
Optimization Library for
Interactive Multi-Criteria Optimization Tasks

A. Pfeiffer
Institute of System Dynamics and Control, German Aerospace Center DLR, Oberpfaffenhofen

Andreas.Pfeiffer@dlr.de

Abstract

The commercial library Optimization 2.1 for interac-
tive multi-criteria optimization tasks has been re-
leased along with Dymola 2013. The library offers
several numerical optimization algorithms for solv-
ing different kinds of optimization tasks. User de-
fined Modelica functions or models provide the basis
for an interactive optimization process where the
user keeps overview of complex multi-criteria opti-
mization tasks that can take discrete parameters, sev-
eral model operating points or trajectories into ac-
count. Computational performance of optimization
runs can be significantly increased by parallel nu-
merical integrations of the Modelica model on multi-
core machines.
Keywords: Modelica; Optimization; Multi-Criteria;
Trajectory Optimization; Parallel Simulation

1 Introduction

In principle, numerical optimization algorithms may
be very powerful tools in engineering design pro-
cesses like modeling, model validation or controller
design. However, the fact that numerical algorithms
are available does not necessarily encourage engi-
neers to apply them. A user-friendly, easy handling
of a well integrated optimization tool is necessary to
make the advantages of automatic optimization
available for non-experts. The presented Optimiza-
tion library realizes this requirement in the Modelica
world when working with Dymola [DS12b] or CAT-
IA [DS12a].

1.1 Related Work

OMOptim [TNT+11] is an initiative to provide an
open source optimization platform within OpenMod-
elica. The emphasis of this platform is on using ge-
netic algorithms, whereas interfacing gradient based
optimization methods is planned for the future. The
application is currently tailored to optimize model
parameters of Modelica models. The library present-
ed in the paper at hand provides a variety of different

optimization tasks solved by several sophisticated
local and global optimization algorithms.

In JModelica.org the Modelica extension Optimica is
supported to solve dynamic optimization [AAG+10].
The approach in Optimica is different to the present-
ed one, because Optimica defines additional Modeli-
ca language elements to describe Optimization prob-
lems directly in Modelica. Consequently, special
compilers are needed to generate code for the opti-
mization runs. JModelica.org supports collocation
methods for dynamic optimizations. In the presented
approach, (standard) Modelica models are compiled
by Dymola. The well-proven numerical integration
algorithms provided by Dymola are used in the op-
timization loop. Tailored graphical user interfaces
support the user in several optimization tasks.

The library Design.Optimization [EOM+05] is the
forerunner of the presented library. For the new ver-
sion the library has been completely reimplemented
with many new features. The new concept of differ-
ent optimization tasks is enhanced by specialized
graphical user interfaces (GUIs). The primary con-
cept and the code of numerical algorithms for solv-
ing multi-criteria optimization problems are based on
[JBL+02].

1.2 Optimization Problem Formulation

The multi-criteria optimization problems considered
in the Optimization library can be formulated as fol-
lows:

min
𝑝∈𝐵

𝑓�diag(𝑟1)−1𝑐1(𝑝)�

such that 𝑐2(𝑝) ≤ 𝑟2, 𝑐3(𝑝) = 𝑟3

with 𝑐 = �
 𝑐1
 𝑐2
 𝑐3

� , 𝑟 = �
𝑟1
𝑟2
𝑟3

 � and

𝑓 = �

 max … maximum of criteria values, or

 ‖∙‖2
2 … sum of squared criteria values, or

‖∙‖1 … sum of absolute criteria values.

DOI Proceedings of the 9th International Modelica Conference 669
10.3384/ecp12076669 September 3-5, 2012, Munich, Germany

Free parameters 𝑝 (e.g. some Modelica parameters in
models) to be varied during the optimization process
are called tuner parameters or tuners. The first part
of the criteria vector 𝑐 represents the objectives of
the optimization (e.g. the overshoot of a variable in a
model). The goal is to minimize all these objectives.
The criteria components that define inequality or
equality constraints are optional. They enable formu-
lation of conditions on some criteria components if
needed. The demand values 𝑟 serve as reciprocal
scaling factors of the criteria. They enable a different
weighting of the individual criteria to be minimized.
The tuner box 𝐵 defines minimum and maximum
values for each tuner parameter, thus limiting the
range in which the tuner parameters can be varied.

For multi-criteria optimization problems a whole set
of optimal solutions generally exists: the Pareto op-
timal solutions [E05]. For these solutions it is not
possible to decrease one of the components of the
objectives vector 𝑐1 without increasing another one.
It means the different criteria conflict each other.
Finding all Pareto optimal solutions requires very
high computational effort. In many cases it is suffi-
cient to transform a multi-criteria problem to an op-
timization problem with a scalar objective func-
tion 𝑓. This approach is applied to the Optimization
library with the maximum of the objectives, the sum
of the squares of the objectives or the sum of the ab-
solute values of the objectives.

