraint 𝑞̇2 ≤ 𝑣2 = 1.5 𝑟𝑟𝑟/𝑠 is an active 
constraint. In Figure 14 it can also be seen, that the 
motor torque is inside the demanded ranges. The tra-
jectory for the torque of axis 3 hits the border lines 
several times. 

Time 𝑡 in 𝑠 

Figure 14: Motor torque for different axes. The optimiza-
tion solution is computed with 𝑁 = 20 sample points. 
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5 Conclusions 

A library for solving interactive optimization tasks is 
presented. Both function and different model based 
optimization tasks are available to support the engi-
neer in improving his system design by sophisticated 
numerical optimization algorithms. Additionally, 
optimization runs may be accelerated by automated 
parallel model simulations on multi-core machines. 
Version 2.1 of the Optimization library is available 
along with the release of Dymola 2013. 
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