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Abstract —  We make use of discrete wavelets to extract 
distinguishing features between normal and cancerous human 
breast tissue fluorescence spectra. These are then used in 
conjunction with discriminant analysis for the purpose of reliable 
tissue differentiation.  The wavelet coefficients at different levels 
of decomposition, representing intensity variations at different 
scales, are selected as feature vectors wherein the multiresolution 
and localization properties of wavelets are optimally exploited for 
identifying features. This wavelet based approach, when 
combined with the sensitive polarized fluorescence data, yielded 
statistically reliable characterization of tissue types for diagnostic 
purpose. Analysis of a number of data sets belonging to both 
perpendicular and parallel polarized spectra have led to key 
distinctions between cancerous, benign and normal tissues.    

 of computer aided diagnostics (CAD)[1]. Amongst various 
optical methods for tissue diagnostics, fluorescence 
spectroscopy [2] is one of the preferred choices, due to its 
sensitivity to molecular environment and biochemical changes 
that take place during the progress of disease. A number of 
key fluorophores have been identified, which show marked 
differences in behavior, in cancerous and normal tissues. 
Significant progress in cancer diagnosis using tissue 
fluorescence has been achieved, since the early work of 
Alfano and coworkers, on the tumor detection in rat tissues 
[3,4,5]. Many of these native fluorophores used for laser-
induced fluorescence need to be excited through ultraviolet 
light; for example UV excited fluorescence probes NADH, 
tryptophan and tyrosine. In this work, we consider the 
flourescence due to fluorophores like flavin and porphyrin, 
which can be excited by visible light, thereby avoiding the 
potentially damaging effect of UV light. 

 

Key words — Cancer diagnostics, discrete wavelet transform, 
high-pass coefficients, linear discriminant analysis. 

A number of techniques, separable into two broad categories, 
viz., statistical analysis [6,7] and physical modeling [8], have 
been employed for the study of the spectral data.  In this 
paper, we make use of wavelet transform [9] for extracting 
reliable features for tissue discrimination. It is worth noting 
that, in recent times, wavelet transform has emerged as a 
powerful tool for data analysis.  The ability of the wavelets to 
provide multiresolution, in addition to their localization 
properties, makes them ideal tool for studying data sets having 
different structures. In the present context, wavelet analysis 
enables us to separate out the spectral fluctuations at various 
scales; in the process, pinpointing characteristic differences in 
the spectra of cancerous, benign and normal human tissues. 
Furthermore, it also leads to a much more transparent 
dimensional reduction of the data set, which is an added 
advantage when dealing with large data sets.  Here, discrete 
wavelet transform (DWT) has been used and the finite 
extension of the wavelet basis is employed to effectively 
capture collective behavior and sharp changes and localize 
them. Furthermore, their effect at various scales can also be 
probed making use of the mathematical microscopic nature of 
the wavelets.  

 

I. INTRODUCTION 
In recent times, the rapid progress in the field of lasers, fiber 
optics, and mathematical modeling have led to the emergence  
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An important aspect to be noted is that wavelets can be 
designed to have a number of useful properties, like being 
blind to regular structures; which can be particularly useful for 
the statistical modeling of the spectral fluctuations, since the 
random fluctuations from their correlated counterparts can be 
separated through these wavelets. As has been shown recently, 
wavelets are ideal for handling irregular data series [10,11,12]. 
Given the observed signal, y(t) = ƒ(t) + e(t), where ƒ(t) is the 
signal and e(t) the noise, Donoho and co-workers have shown  
in the above references the usefulness of the wavelets in 
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extracting ƒ(t), when the noise is below a certain threshold and 
the signal variation is well above it. It must be emphasized 
that, traditional methods like local smoothing for extracting 
the signal will prove to be ineffective for irregular signals.  
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In our analysis below, DWT is being used for finding the 
appropriate features. It is combined with linear discriminant 
analysis (LDA) for tissue characterization. Classification 
function is obtained using LDA, which is a commonly used 
technique for classification [13].      
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The paper is organized as follows. In Section II and III, we 
first give an outline of the DWT and LDA respectively. After 
a brief description of the materials and methods in Section IV, 
we proceed to analyze, in detail, the results of the wavelet 
transform of the fluorescence data in Section V.  Conclusions 
and possible extensions of the work are presented in Section 
VI. We conclude in Section VI, after pointing out directions of 
further research where wavelet transform along with other 
classification methods like neural networks may find 
profitable application. 