1.3 Discrete Tuner Parameters

Discrete tuners are tuners that only have a finite
number of values to be set. Examples for such tuners
are configuration parameters that represent different
topologies, e.g. switching modes in networks.

Three possibilities are available to define discrete
tuners in the Optimization library. At the level of
each tuner parameter, one can define the number of
equidistant discrete values within the interval [min,
max]. Only these points can be selected by the opti-
mization algorithm to set the tuner value.

Figure 1: Discrete values for tuner parameters in the opti-
mization setup GUI.

For example, setting equidistant = 6 for min = −10,
max = 0 enables the values −10, −8, −6, −4, −2, 0 for

the tuner Ki in Figure 1. The second possibility to
define discrete tuners is to give a Modelica vector of
values that can be set to the tuner parameter, e.g. dis-
creteValues = {−7.8, −2.5, −9.3} for tuner parameter
Kf.

At the level of all tuner parameters a list of values of
discrete tuner parameter sets can be defined in a ma-
trix. Each column corresponds to a tuner parameter,
see Figure 2. It is possible to simply import the ma-
trix from and export it to file. This feature allows to
automatically evaluate a long list of tuner values
generated by a separate tool.

Figure 2: Discrete tuner matrix in the optimization setup
GUI.

1.4 Optimization and Evaluation Algorithms

The following numerical optimization algorithms are
available in the Optimization library: Sequential
Quadratic Programming (SQP), Quasi Newton
(BFGS) method, Pattern Search, Simplex Method
and Genetic Algorithm. SQP and BFGS algorithms
rely on derivatives of the criteria with respect to the
tuner parameters and have good convergence proper-
ties for smooth optimization problems. Pattern
Search and Simplex Method are more robust against
nonsmoothness but generally need more criteria
evaluations to converge. Genetic Algorithm is the
only approach to find a global solution whereas the
others are local convergent methods. Further details
to the implemented optimization algorithms can be
found in [J11].

All the optimization algorithms have in common that
they work more or less sequentially. Most values for
tuners depend on criteria values of previous evalua-
tions. So, there are limited possibilities to parallelize
the (time consuming) evaluations of criteria. In con-
trast to these algorithms, pure evaluation methods
independently set tuner values at the beginning of the
process. Of course, constraints fulfillment is there-
fore not guaranteed.

Two evaluation methods are implemented in the Op-
timization library: Random Search and Systematic
Tuner Variation. Random Search takes uniformly
distributed random values between minimum and

Optimization Library for Interactive Multi-Criteria Optimization Tasks

670 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076669

maximum of each tuner parameter. Systematic Tuner
Variation is based on discrete tuners. If the discrete
tuner matrix is activated, the corresponding tuner
values are used row by row of the matrix. If the dis-
crete tuner matrix is not used, all combinations of
equidistant or given discrete tuner values are the ba-
sis for the criteria evaluations. For the example in
Figure 1 there are 3 ∙ 6 ∙ 1 = 18 different sets of dis-
crete tuner values.

Table 1: Overview of the optimization and evaluation algo-
rithms with their capability to support continuous and / or
discrete tuners.

Algorithm Continuous Discrete Mixed
SQP 
BFGS 
Pattern Search 
Simplex Meth. 
Genetic Alg.   
Random Search   
Systematic Var. 

Most of the interfaced algorithms are designed to
handle continuous tuner parameters. It means that the
tuner values can be arbitrarily varied inside a given

interval. Table 1 gives an overview which algorithm
also supports discrete tuners or problems with both
continuous and discrete tuner parameters.

1.5 Optimization Process

For each of the GUI supported optimization tasks the
process to configure the task, to start the optimiza-
tion and to handle the results is nearly the same and
is discussed in the following by means of Figure 3.

By starting the corresponding setup GUI for an op-
timization task, the user gets a hierarchical list of
settings to be configured. For each task one has to
specify tuners and criteria depending on the type of
the task. For optimization tasks requiring a model,
additional settings for the model simulation have to
be provided. All the information given in the setup
GUI can be saved to a Modelica file. The file con-
tains a call starting the corresponding setup GUI
filled with the saved entries. Of course, the textual
file can be edited before starting the setup GUI. So,
loading an optimization setup is simply running the
Modelica function generated when saving the setup.

After the optimization setup is configured, the opti-
mization run is started. During the run the current

Updated
Tuner values

Load Setup

Save Setup

Optimization Run
Logging

Setup GUI

How to
proceed

with
results?

Figure 3: Optimization process for GUI supported Optimization tasks.

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 671
10.3384/ecp12076669 September 3-5, 2012, Munich, Germany

solutions may be logged to an HTML-file, also inter-
actively displayed in Dymola’s Command window.
The logging has two intentions. Firstly, the history of
a complete optimization run can be reconstructed.
Secondly, optimization runs may last hours or days.
It is very important in these cases to have a feedback,
what the optimization algorithm is currently doing,
to quickly react on non-intended intermediate opti-
mization results. The HTML-logging lists the current
tuner and criteria values and visualizes them in dif-
ferent colors in comparison to values at the begin-
ning of the optimization.

