

Abstract— Intelligent Agents have originated a lot of discussion

about what they are, and how they are different from general
programs. We describe in this paper a new paradigm for
intelligent agents. This paradigm helped us deal with failures in an
independent and efficient way. We proposed three types of agents
to treat the system in a hierarchical way. In this I articulate is to
the operation of the Agent Node

A new method to visualize fault tolerant systems (FTS) is
proposed, in this paper with the incorporation of intelligent agents,
which as they grow and specialized create the Multi-Agent System
(MAS). One is the communications diagrams of each of the agents,
described in diagrams of transition of states.

Index Terms— Intelligent Agents, Fault Tolerance, Distributed
System.

I. INTRODUCTION

At the moment the approach using agents for real applications,
has worked with movable agents, which work at the level of the
client-server architecture. However, in systems where the
requirements are higher, as in the field of the architecture of
embedded industrial systems, the idea is to innovate in this area
by working with the paradigm of intelligent agents. Also, it is a
good idea in embedded fault tolerant systems, where it is a new
and good strategy for the detection and solution of errors.

A rational agent is one that does the right thing. Obviously,
this is better than doing the wrong thing, but what does it
mean? As a first approximation, we will say that the right action
is the one that will cause the agent to be most successful. That

A. Alanis is with the Tijuana institute of technology, Division Graduate and
studies Reseach, Calzada Tecnologico, S/N, Tijuana, BC 22379 Mexico: 664-
682-72-79; e-mail: alanis@ tectijuana.mx).

 J. Jose Serrano is with the Universidad Politécnica de Valencia (España), D.
Inf. de Sistemas y Computadoras, Camí de Vera, s/n, 46022 VALÈNCIA,
ESPAÑA, ,: 00+34 96387, email:jserrano@disca.upv.es.

R.Ors Carot is with the Universidad Politécnica de Valencia (España), D.
Inf. de Sistemas y Computadoras, Camí de Vera, s/n, 46022 VALÈNCIA,
ESPAÑA, :00+34 96387, email:rors@disca.upv.es.

J. Mario Garcia is with the Tijuana institute of technology, Division
Graduate and studies Reseach, Calzada Tecnologico, S/N, Tijuana, BC 22379
Mexico: 664-682-72-79; e-mail: mario@ tectijuana.mx.

leaves us with the problem of deciding how and when to
evaluate the agent’s success

By an agent-based system, we mean one in which the key
abstraction used is that of an agent. In principle, an agent-based
system might be conceptualized in terms of agents, but
implemented without any software structures corresponding to
agents at all. We can again draw a parallel with object-oriented
software, where it is entirely possible to design a system in
terms of objects, but to implement it without the use of an
object-oriented software environment. But this would at best be
unusual, and at worst, counterproductive. A similar situation
exists with agent technology; we therefore expect an agent-
based system to be both designed and implemented in terms of
agents. A number of software tools exist that allow a user to
implement software systems as agents, and as societies of
cooperating agents.

A. Agents

Let's first deal with the notion of intelligent agents. These are
generally defined as "software entities", which assist their users
and act on their behalf. Agents make your life easier, save you
time, and simplify the growing complexity of the world, acting
like a personal secretary, assistant, or personal advisor, who
learns what you like and can anticipate what you want or need.
The principle of such intelligence is practically the same of
human intelligence. Through a relation of collaboration-
interaction with its user, the agent is able to learn from himself,
from the external world and even from other agents, and
consequently act autonomously from the user, adapt itself to the
multiplicity of experiences and change its behaviour according
to them. The possibilities offered for humans, in a world whose
complexity is growing exponentially, are enormous
[1][4][5][6].