 

‘A’  and ‘B’ are  constants. The daughter wavelets and scaling 
function at different scales are given by 
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II. WAVELET TRANSFORM Where,  is the translation parameter;  is the scaling 

parameter in the dyadic basis. The factor  is there for 
normalization; is worth observing that the translation at each 
scale is commensurate with the same. Explicitly, at scale

jk
For long, Fourier transform remained as the most popular 
technique for analysis of signals. It was further improved with 
the advent of windowed Fourier transform, in which a window 
is used to localize frequencies. The window is a time function 
whose values are non zero only in a finite time interval. 
Windowed Fourier transform has its own limitations such as 
fixed size of the window resulting in problems of resolution.  
Therefore, selecting a small window to look for high 
frequencies could result in loss of information at low 
frequencies and  vice versa. Wavelet transform circumvents 
this problem by having variable window sizes, commensurate 
with the frequency being considered [14,15]. 

2/2 j

j , 

the translation unit is .  kj 2/2−

All wavelet basis functions satisfy the dilation 
equation, also known as multiresolution analysis (MRA)  
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Of late, wavelet methods have become a wide spread tool in 
many research domains in general and signal processing in 
particular. Wavelets provide sets of basis functions, which are 
complete and orthonormal. Unlike Fourier analysis they have 
both spatial & frequency localization, being most suitable for 
extracting hidden information/pattern out of sharply varying 
and non periodic signals. Analogous to Fourier series, discrete 
Fourier transform and integral Fourier transform in Fourier 
domain, one has wavelet series, discrete wavelet transform 
and continuous wavelet transform respectively in wavelet 
domain. In the present context only discrete wavelet transform 
is used 

Physically, it means that, scaling function and wavelet at a 
given scale, can be constructed from the linear superposition 
of scaling function alone, at a higher scale. The initial scale in 
a given basis set is arbitrary, to be chosen keeping the 
application in mind. For the Haar wavelet 
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It is clear that the Haar basis is special, since it is the only 
wavelet, which is symmetric and compactly supported. Any 
finite energy signal  can be 
expanded as 

 
 ( ) { }RLtf 2∈Wavelets provide a complete orthonormal basis set, where one 
starts from two members—father wavelet and mother wavelet 
and producing the others through translation and scaling. The 
father and mother wavelets, denoted by ( ) ( ) ( )∑ ∑∑
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respectively, are square integrable, mutually orthogonal 
functions satisfying the following relations. The coefficients in the above expansion are given by the 

projections 



Let C (2|1) , C (1|2) be the cost of misclassification  and P , P
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be the prior probabilities of 2π 
1π and respectively, where 

P1+P2 = 1. The minimum expected cost of misclassification 
regions are  
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If the scaling function is well behaved, then at a sufficiently 
high scale, the scaling function resembles a Dirac delta 
function and the corresponding coefficients simply sample the 
function. In other words, at high enough resolution, samples of 
the signal are very close to the scaling coefficients; this 
satisfies Shannon’s sampling theorem. We shall be using 
discrete wavelet basis sets, in which case ’s and ’s 
are the DWT of the data. Using these coefficients one can also 
reconstruct the original data set. The wavelet coefficients at 
various scales can be appropriately thresholded to remove 
noise and smoothen the data, if so desired. 

kjc , kjd ,

 

III. LINEAR DISCRIMINANT ANALYSIS   
 

Statistical methods designed to elicit information 
from data sets which include simultaneous measurements on 
many variables are called multivariate data analysis techniques 
[16]. The objectives of the multivariate data analysis may be 
any one of the following   (i) Data reduction  (ii) Grouping  
(iii)  Correlations  (iv)  Prediction  (v)  Testing of hypotheses.   