Beside the HTML-logging there is a logging of pure
numeric data to be processed after the optimization
run if it is necessary. After the optimization run is
finished, the user is asked how he wants to proceed.
There is the possibility to reset the tuner parameters
by values generated by the optimization process. For
example, one can select the tuner values of the best
evaluation (= solution) of the optimization run. The-
se settings can be used to proceed the optimization
process with different settings, e.g. using another
optimization algorithm. In any case, after an optimi-
zation run the setup GUI is displayed (with possibly
changed tuner values) and can be configured as de-
scribed above.

2 Function based Optimization

Two optimization tasks based on user-defined Mod-
elica functions are described. Whereas Function Op-
timization is an interactive task, Realtime Optimiza-
tion is designed to be called in model equations dur-
ing the numerical integration.

2.1 Function Optimization

The task Function Optimization is designed for the
most general case of an optimization problem in
Modelica. The user has to provide a Modelica func-
tion that evaluates the criteria (and constraints) func-
tions. Optionally, a user-defined function for the
evaluation of the Jacobian matrix can be incorpo-
rated. The task can be used for simple academic op-
timization problems resulting in a criteria function of
a few lines of code, or for every complex optimiza-
tion problem including simulations and linearizations
of several models. The user has to program and con-
trol the simulations and linearizations by available
functions in Modelica and Dymola.

The main part of a function optimization problem is
to program the criteria function in Modelica. The

criteria function returns a criteria vector depending
on the tuner values. The criteria can either be parts of
the optimization's objective function or be one of the
constraints of the optimization problem. A criteria
function has to have defined interface variables from
the partial function PartialCriteriaVariables:

partial function PartialCriteriaVariables
 input Real tuners[:];
 output Real criteria[:];
end PartialCriteriaVariables;

A typical criteria function looks like the following
prototype. One can add own input variables to the
criteria function. The values for these inputs have to
be declared in the name of the criteria function in the
setup, e.g. ”myCriteriaFunc(myVar=<value>)”.

function myCriteriaFunction
 extends PartialCriteriaVariables;
 input <AnyType> myVar;
algorithm
 criteria := ...(tuners, myVar);
end myCriteriaFunction;

Gradient based optimization algorithms (SQP,
BFGS) need the Jacobian matrix of the criteria with
respect to tuner parameters. The user can select be-
tween symmetric finite differences and forward dif-
ference quotients. There is also the possibility to
program the Jacobian matrix by oneself, e.g. if one
knows the analytical Jacobian matrix. The interface
variables are defined in the following partial func-
tion:

partial function PartialJacobianVariables
 input Real tuners[:];
 input PartialCriteriaVariables CritFunc;
 output Real Jacobian[:,size(tuners,1)];
end PartialJacobianVariables;

To a Jacobian function one can also add own input
variables, see the following prototype of a typical
Jacobian function:

function myJacobianFunction
 extends PartialJacobianVariables;
 input <AnyType> myVar;
algorithm
 Jacobian := ...(tuners, myVar);
end myJacobianFunction;

2.2 Realtime Optimization

Realtime Optimization is in some way different to
the other optimization tasks. Realtime Optimization
provides the framework for an optimization function
to be called during the numerical integration of a

Optimization Library for Interactive Multi-Criteria Optimization Tasks

672 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076669

model. A possible application of this optimization
task is a discrete controller that solves an optimiza-
tion problem to predict new controller values every
sample time. The optimization problem itself is very
similar to that of Function Optimization. User de-
fined functions for criteria evaluation and optional
functions for the Jacobian matrix provide the basis
for the optimization task. Because Realtime Optimi-
zation is active during a simulation many times,
there is no GUI support for it. A Modelica model
calling the optimization function typically has the
following structure:

model myModel
 Real resultTuners[...];
 Real resultCriteria[...];
 KernelProblem problem(...);
 ...
equation
 ...
 when sample(0, 0.1) then
 (resultTuners,resultCriteria) =
 run(problem, CriteriaFunc =
 function myCriteriaFunction);
 end when;
 ...
end myModel;

At each sample point the optimization run is started
by the function run. The optimization problem is
described by the record problem that includes the
tuner and criteria definitions as well as the optimiza-
tion options. The approach is currently used in model
predictive control for an electric vehicle [K10].

3 Model based Optimization

This section deals with optimization tasks based on
the numerical integration of a Modelica model. The
computation of the optimization criteria is part of the
numerical integration. Because model simulation is
the main application of dealing with Modelica mod-
els, the following optimization tasks and their fea-
tures may be considered as the core of the Optimiza-
tion Library.