We need to be careful to distinguish between rationality and
omniscience. An omniscient agent knows the actual outcome
of its actions, and can act accordingly; but omniscience is
impossible in reality. Consider the following example: I am
walking along the Champs Elys´ees one day and I see an old
friend across the street. There is no traffic nearby and I’m not
otherwise engaged, so, being rational, I start to cross the street.
Meanwhile, at 33,000 feet, a cargo door falls off a passing
airliner,

and before I make it to the other side of the street I am

Fault Tolerant Multi-Agent Systems: its
communication and cooperation

Arnulfo Alanis Garza, Juan José Serrano, Rafael Ors Carot, José Mario García Valdez

Engineering Letters, 15:1, EL_15_1_17
__

(Advance online publication: 15 August 2007)

flattened. Was I irrational to cross the street? It is unlikely that
my obituary would read “Idiot attempts to cross street.”Rather,
this points out that rationality is concerned with expected
success given what has been perceived. Crossing the street was
rational because most of the time the crossing would be
successful, and there was no way I could have foreseen the
falling door. Note that another agent that was equipped with
radar for detecting falling doors or a steel cage strong enough
to repel them would be more successful, but it would not be any
more rational

II. AUTONOMY

There is one more thing to deal with in the definition of an ideal
rational agent: the “built-in knowledge”part. If the agent’s
actions are based completely on built-in knowledge, such that it
need pay no attention to its percepts, then we say that the agent
lacks autonomy. For example, if the clock manufacturer was
prescient enough to know that the clock’s owner would be
going to Australia at some particular date, then a mechanism
could be built in to adjust the hands automatically by six hours
at just the right time. This would certainly be successful
behavior, but the intelligence seems to belong to the clock’s
designer rather than to the clock itself. An agent’s behavior can
be based on both its own experience and the built-in knowledge
used in constructing the agent for the particular environment in
which it operates. A system is autonomous

4
to the extent that its

behavior is determined by its own experience. It would be too
stringent, though, to require complete autonomy from the word
go: when the agent has had little or no experience, it would
have to act randomly unless the designer gave some assistance.
So, just as evolution provides animals with enough built-in
reflexes so that they can survive long enough to learn for
themselves, it would be reasonable to provide an artificial
intelligent agent with some initial knowledge as well as an
ability to learn. Autonomy not only fits in with our intuition,
but it is an example of sound engineering practices. An agent
that operates on the basis of built-in assumptions will only
operate success-fully when those assumptions hold, and thus
lack flexibility. Consider, for example, the lowly dung beetle.
After digging its nest and laying its eggs, it fetches a ball of
dung from a nearby heap to plug the entrance; if the ball of
dung is removed from its grasp en route, the beetle continues
on and pantomimes plugging the nest with the nonexistent dung
ball, never noticing that it is missing. Evolution has built an
assumption into the beetle’s behavior, and when it is violated,
unsuccessful behavior results. A truly autonomous intelligent
agent should be able to operate successfully in a wide variety of
environments, given sufficient time to adapt.

III FIPA (THE FOUNDATION OF INTELLIGENCE PHYSICAL
AGENTS)

FIPA specifications represent a collection of standards, which
are intended to promote the interoperation of heterogeneous
agents and the services that they can represent

The life cycle [9] of specifications details what stages a
specification can attain while it is part of the FIPA standards
process. Each specification is assigned a specification identifier
[10] as it enters the FIPA specification life cycle. The
specifications themselves can be found in the Repository [11]

The Foundation of Intelligent Physical Agents (FIPA) is now
an official IEEE Standards Committee.

IV FIPA ACL MESSAGE

A FIPA ACL message contains a set of one or more message
elements. Precisely which elements are needed for effective
agent communication will vary according to the situation; the
only element that is mandatory in all ACL messages is the
performative, although it is expected that most ACL messages
will also contain sender, receiver and content elements.

If an agent does not recognize or is unable to process one or
more of the elements or element values, it can reply with the
appropriate not-understood message.

Specific implementations are free to include user-defined
message elements other than the FIPA ACL message elements
specified in Table 1. The semantics of these user-defined
elements is not defined by FIPA, and FIPA compliance does
not require any particular interpretation of these elements.

Some elements of the message might be omitted when their
value can be deduced by the context of the conversation.
However, FIPA does not specify any mechanism to handle such
conditions, therefore those implementations that omit some
message elements are not guaranteed to interoperate with each
other

The full set of FIPA ACL message elements is shown in Table
1 without regard to their specific encodings in an
implementation. FIPA-approved encodings and element
orderings for ACL messages are given in other specifications.
Each ACL message representation specification contains
precise syntax descriptions for ACL message encodings based
on XML, text strings and several other schemes.