In particular, discriminant analysis is a multivariate 
technique for classifying a given object into one of the pre-
defined groups.  The linear discriminant analysis aims at 
consolidating the features linearly and discriminating the 
objects.   

A brief description of the discriminant analysis for 
multivariate normal populations is given in the following.    

 

Let  and  be multivariate normal densities 

with mean vectors 

( )xf 1 ( )xf 2

1μ and 2μ    and variance-covariance 
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and 2π .   We further assume that both are normal 
populations with equal variance-covariance matrices   i.e. 
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In general, for multivariate populations, one develops a 
quadratic score function for each and every population given 
by the expression (8)        
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  The object will be classified into that population for which 
the  score function  is minimum.   
 
 

IV. MATERIALS AND METHOD 
The samples were excited with linearly polarized 488 nm 
wavelength of an Ar-ion laser (Spectra Physics 165, 5 W). The 
linearly polarized light was focused on the front surface of the 
tissue samples and fluorescent light was collected in the right 
angle geometry through an analyzer, whose optic axis was set 
parallel or perpendicular to the optic axis of the input 
polarizer. The fluorescence was recorded using triplemate 
monochromator (SPEX-1877E) and PMT (RCA C-31 034). 
Further details regarding the experimental setup can be found 
in [17]. Fluorescence spectra of 29 malignant and benign 
tumors with their normal counterparts were analyzed by the 
wavelet transform and classification is done using above 
mentioned method. The benign tumors studied were of two 
types; pericanalicular and intracanalicular, based on their 
pathological and morphological differences [18]. 
 

V. RESULTS AND DISCUSSION 
In the following analysis, the physically transparent Haar basis 
set is   used. The fluorescence spectra of different tissue types, 
for both perpendicular and parallel polarizations are subjected 
to a five  level  DWT  decomposition.  

After DWT, what we obtain are the coefficients 

 ’s (also called high-pass coefficients)  at levels 1 kjd ,



through 5.  As was  mentioned earlier, in the Haar basis, the 
level-1 coefficients are the differences of the nearest 
neighbour  fluorescence spectral intensities  multiplied by a 
factor of 21 . For an N-size data set, one level 
decomposition results in N/2 number of high pass coefficients 
and also the same number of low pass coefficients.  At the 
next level of decomposition, the coefficients are the 
differences of the nearest neighbour averages, multiplied by 
1/2, resulting in N/4 coefficients.   Hence, at each level of 
decomposition,  the number of the resulting  coefficients is 
half that of the  parent set from which they are computed.   
The wavelet decomposition of florescence spectra of normal 
as well as cancerous tissue is shown in figures 1 and 2 
respectively.    It is to be noted that the wavelet decomposition 
of the intensity spectral profile alone is not sufficient to 
differentiate the tissue type.  These coefficients now constitute 
the feature vectors for further statistical analysis; in this case 
the LDA for the purpose of classification.    

  

 

This paper develops rules for classification of tissue, using 
Discriminant Analysis, into three classes (Normal, Malignant 
or Benign) based  on  all the features  which are the detail 
wavelet coefficients at specified  levels 3,4,5.  The results of 
such an analysis  are presented in figures  3 to 5. The first two 
levels of wavelet coefficients contain variations at high 
resolution and  the statistical nature of these fluctuations has 
been analysed in earlier studies [14].  Variations at a higher 
level, for example from level 3 onwards are a result of certain 
amount of averaging and hence are less  prone to statistical or 
instrumental uncertainties.   Furthermore they are expected to 
carry signatures of the tissue type, since the characteristic 
spectral variations in different type of tissues show variations 
over a broader range of wavelengths. This is the reason for 
doing the present analysis on the coefficients from level 3 
onwards.  Considering the length of the data for each patient   
( ~200), going further up in the decomposition beyond level 5 
is not advisable as the wavelet coefficients at the end points 
would be affected either by padding or circular extension.      
The three score functions are obtained with the help of 
STATISTICA for each of the data obtained from 29 normal 
(N)  tissues, 18 malignant tissues (M) and 11 benign tissues 
(B) giving rise to a total of 58 X 3 of the same.    Out of these 
three scores corresponding to a given patient, two distances 
can be computed,  which are the  differences of the three score 
functions.  For example, M-N gives the difference of the 
scores corresponding to   Malignant   and Normal.  The 
quantity M-N being positive, implies that the sample is closer 
to normal rather than malignant;  hence it can be inferred that 
the corresponding tissue is normal.  Scatter plots are obtained 
for the differences of scores N-B vs M-N,  M-N vs B-M and 
B-M vs N-B with appropriate legend for the points based on 
the tissue type in Figures 3 to 5  for levels 3, 4 and 5 
respectively.   The region in the north-west corner  refers to 
the classification to Normal in (a), Malignant in (b) and 
Benign in (c).   From a  count of  the points in the noth-west 
region, the table in fig _(d) is obtained which gives the power 
of classification in this study, which is carried out using the 
discriminant function of the features namely  the wavelet 