3.1 Criteria Library

To support all model based optimization tasks the
sub-library Optimization.Criteria is part of the
whole package. The library (see Figure 4) provides
models that compute typical criteria from time de-
pendent model variables. The collection of criteria
models helps the user to prepare his system model
for conducting an optimization on it. For Real sig-
nals the following models are included: minimum,

maximum, mean value, moving average and integral
norm. In Figure 5, some examples are illustrated.
Computing deviations between two signals may be
handled by the corresponding criteria models. In the
field of controller design typical design criteria are
overshoot, rise time and settling time. Each of them
is represented by a corresponding criteria model.
Some of the criteria models require the input signals
to be differentiated.

Figure 4: Criteria library.

Figure 5: Typical signals of criteria models.

In some cases only parts of the whole time interval
shall be used to compute a certain criterion, or some
time areas shall be weighted more than others. For
such needs several weighting models are provided:
Step, Ramp, Triangle, etc.

3.2 Model Optimization

The task Model Optimization is designed to optimize
parameters of a Modelica model. The user can select
from a list of model parameters to define tuners, see
Figure 6. Also it is possible to get a list of all time
depending model variables to be selected for criteria

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 673
10.3384/ecp12076669 September 3-5, 2012, Munich, Germany

variables. The value of the criterion is defined by the
final value of the criterion variable at the end of the
integration interval.

Figure 6: GUI for selecting model parameters as tuners.

The simulation of the model to be optimized has to
be specified by usual simulation preferences like
start and stop time or the numerical integration algo-
rithm. Additionally, different modes to accelerate the
numerical integration of the model equations are im-
plemented, see Section 3.5.

A typical application of Model Optimization is the
identification of model parameters by comparing
simulation results and corresponding measurements
from a test bench. A further application is well
known in the field of controller synthesis. To im-
prove the controller performance automatic optimi-
zation is applied to the system model.

3.3 Multi Case Model Optimization

Multi Case Model Optimization is an extension of
the task Model Optimization and has its origin in the
field of model based controller design. Most control-
lers do not only have to guarantee performance and
stability of a system in one, but in several operating
points. The optimization of the controller parameters
includes the simulation of a system model in differ-
ent operating points that are characterized by differ-
ent values of special model parameters, the case pa-
rameters. These model parameters are disjoint with
the tuner parameters and are not varied by the opti-
mization algorithm. The different model simulations
that are defined by the case parameters are called
cases. In Figure 7 main parts of the corresponding
task setup GUI are shown.

Each case should have a name to distinguish it from
the other cases. In Figure 7 there are three cases:
nominal, worstOvershoot and worstSettlingTime.
The case parameters (e.g. Ma, Md, …, Zd) can be
selected from a list of all independent model parame-
ters. For each case every case parameter gets a value,
see the matrix in Figure 7. The model is simulated
with these case parameter values for each case. The
criteria of the optimization task are similarly speci-
fied as for the task Model Optimization.

Figure 7: Optimization setup GUI for Multi Case Model
Optimization.

In summary, every case contributes to the overall
criteria vector of the optimization problem, see Fig-
ure 8 for an example. Depending on the objective
function type all these criteria values are combined
to the objective function value. In the example the
value is the maximum of all criteria values: riseTime
for the case worstSettlingTime.

Figure 8: Logging of multi case criteria.

3.4 Trajectory Optimization

Problems of Optimal Control arise in different fields
of applications. The goal is to minimize an objective
functional with respect to one or more time depend-
ent control trajectories. Various constraints are typi-
cal for optimal control problems. Dynamic model
equations appear in most of the problems in technical

Optimization Library for Interactive Multi-Criteria Optimization Tasks

674 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076669

applications. Consequently, an optimization task
Trajectory Optimization is provided in the library.

There are many techniques [B01] to numerically
solve an infinite dimensional optimal control prob-
lem. In the Optimization library the solution proce-
dure is according to the task Model Optimization. It
means that tuners are varied by the optimization al-
gorithm and for each computation of the criteria a
model simulation is performed. This Single Shooting
Technique is based on a finite dimensional optimiza-
tion problem approximating the original problem.

The control trajectories are approximated by B-
splines of degree 𝑘. The number of samples 𝑁 and
the interpolation degree 𝑘 define the construction of
a B-spline as control trajectory [DH02]. The B-spline
has 𝑁 equidistant knots on the time interval the
spline is defined (normally this is the integration in-
terval of the model). Further there are 𝑁 + 𝑘 − 1 de
Boor control points that parameterize the spline. A
spline 𝑠(𝑡) is a piecewise polynomial function be-
tween the knots. The individual polynomials have at
most the degree 𝑘. The polynomials are appended
such that the complete spline is 𝑘 − 1 times continu-
ously differentiable on the whole interval it is de-
fined. Because a B-spline is contained in the convex
hull of its de Boor points 𝑁, the box constraints
𝑢Min ≤ 𝑁 ≤ 𝑢Max (for lower and upper bounds 𝑢Min,
𝑢Max) are valid for the whole spline function:
𝑢Min ≤ 𝑠(𝑡) ≤ 𝑢Max. Therefore, the control points 𝑁
are selected as tuners to be varied by the optimiza-
tion algorithm.