A FIPA ACL message corresponds to the abstract element
message payload identified in the [15]

Engineering Letters, 15:1, EL_15_1_17
__

(Advance online publication: 15 August 2007)

Table 1: FIPA ACL Message Elements

Element Category of Elements
performative Type of communicative

acts
sender Participant in

communication
receiver Participant in

communication
reply-to Participant in

communication
content Content of message
language Description of Content
encoding Description of Content
ontology Description of Content
protocol Control of conversation
conversation-id Control of conversation
reply-with Control of conversation
in-reply-to Control of conversation
reply-by Control of conversation

.

The following terms are used to define the ontology and the
abstract syntax of the FIPA ACL message structure:

Frame. This is the mandatory name of this entity, that must be
used to represent each instance of this class.

Ontology. This is the name of the ontology, whose domain of
discourse includes their elements described in the table.

Element. This identifies each component within the frame.
The type of the element is defined relative to a particular
encoding. Encoding specifications for ACL messages are given
in their respective specifications.

Description. This is a natural language description of the
semantics of each element. Notes are included to clarify typical
usage.

Reserved Values. This is a list of FIPA-defined constants
associated with each element. This list is typically defined in
the specification referenced.

All of the FIPA message elements share the frame and ontology
shown in Table 2.

Table 2: FIPA ACL Message Frame and Ontology

Frame FIPA-ACL-Message
Ontology FIPA-ACL

V THE KQML LANGUAGE

Communication takes place on several levels. The content of
the message is only a part of the communication. Begin able to
locate and engage the attention of someone you want to
communicate with is apart of the process. Pack-aging your
message in a way which makes your purpose in communicating
clear is another.

When using KQML, a software agent transmits content
messages, composed in a language of its own choice, wrapped
inside of a KQML message. The content message can be
expressed in any representation language and written in either
ASCII strings or one of many binary notations (e.g. network
independent XDR representations).All KQML implementations
ignore the content portion of the message except to the extent
that they need to recognize where it begin sand ends.

The syntax of KQML is based on a balanced parenthesis list.
The initial element of the list is the performative and the
remaining elements are the performative's arguments as
keyword/value pairs. Because the language is relatively simple,
the actual syntax is not significant and can be changed if
necessary in the future. The syntax reveals the roots of the
initial implementations, which were done in Common Lisp, but
has turned out to be quite flexible

KQML is expected to be supported by an software substrate
which makes it possible for agents to locate one another in a
distributed environment. Most current implementations come
with custom environments of this type; these are commonly
based on helper programs called routers or facilitators. These
environments are not a specified part of KQML. They are not
standardized and most of the current KQML environments will
evolve to use some of the emerging commercial frameworks,
such as OMG's CORBA or Microsoft's OLE2, as they become
more widely used.

The KQML language supports these implementations by
allowing the KQML messages to carry information which is
useful to them, such as the names and addresses of the sending
and receiving agents, a unique message identifier, and notations
by any intervening agents. There are also optional features of
the KQML language which contain descriptions of the content:
its language, the ontology it assumes, and some type of more
general description, such as a descriptor naming a topic within
the ontology. These optional features make it possible for the
supporting environments to analyze, route and deliver messages
based on their content, even though the content itself is
inaccessible [17].

VI KQML SOFTWARE ARCHITECTURES

KQML was not defined by a single research group for a
particular project. It was created by a committee of
representatives from different projects, all of which were

Engineering Letters, 15:1, EL_15_1_17
__

(Advance online publication: 15 August 2007)

concerned with managing distributed implementations of
systems. One was a distributed collaboration of expert systems
in the planning and scheduling domain. Another was concerned
with problem decomposition and distribution in the CAD/CAM
domain. A common concern was the management of a
collection of cooperating processes and the simplification of the
programming requirements for implementing a system of this
type. However, the groups did not share a common
communication architecture. As a result, KQML does not
dictate a particular system architecture, and several different
systems have evolved [19].

