
 
 

 

  
Abstract— This research aims at characterizing and predicting 

the Young’s Modulus of thin film materials that are utilized in 
Microelectromechanical systems (MEMS). Recent studies 
indicate that the mechanical properties such as Young’s Modulus 
of thin films are significantly different from the bulk values. Due 
to the lack of proper understanding of the physics in the 
micro-scale domain the state-of-art estimation techniques are 
unreliable and often unfit for use for predicating the mechanical 
behavior of slight modifications of existing designs as well as new 
designs. This disadvantage limits the MEMS designers to physical 
prototyping which is cost ineffective and time consuming. As a 
result there is an immediate need for alternative techniques that 
can learn the complex relationship between the various 
parameters and predict the effective Young’s Modulus of the thin 
films materials. The proposed technique attempts to solve this 
problem using empirical estimation techniques that utilize soft 
computing techniques for the estimation as well as the prediction 
of the effective Young’s Modulus. As a proof of concept, effective 
Young’s Modulus of Aluminum and TetrathylOrthoSilicate 
(TEOS) thin films were computed by fabricating and analyzing 
self-deformed micromachined bilayer cantilevers. In the 
estimation phase, 2D search and micro Genetic algorithm were 
studied and in the prediction phase, back propagation based 
Neural networks and One Dimensional Radial Basis Function 
Networks (1D-RBFN) were studied.  The performance of all 
combinations of these soft computing techniques is studied.  Based 
on the results, we conclude that performance of the soft 
computing techniques is superior to the existing methods. In 
addition, the effective values generated using this methodology is 
comparable to the values reported in the literature. Given a finite 
number of data samples, the combination of 1D-RBFN (prediction 
phase) and GA (estimation phase) presented the best results. Due 
to these advantages, this methodology is foreseen to be an essential 
tool for developing accurate models that can estimate the 
mechanical behavior of thin films.  
 

Index Terms— MicroGenetic algorithm, Radial Basis Function 
networks, Thin films and Young’s Modulus.  
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I. INTRODUCTION 
   In the last decade materials such as glass, silicon, nitride, 

and metals were used extensively as structural components in 
the microscale domain to form microelectomechanical systems 
(MEMS). These small devices have found their applications in 
a wide range of areas such as microelectronics, magnetic, 
optical, electrochemical, and biological technologies [1-5].  
This rapid expansion is due to recent advancements in the 
engineering sciences especially in the area of thin film 
materials that range from a few angstroms to a few microns in 
thickness.   

Due to wide spread applications of MEMS devices 
emphasis was on improving device behavior models for 
performance enhancement and long term reliability [4, 5].  In 
order to achieve this goal it is necessary to understand the 
mechanical properties of thin films. However, mechanical 
properties of thin films are not extensively available and 
extrapolating these properties from the bulk parameters has 
been determined to be very unreliable [6-10]. This discrepancy 
is associated with the scaling effects and the thin-film 
deposition processes [6-10].  As the size of the MEMS device is 
reduced, the effect of the dimensions on the mechanical 
properties becomes more predominant. As a result, the material 
properties are found to deviate significantly from the bulk 
scaling laws [7]. On the other hand, deposition techniques 
greatly influence the material properties such as residual 
stresses and the elastic modulus induced into the thin films.  
Examples of some of the process variables that are very specific 
to the deposition tool that influence the material properties of 
thin films are substrate temperature, working gas species and 
their pressure, and orientation of the deposition surface relative 
to the direction of coating [10].   

This research aims at characterizing and predicting the 
Young’s Modulus of thin film materials using soft computing 
techniques. Among the various mechanical properties, 
emphasis has been on understanding the Young’s Modulus of 
thin film materials [6- 10]. This is due to the fact that several 
design issues such as resonant frequency, stiffness, as well as 
the accuracy of the finite element analysis are greatly affected 
by this parameter [8].  Tensile test of free standing aluminum 
thin films of thicknesses ranging from 0.11μm to 1μm indicate 
that the observed values for Young’s Modulus are clustered 
between 16.5 GPa to 49 GPa [11].  These values are much 
lower than the bulk value, 70 GPa.  Although the reason for this 
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drop has not been completely understood yet, it is often 
associated to factors such as differences in grain sizes and grain 
orientation, and small thicknesses of thin films [11, 12]. This 
discussion illustrates that any generalization of the Young’s 
Modulus on the basis of geometry, deposition technique and 
thin film structure could result in inaccurate modeling.  