Figure 9: Polygon of B-spline control points and corre-
sponding B-spline trajectory.

In Figure 9 the polygon of 13 control points and the
corresponding B-spline of degree 3 (𝑁 = 11, 𝑘 = 3)
are shown. The control points correspond to the 13
time values 0.0, 0.033, 0.1, 0.2, …, 0.8, 0.9, 0.967,

1.0. Additional to the given time grid 0.0, 0.1, …, 1.0
there are two values at the boundaries: 0.033 and
0.967. They represent the free boundary conditions
of the B-spline.

The optimization setup for Trajectory Optimization
includes the selection of model inputs that represent
the control trajectories. For these trajectories the
number of sample points 𝑁 and the interpolation de-
gree 𝑘 has to be specified by the user. Any starting
trajectory may be provided in a separate file. An ex-
ample using the Trajectory Optimization task is giv-
en in Section 4.

3.5 Parallel Numerical Integration

Because the numerical integration of model equa-
tions normally is the most time intensive part of any
model based optimization tasks, several techniques
are applied to reduce the computation time of the
numerical integration inside the optimization loop.
The default case is a sequential execution of the nu-
merical integration runs by calling Dymola’s simula-
tion executable for each new set of model parame-
ters. We call it single simulation technique.

An optimized version of sequential integration runs
is provided by Dymola. The executable is started
only one time and independent model parameter val-
ues are sequentially read from file and processed by
the numerical integration. Especially for many simu-
lation runs with very short elapsed real times for one
model simulation, this multi simulation approach
accelerates the numerical integration in summary,
because process overhead is avoided.

Independent simulation runs of a model may be exe-
cuted in parallel. Especially for multi-core machines
this may reduce the computation time of the whole
optimization run. In the Optimization library the
simulation runs are parallelized in different threads
by calling several copied simulation executables in
an OpenMP program. OpenMP is a software inter-
face for shared-memory parallel programming on
different platforms. It is supported by many comput-
er hardware and software vendors [CJP08]. For par-
allel simulations the user can specify the number of
threads up to the double of the number of available
cores. Table 2 shows execution sequences for differ-
ent simulation modes in principle.

To measure the acceleration in computation time, a
test is performed for different simulation modes. The
model Electrical.Analog.Examples.Rectifier

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 675
10.3384/ecp12076669 September 3-5, 2012, Munich, Germany

from the Modelica Standard Library 3.2 is simulated
1000 times with identical parameter values. To in-
crease the elapsed real time of one numerical integra-
tion run, the stop time of the integration is increased.
The test is executed on a PC with an Intel Xeon
X5550 quad-core processor (2.67 GHz) with activat-
ed hyper-threading.

Table 2: Execution sequence for single, multi and parallel
(with 3 threads) simulations.

Single Multi Parallel 3

 Thread 1 Thread 2 Thread 3

In Figure 10 the results of the test are illustrated. De-
pending on the execution time for one model simula-
tion, the speed factor with respect to the single simu-
lation technique is plotted for multi and parallel sim-
ulations. Parallel simulations are performed with 2, 4
and 8 threads. For very fast model simulations the
multi simulation approach is clearly superior. Com-
pared to single simulation the multi simulation is up
to 4 times faster although no parallelization tech-
nique is applied. The parallel execution of 1000
model simulations results in maximum speed factors
of 1.9, 3 and 4 for 2, 4 and 8 threads. These maxi-
mum factors are reached if the execution time for
one model simulation is greater than 1 second. Be-
low this bound the speed factor is decreasing due to
the process overhead. For machines with many cores
the limiting influence for parallelization is probably
memory access.

An important assumption for the performance test is
the independency of all evaluated model parameter
values. The Optimization library supports two algo-
rithms that fulfill this assumption: Random Search
and Systematic Tuner Variation (see Section 1.4).
For these algorithms the tuner values of all evalua-
tions may be determined before running any simula-
tion, therefore full parallel evaluations are possible.
So, speed factors as shown in Figure 10 can be
reached.

Accelerating the computation time in nonlinear op-
timization by parallel evaluations of the criteria has

been investigated since several years, e.g. see
[LAS97]. The optimization algorithms of the Opti-
mization library partially support parallel criteria
evaluations. During an optimization run there are
both evaluations of the criteria that can be parallel-
ized and such ones that cannot be parallelized. The
evaluation of numerical Jacobian matrices typically
needs the most computation time for optimization
runs with SQP and BFGS methods. Consequently,
the Optimization library supports computing numeri-
cal Jacobian matrices by parallel model simulations.
It also supports parallel criteria evaluations of multi
case optimization tasks (see Section 3.3). The simu-
lation runs of a model with different case parameter
values are independent and therefore can be comput-
ed in parallel. It is planned to support parallel model
simulations for independent criteria evaluations of
the genetic algorithm.