VII AGENT COMMUNICATION PROTOCOLS

There are a variety of interprocess information exchange
protocols. In the simplest, one agent acts as a client and sends a
query to another agent acting as a server and then waits for a
reply, as is shown between agents A and B in Figure 1. The
server's reply might consist of a single answer or a collection or
set of answers. In another common case, shown between agents
A and C, the server's reply is not the complete answer but a
handle which allows the client to ask for the components of the
reply, one at a time. A common example of this exchange
occurs when a client queries a relational database or a reasoner
which produces a sequence of instantiations in response.
Although this exchange requires that the server maintain some
internal state, the individual transactions are as before -
involving a synchronous communication between the agents. A
somewhat different case occurs when the client subscribes to a
server's output and an indefinite number of asynchronous
replies arrive at irregular intervals, as between agents A and D
in Figure 1. The client does not know when each reply message
will be arriving and may be busy performing some other task
when they do.
There are other variations of these protocols. Messages might
not be addressed to specific hosts, but broadcast to a number of
them. The replies, arriving synchronously or asynchronously
have to be collated and, optionally, associated with the query
that they are replying to [18].

Figure 1: Several basic communication protocols are supported
in KQML

VIII PROPOSED METHOD

Be a Distributed System (mainly applied to the industrial
control), which is made up of a set of Nodes, where each one of
them can be constituted by several Devices.

On these Nodes a set of Tasks, ordered is executed all of them
to take I finish the functionality of the system. In order to
identify this Distributed System the following definitions set
out:

Definition 1: = is N {Nor}, the set of the Nodes of the system,
being n is the number of units that integrate it.

Definition 2: Be [Di, z], the set of devices that contains Node i.
Where z can take value 1, if it is wanted to see the Node like
only device, or greater than 1 if it is desired to do visible some
of the elements that integrate it.

Definition 3: = is T {T j}, the set of tasks that are executed in
the system, being t the number of tasks that integrate the
system.

Definition 4: A System Distributed like dupla is defined: SD =
(N, T) Once characterized what a Distributed System could be
denominated Basic (without no characteristic of Tolerance to
Failures), is going away to come to the incorporation on he
himself from the paradigm of Intelligent Agents with the
purpose of equipping it with a layer with Tolerance to Failures.
The Fault tolerant Agents will define themselves now that
worked in the SD

Definition 5: An Agent is ANi to whom Agent denominated
itself Node, whose mission is the related one to the tolerance to
failures at level of the Node Nor. An Agent exists therefore
Node, by each Node of the System (biyectiva application).

Definition 6: An Agent is ATj to whom Agent denominated
itself Task, whose mission is the related one to the tolerance to
failures at level of the Tj Task. An Agent exists therefore Task
by each task of the system.

Definition 7: An Agent is AS to whom Agent denominated
itself to him System, whose mission is the related one to the
tolerance to failures system level.

Definition 8: AN= {ANi} the set of all the Agents Node.

Definition 9: AT= {ATj} the set of all the Agents Task.

Definition 10: A System is SMATF Fault tolerant Multi-Agent,
formed by tripla of ANi, ATj, AS.

That is to say, SMATF = <Ni, AT j, AS> with it a Distributed
System Fault tolerant SDTF is defined as:

Definition 11: A Distributed System Fault tolerant SDTF like
dupla SDTF is defined SDTF =<SD, SMATF > Next goes to

Engineering Letters, 15:1, EL_15_1_17
__

(Advance online publication: 15 August 2007)

describe with greater detail each one of the Agents who
compose the SMATF

IX CONTROL OF CONVERSATION

In this section we describe the control of conversation between
agents. In table 3 we show the protocol. In this table 4 we show
the conversation identifier of the node agent. In table 5 we
show the reply of an agent.

Table 3 Protocol

Element Description Reserved
Values

Protocol
TCP/IP

Denotes the interaction
protocol that the sending
agent is employing with this
ACL message

See [16]

Table 4 Conversation Identifier of Node Agent ANi

Element Description Reserved
Values

ANi.Phase.Detection y
ANi.{Input-Error (i,j).Error}
ANi.Phase.Detection y ASNi.
operation
.Errordetected
ANiS.Stateunderrecovery
ANi.Phase.Location y
ANi.Input-Error(i,j).Error
ANi.Phase.Location y
ANi.TestDz.end
ANi.Phase.Isolation y
ANi.Device[Di,z].Incorrect
ANi.Phase.Recunfiguration
and
ANi.Dispositivo[Di,z].Incorre
ct
and ANi.Dispositivo[Di,z].I
criticize.
ANi.Phase.Recunfiguration
and
ANi.Dispositivo[Di,z].Incorre
ct
and ANi.Dispositivo[Di,z] I
do not criticize