detail coefficients at a  given  level .   The results of the 
sensitivity of the classification for each level are shown  in the 
following table. 

level BENIGN MALIGNANTNORMAL Total 
3 73 89 86 85 
4 64 78 83 78 
5 64 61 69 66 

 

 One can observe that as the level increases, the dimension of 
the feature space decreases and hence the sensitivity decreases 
which  shows that there is a  trade off between the dimension 
and sensitivity.   Depending upon the information that is 
sought,   one needs to pick up the appropriate level.   The 
analysis carried above is for the perpendicularly polarized 
spectra and the same steps have been repeated for the case of 
parallel polarization and the results for this case show 
comparable accuracy.   

   
VI. CONCLUSION 

In conclusion, from  the discrete wavelet transform of parallel 
and perpendicular polarized spectra of cancerous and normal 
tissues, several local and global parameters have been 
identified distinguishing normal   tissue from the cancerous 
counterparts.   Detail wavelet coefficients have been used in 
the analysis because of the fact that wavelet decomposition 
upto a particular level results in a DC (Constant) value (at 
coarser level)   and  fluctuations above this DC component  at 
other levels which information is present in the  detail 
coefficients. Detail wavelet coefficients have shown an 
optimistic trend in classification of tissue spectra.   

In this paper, discriminant analysis  has been applied 
only on the high pass coefficients at a particular level wherein  
no specific algorithm has been  used for feature selection. 
Therefore further work  can be carried out  on feature selection 
considering all levels of high pass coefficients and also the 
wavelet packet decomposition.   For this purpose, machine-
learning algorithms such as neural networks may be more 
suitable.   
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Fig. 1. (a) Fluorescence spectrum of a normal tissue, whose (high-pass) wavelet coefficients 
at different levels  are displayed in (b) level-1, (c) level-2, (d) level-3, (e) level–4, and  (f) 
level-5   
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Fig. 2. (a) Fluorescence spectrum of a cancerous  tissue, whose wavelet (high-pass) 
coefficients at different levels are displayed in (b) level-1, (c) level-2, (d) level-3,  (e) level–4 
and (f) level-5   
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            (c)  

  
Classification Matrix (level3) Rows: Observed 

classifications Columns: Predicted classifications Classification Matrix (level4) Rows: Observed 
classifications Columns: Predicted classifications type sensitivity NORMAL MALIGNANT BENIGN
type sensitivity NORMAL MALIGNANT BENIGNNORMAL 86 25 4 0 

NORMAL 83 24 5 0 MALIGNANT 89 0 16 2 
MALIGNANT 78 2 14 2 BENIGN 73 0 3 8 

BENIGN 64 1 3 7 Total 85 25 23 10 
Total 78 27 22 9                                    (d)                                                                                 (d) 

 
 

 

 Fig. 3. First quadrant represents the region (a)Normal, (b)Malignant, (c) 

benign, and (d) represents the classification matrix for level 3 

      

 

 

Fig. 4. First quadrant represents the region (a)Normal, (b)Malignant, 
(c) benign, and (d) represents the classification matrix for level 4 
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Fig. 5. First quadrant represents the region (a)Normal, (b)Malignant,  (c) benign, and (d) represents the classification matrix for level 4
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