Figure 10: Speed factors for different simulation modes.

Depending on the used optimization algorithm, the
Modelica model and the number of tuners, the speed
factor for a complete optimization run differs. On the
test machine a factor of 3 in computation time has
been observed for optimization examples using a
model that needs more than 1 second of elapsed real
time per simulation, see Section 4.3 for an example.

4 Application Example

In [EOM+05] the full robot model of the Modelica
standard library is used to demonstrate a multi case
optimization for controller design. Of course, the
current version of the Optimization library can still
handle this kind of optimization task (see Section
3.3). In the following a trajectory optimization setup
for the robot model is presented to find reference
trajectories for the robot’s movements from one
point to another point in space.

0.1 1 10
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

S
pe

ed
 fa

ct
or

 w
.r.

t.
S

in
gl

e

Elapsed real time for one model simulation in s

Multi Parallel 2 Parallel 4 Parallel 8Ex
ec

ut
io

n
se

qu
en

ce

Sim. 2

Sim. 1

Sim. 3

Sim. 1
Sim. 2
Sim. 3 Sim. 1 Sim. 3 Sim. 5

Sim. 5

Sim. 4 Sim. 4
Sim. 5

Sim. 2 Sim. 4

Optimization Library for Interactive Multi-Criteria Optimization Tasks

676 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076669

4.1 Robot Model

The robot model (see Figure 11) mainly consists of a
3-D mechanical structure model and 6 axis models
including electrical motors, controllers and mechani-
cal components of the axes (gear and friction). The
reference trajectories for the angles and velocities of
the axes are provided by a separate path planning
model. The path planning is based on an algorithm
that finds trajectories for the fastest movement for a
given start position 𝛼 to a given end position 𝛽 under
kinematical constraints. The constraints are defined
by the maximum velocity and the maximum acceler-
ation of the axis movements.

Figure 11: Animation of robot model from Modelica Stand-
ard Library.

The drawback of the path planning model is that the
available maximum torque of the electrical motors is
not considered. We may include them in the path
planning by solving a trajectory optimization prob-
lem with the inverse dynamics model [R11] using
the Optimization library. For these purposes we have
to adapt the robot model. The motor, controller and
friction model of the axes are removed. The rotation-
al power train of each axes is driven by a signal
based torque source. The non-causal approach of
Modelica automatically leads to the inverse dynam-
ics model when giving input signals for the robot
positions [TOB01].

4.2 Trajectory Optimization Problem

The goal of the trajectory optimization problem is to
find movements for the axes’ angles 𝑞(𝑡). The
movement from the start angles 𝛼 to the end angles
𝛽 should be as fast as possible under the constraints
that the maximum velocity and the maximum motor
torques are bounded by given values. Additionally,
the angular accelerations shall be zero at the start and

the end position to avoid oscillations for the con-
trolled robot using the computed paths as reference
motion.

The mathematical formulation is as follows:

min
𝑡𝐸𝑛𝑑, 𝑢(𝑡)

𝑡𝐸𝑛𝑑 w. r. t.

𝑞(0) = 𝛼, 𝑞(𝑡𝐸𝑛𝑑) = 𝛽, 𝑞̈ = 𝑢,
𝑞̇(0) = 𝑞̇(𝑡𝐸𝑛𝑑) = 𝑞̈(0) = 𝑞̈(𝑡𝐸𝑛𝑑) = 0,

 |𝑞̇(𝑡)| ≤ 𝑣𝑀𝑎𝑥, |𝜏(𝑡)| ≤ 𝑇𝑀𝑎𝑥 for 𝑡 ∈ [0, 𝑡𝐸𝑛𝑑].

In our investigations we only consider the main axes
1, 2 and 3. Axes 4, 5 and 6 are fixed and do not
move. Reasonable values for the maximum angular
velocities 𝑣𝑀𝑎𝑥 and the maximum torques 𝑇𝑀𝑎𝑥 can
be found in [OT88]. We use 𝑣𝑀𝑎𝑥 = (3, 1.5, 5) 𝑟𝑟𝑟/
𝑠 and 𝑇𝑀𝑎𝑥 = (950, 1950, 540) 𝑁𝑁 for axis 1, 2
and 3. The adapted robot model is prepared in such a
way that 𝑞(0) = 𝛼, 𝑞̇(0) = 0 is inherently fulfilled.
The trajectory 𝑞(𝑡) is implicitely defined by B-
Splines for the controls 𝑢(𝑡) ∶= 𝑞̈(𝑡). The trajecto-
ries for 𝑞̇(𝑡) and 𝑞(𝑡) are automatically computed in
the robot model by the numerical integration algo-
rithm during the simulation of the model.