Introduces
an
expression
(a
conversation
identifier)
which is
used to
identify the
ongoing
sequence of
communicati
ve acts that
together
form a
conversation

III. COMMUNICATIONS DIAGRAM

Next they are the diagram of transition of states, of the Agent
Node

In the figure 2 that is developed in diagram of transition of
states, one is, Agent Node (AN), its operation and interchange
of messages, as well as the variables that take part in the
passage of their internal communication, in addition to
concexion with one of the agents of the SMA, the agent system
(AS), which as well in its internal states of communication and
also, handled its communication with the other agent of the
SMATF, the Agent Task.

In this Figure the structure of the Agent can be observed Node,
which if it detects an error, activates, the 5 Phases of Tolerance
to Failures, and in each one of them, the interchange of
messages.

Figure 2: Several basic communication protocols are supported
in KQML

X CONCLUSION

Engineering Letters, 15:1, EL_15_1_17
__

(Advance online publication: 15 August 2007)

The agent counts on a AID, which is "intelligent Agents as a
new paradigm of Distributed Fault tolerant Systems for
industrial control" to as Architecture of Reference fipa/Data
minimum of an agent is specified in the norms of Fipa (, says:
Aid- the agent must have a unique name globally).
The agent contains descriptions of transport in the development
of his documentation, which fulfills the specifications of fipa
(Architecture of Reference fipa/Data minimum of an agent,
says: Localizer one or but descriptions of the transport that as
well, contains the type of transport by ej. Protocol), but does
not specify the protocol that uses like type of transport, this this
in phase of analysis.
It concerns the communication and cooperation between agents,
the document "intelligent Agents as New Paradigm of
Distributed Fault tolerant Systems for Industrial Control" says
to us that the communication between the agents occurs of
ascending or descendent form depending on the type of agent.
A a little superficial explanation occurs, without specifying for
example that type of language of communication between
agents uses, or KQML or the Fipa-acl.

XI CONSIDERATIONS

We described in this paper our approach for building multi-
agents system for achieving fault tolerant control system in
industry. The use of the paradigm of intelligent agents has
enabled the profile generation of each of the possible failures in
an embedded industrial system. In our approach, each of the
intelligent agents is able to deal with a failure and stabilize. It is
observed the models and forms to make the communication
between the agents’ efficient using tools of efficient handling.
The system in an independent way, and that the system has a
behavior that is transparent for the use application as well as for
the user.

REFERENCES

[1]. Stuart Russell and Peter Norvig, Artificial Intelligence to
Modern Aproach, Pretence artificial Hall series in intelligence,
Chapter Intelligent Agent, pages. 31-52.
[2]. A.Alanis, Of Architectures for Systems Multi-Agentes, (
Master Degree thesis in computer sciences), Tijuana Institute of
Technology, November, 1996.
[3]. Michael J. woodridge, Nicholas R. Jennings. (Eds.),
Intelligence Agents, Artificial Lecture Notes in 890 Subseries
of Lectures Notes in Computer Science, Amsterdam, Ecai-94
Workshop on Agent Theories, Architectures, and languages,
The Netherland, Agust 1994 Proceedings, ed. Springer-Verlag,
págs. 2-21.
[4]. P.R. Cohen ET al.An Open Agent Architecture, working
Notes of the AAAI Spring symp.: Software Agent, AAAI
Press, Cambridge, Mass., 1994 págs. 1-8.
[5]. Bratko I. Prolog for Programming Artificial Intelligence,
Reding, Ma. Addison-Wesley, 1986.
[6]. Or Etzioni, N. Lesh, and R. Segal Bulding for Softbots
UNIX? (preliminary report). Tech. Report 93-09-01. Univ. of
Washington, Seattle, 1993.