Figure 12: Criteria of robot path planning in Optimization
setup GUI.

The trajectory optimization setup (see Figure 12)
consists of three input controls 𝑞̈(𝑡) and the free pa-
rameter 𝑡𝐸𝑛𝑑. The criterion to be minimized is the
end time 𝑡𝐸𝑛𝑑, whereas 6 (= 2 ∙ 3 axes) inequality
constraints are defined for 𝑞̇𝑀𝑎𝑥 and 𝜏𝑀𝑎𝑥. The robot

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 677
10.3384/ecp12076669 September 3-5, 2012, Munich, Germany

Time 𝑡 in 𝑠
 Figure 13: Result trajectories with different number 𝑁 of

sample points for the B-splines.

𝑞 2
(𝑡

) i
n
𝑟𝑟
𝑟/
𝑠2

𝑞 2

(𝑡
) i

n
𝑟𝑟
𝑟/
𝑠

 𝑞
2(
𝑡)

 in
 𝑟
𝑟𝑟

model includes criteria models (see Section 3.1) to
compute the absolute maxima 𝑞̇𝑀𝑎𝑥 of 𝑞̇(𝑡) and
𝜏𝑀𝑎𝑥 of 𝜏(𝑡). There remain 12 equality constraints
for 𝑞(𝑡𝐸𝑛𝑑), 𝑞̇(𝑡𝐸𝑛𝑑), 𝑞̈(0) and 𝑞̈(𝑡𝐸𝑛𝑑).

The advanced feature to handle a free end time 𝑡𝐸𝑛𝑑
for the trajectory optimization is implemented and
will be available in the next release of the Optimiza-
tion library.

4.3 Trajectory Optimization Results

We set the start trajectories for 𝑞̈(𝑡) equal to 0 and
choose 𝑡𝐸𝑛𝑑 = 5 at the beginning of the optimiza-
tion. These start conditions lead to violated optimiza-
tion constraints for 𝑞(𝑡𝐸𝑛𝑑). The SQP algorithm suc-
ceeds in finding input functions 𝑞̈(𝑡), such that all
constraints are fulfilled. Important for SQP is a high
accuracy of the criteria, therefore we set the error
tolerance of the integration to 10−12. The error toler-
ance for the solution of SQP is set to 10−6.

Depending on the number 𝑁 of sample points for the
B-splines, different solution are found, see columns
1 and 2 in Table 3. The degree 𝑘 of the polynomials
is always set to 𝑘 = 3. We tested the developed par-
allelization techniques (see Section 3.5) for this
benchmark problem. In Table 3 the computation
times for the single simulation approach are docu-
mented. Further, the speed factors using parallel
simulations with 2, 4 and 8 threads are given. Since
the computation of the numerical Jacobian matrix
dominates the overall computation time, speed fac-
tors of pure independent simulations (compare Fig-
ure 10) can be reached for 2 and 4 parallel threads.
The optimization with 8 threads is faster than using 4
threads, but the difference is smaller than in Figure
10.

Table 3: Results of the trajectory optimization with different
number 𝑁 of sample points for the B-splines.

N 𝑡𝐸𝑛𝑑
Single Parallel speed factors

Elapsed time 2 threads 4 threads 8 threads

5 1.60 s 30 min 1.85 2.95 3.15
8 1.48 s 150 min 1.96 3.11 3.38
10 1.42 s 251 min 1.95 3.12 3.34
20 1.40 s 908 min 2.00 3.33 3.58
30 1.40 s 1228 min 2.02 3.37 3.68

Figure 13 illustrates the solutions 𝑞2(𝑡), 𝑞̇2(𝑡) and
𝑞̈2(𝑡) for 𝑁 = 5, 8, 10 and 20. It is obvious, that the

velocity constraint 𝑞̇2 ≤ 𝑣2 = 1.5 𝑟𝑟𝑟/𝑠 is an active
constraint. In Figure 14 it can also be seen, that the
motor torque is inside the demanded ranges. The tra-
jectory for the torque of axis 3 hits the border lines
several times.

Time 𝑡 in 𝑠

Figure 14: Motor torque for different axes. The optimiza-
tion solution is computed with 𝑁 = 20 sample points.

M
ot

or
 to

rq
ue

 𝜏
(𝑡

) i
n
𝑁
𝑁

Optimization Library for Interactive Multi-Criteria Optimization Tasks

678 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076669

5 Conclusions

A library for solving interactive optimization tasks is
presented. Both function and different model based
optimization tasks are available to support the engi-
neer in improving his system design by sophisticated
numerical optimization algorithms. Additionally,
optimization runs may be accelerated by automated
parallel model simulations on multi-core machines.
Version 2.1 of the Optimization library is available
along with the release of Dymola 2013.

6 Acknowledgement

The support of H.-D. Joos, M. Otter, M. Reiner and
K. Schnepper (all members of DLR Institute of Sys-
tem Dynamics and Control) in developing the Opti-
mization library and the application example is
gratefully appreciated. Improvements of Dymola by
Dassault Systèmes AB to support the Optimization
library are acknowledged. Partial financial support of
DLR by BMBF (BMBF Förderkennzeichen:
01IS07022F) for this work within the ITEA2 project
EUROSYSLIB [E12] is highly appreciated. Also, the
constructive comments of the anonymous paper re-
viewers are appreciated.

References

[AAG+10] Åkesson J., Årzén K.-E., Gäfvert M., Berg-
dahl T. and Tummescheit H.: Modeling and
Optimization with Optimica and JModeli-
ca.org – Languages and Tools for Solving
Large-Scale Dynamic Optimization Problems.
Computers and Chemical Engineering, Vol.
34, Issue 11, pp. 1737-1749, 2010.

[B01] Betts J. T.: Practical Methods for Optimal
Control Using Nonlinear Programming. SI-
AM Press, Philadelphia, Pennsylvania, USA,
2001.

[CJP08] Chapman B., Jost G. and van der Pas R.: Us-
ing OpenMP, Portable Shared Memory Par-
allel Programming. The MIT Press, Cam-
bridge, Massachusetts, London, England,
2008.

[DH02] Deuflhard P. and Hohmann A.: Numerische
Mathematik I. Eine algorithmisch orientierte
Einführung. 3. Auflage, de Gruyter, Berlin,
Germany, 2002.

[DS12a] Dassault Systèmes AB: CATIA.
www.3ds.com/products/catia.

[DS12b] Dassault Systèmes AB: Dymola.
www.dymola.com.

[E05] Ehrgott M.: Multicriteria Optimization. Se-
cond Edition, Springer, Berlin, Heidelberg,
Germany, 2005.

[E12] EUROSYSLIB, ITEA2 06020,
www.eurosyslib.com.

[EOM+05] Elmqvist H., Olsson H., Mattsson S. E.,
Brück D., Schweiger C., Joos D. and Otter
M.: Optimization for Design and Parameter
Estimation. Proc. of 4th International Modeli-
ca Conference, pp. 255-266, Hamburg, Ger-
many, 2005.

[J11] Joos H.-D.: MOPS - Multi-Objective Parame-
ter Synthesis, User’s Guide V6.2. Institute of
Robotics and Mechatronics, DLR Ober-
pfaffenhofen, Germany, 2011.

[JBL+02] Joos H.-D., Bals J., Looye G., Schnepper K.
and Varga A.: A Multi-Objective Optimisation
based Software Environment for Control Sys-
tem Design. Proc. IEEE International Confer-
ence on Control Applications, pp. 7-14, Glas-
gow, Scotland, Sept. 18-20, 2002.

[K10] Köppern J.: Integrierte Fahrzeugregelung
durch einen hybriden Ansatz aus inversem
Modell und modellprädiktiver Optimierung.
GMA-Fachausschuss 1.40 "Theoretische Ver-
fahren der Regelungstechnik", Salzburg, Aus-
tria, 2010.

[LAS97] Lewis A, Abramson D. and Simpson R., Par-
allel non-linear optimization: Towards the
design of a decision support system for air
quality management. Proc. of IEEE Super-
computing 97, San Jose, USA, 1997.

[OT88] Otter M. and Türk S.: The DFVLR Models 1
and 2 of the Manutec r3 Robot. DFVLR-
Mitteilung 88-13, Institut für Dynamik der
Flugsysteme, DLR Oberpfaffenhofen, Ger-
many, 1988.

[R11] Reiner M.: Modellierung und Steuerung von
strukturelastischen Robotern. Ph.D. thesis,
University of Technology, Munich, 2011.

[TOB01] Thümmel M., Otter M. and Bals J.: Control of
Robots with Elastic Joints based on Automat-
ic Generation of Inverse Dynamics Models.
Proc. of IROS, pp. 925-930, Maui, Hawaii,
USA, 2001.

[TNT+11] Thieriot H., Nemer M., Torabzadeh-Tari M.,
Fritzson P., Singh R. and Kocherry J. J.: To-
wards Design Optimization with OpenModel-
ica Emphasizing Parameter Optimization
with Genetic Algorithms. Proc. of 8th Interna-
tional Modelica Conference, pp. 756-762,
Dresden, Germany, 2011.

Session 6A: Optimization

DOI Proceedings of the 9th International Modelica Conference 679
10.3384/ecp12076669 September 3-5, 2012, Munich, Germany

http://www.3ds.com/products/catia
http://www.dymola.com/
http://www.eurosyslib.com/

Optimization Library for Interactive Multi-Criteria Optimization Tasks

680 Proceedings of the 9th International Modelica Conference DOI
 September 3-5, 2012, Munich Germany 10.3384/ecp12076669