[7]. Elaine Rich, Kevin Knight, Artificial intelligence,
SecondEdition, Ed. Mc Graw-Hill, págs. 476-478.
N. Jennings, M. Wooldridge: Intelligent agents: Theory and
practice. The Knowledge Engineering Review 10, 2 (1995),
115– [10] Durfee et al. 89
[8]. E. H. Durfee, V. R. Lesser, D. D. Corkill: Trends in
cooperative distributed problem solving. IEEE Transactions on
Knowledge and Data Engineering KDE-1, 1(March 1989), 63–
83.
[9]. http://www.fipa.org/specifications/lifecycle.html
[10]. http://www.fipa.org/specifications/identifiers.html
[11].http://www.fipa.org/specifications/index.html
[12]. M. Yokoo, T. Ishida, K. Kuwabara: Distributed constraint
satis-faction for DAI problems. In Proceedings of the 1990
Distributed AI Workshop (Bandara, TX, Oct. 1990).
[13]. J. Weizenbaum: ELIZA – a computer program for the
study of natural language communication between man and
machine. Communications of the Association for Computing
Machinery 9, 1(Jan. 1965), 36–45.
[14]. T. Winograd: A procedural model of language
understanding. In Computer Models of Thought and Language,
R.Schank and K. Colby, Eds. W.H.Freeman, New York, 1973,
pp. 152–186.
[15] FIPA Abstract Architecture Specification. Foundation for
Intelligent Physical Agents, 2000.
http://www.fipa.org/specs/fipa00001/
[16] FIPA Interaction Protocol Library Specification.
Foundation for Intelligent Physical Agents, 2000.
http://www.fipa.org/specs/fipa00025/
[17] External Interfaces Working Group ARPA Knowledge
Sharing Initiative. Specification of the KQML agent-
communication language Working .
[18] Yannis Labrou and Tim Finin. A semantics approach for
KQML
{ a general purpose communication language for software
agents. In Third International Conference on Information and
Knowledge Management, November 1994.
[19] Tim Finin, Don McKay, Rich Fritzson, and Robin
McEntire. KQML: an information and knowledge exchange
protocol. In International Conference on Building and Sharing
of Very Large-Scale Knowledge Bases, December 1993.(Ed.),
"Knowledge Building and Knowledge Sharing", Ohmsha and
IOS Press, 1994.

Arnulfo Alanis Garza, Bachelor in Computer Engineering Systems from
Technological Institute of San Luis Potosi. Candidate to the Phd Degree in
Computer Science from Polytechinical University of Valencia,. Full time
Researcher of Tijuana Institute of Technology Since 1995. Current areas of
interest include: Intelligent Agents, Expert System, Robotics and Networks,
Fault Tolerance System. Published more 20 papers in conference proceedings
and journals.

Juan Jose Serrano, , Bachelor in Industrial Engineering from Polytechinical
University of Valencia.. Phd Degree in Computer Science form Polytechinical
University of Valencia, Full time Researcher of Polytechinical University of
Valencia since 1999. Current areas of interest include: Intelligent Fault
Tolerance System, Real-time systems, microcontroller.Published more 40
papers in conference proceedings and journals.
.

Engineering Letters, 15:1, EL_15_1_17
__

(Advance online publication: 15 August 2007)

http://www.fipa.org/specifications/lifecycle.html
http://www.fipa.org/specifications/identifiers.html
http://www.fipa.org/specifications/index.html
http://www.fipa.org/specs/fipa00001/
http://www.fipa.org/specs/fipa00025/

Rafael Ors Carot, Bachelor in Industrial Engineering from Polytechinical
University of Valencia.. Phd Degree in Computer Science form Polytechinical
University of Valencia. Full time Researcher of Polytechinical University of
Valencia since 1999. Current areas of interest include: Intelligent Faul
Tolerance System, Real time systems, micro-controller. Published more 40
papers in conference proceedings and journals.

Jose Mario Garcia Valdez, Bachelor in Computer Engineering System from
Technological Institute of Tijuana. Full time Researcher of Tijuana Institute of
Technology Since 1994. Current areas of interest include: data base, objects of
learning. Published more 10 papers in conference proceedings and journals.

Engineering Letters, 15:1, EL_15_1_17
__

(Advance online publication: 15 August 2007)

	INTRODUCTION
	Agents

	Autonomy
	III FIPA (The Foundation of Intelligence Physical Agents)
	IV FIPA ACL message
	V The KQML Language
	VI KQML Software Architectures
	VII Agent Communication Protocols
	VIII Proposed Method
	IX Control of Conversation
	Communications diagram
	�
	X Conclusion
	XI Considerations