In literature, various techniques were developed to 
characterize the Young’s Modulus of thin film materials. These 
techniques employ nanoindentation [13], changes in natural 
frequency [14], evaluation of the deflection of buckled 
membranes [15], as well as membrane deflection under 
uniform pressure [16]. Unfortunately all these techniques 
require complicated experimental setup. In some cases 
mechanical contact between the probe and micromachined 
structures is inevitable during measurement [7].  These 
disadvantages may lead to undesired effects during 
measurement that might lead to very low signal to noise ratio 
making the data unfit for characterization [7]. As a result, there 
is a need for indirect measurement techniques that are simple to 
implement as well as determine the Young’s Modulus of thin 
films by studying the intrinsic properties of the thin films [7].  
Literature reveals self deformed micromachined bilayer 
cantilevers to be ideally suited for such purposes [7, 8].  This is 
because micromachined cantilevers are often subjected to 
residual stresses during the deposition process that results in an 
out-of-plane deflection of the free end of the cantilever [7]. 
However, given the complexity in the relationship between the 
device dimensions and fabrication associated parameters, many 
researchers are looking at analytical solutions that can learn and 
predict this behavior [17-19]. Among the various techniques, 
empirical estimation techniques that are based on 
non-parametric algorithms have been proved to be the most 
effective [18]. This is because these techniques are able to 
relate the loading parameters, material properties, fabrication 
induced parameters, and geometry of the microstructures with 
their performance characteristics with great accuracy [18]. 

In this research, micromachined bilayer cantilevers 
consisting of aluminum and TetraEthylOrthoSilicate (TEOS) 
have been analyzed. In the process, Young’s Modulus was 
estimated using various techniques such as 2D search, 
micro-genetic algorithms (MGA), neural networks (NN) and 
radial basis functions (RBF). The developed models were 
tested with experimentally obtained data and the results were 
found to be very encouraging.  

The paper is organized as follows. In section 2 the proposed 
methodology is described. This section also illustrates the 
implementation of 2D search, MGA, NN and RBF for 
estimating the effective Young’s Modulus of thin films. 
Section 3 illustrates the performance of the proposed technique 
which is followed by conclusions and future work in Section 4. 
 

II. PROPOSED TECHNIQUE 
As discussed in the previous section, mechanical behavior 

models for thin film materials are still at their infancy.  To this 
effect, an alternative approach was proposed [18].  Figure 1 

illustrates the working of the proposed methodology. This 
methodology involves mathematical modeling, fabrication, 
ANSYS modeling and empirical estimation. 

 

 
 

Figure 1: Flow chart of the proposed technique [18] 
 

The first step in this method is to identify the physical 
phenomena and the boundary conditions that define 
microcantilevers. This information is then used for extracting 
the relationship between the governing factors as well as for the 
design of the fabrication process.  Experimental results are 
obtained by fabricating microcantilevers of various 
dimensions. Finite element analysis (FEA) is performed on this 
experimental data and effective material properties are 
computed.  Empirical models are then extracted by correlating 
the algebraic equations and the FEA results for a large number 
of data sets.  Please refer to our previous work for more 
information [18-19].  

The following sections describe the mathematical modeling, 
ANSYS® modeling which generates the effective Young’s 
Modulus as well as the various empirical model extraction 
techniques that could be used for this application. 

 

A. Mathematical representation 
This investigation contains a general theory of bending of a 
bilayer cantilever subjected to uniform residual stresses. Figure 
2 illustrates a schematic of a typical bilayer cantilever. Let all 
the internal stresses over the cross-section of material “1” be 
expressed as tensile forces 1P  with a bending moment of 1M . 
For material ‘2” let the internal stresses be represented as 
compressive forces, 2P , with a bending moment of 2M  
respectively. Since the internal forces over any cross-section of 
the beam must be in equilibrium: 
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Applying the concepts of flexure rigidity from Beam Theory [7] 
we can express the above equation as follows.  

ρ
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=
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where ρ is the radius of curvature of the composite beam, E is 
the elastic modulus of the beam, I is the moment of inertia and 
h is the thickness of the composite beam. Let 1a  be the 
thickness of material “1” and 2a  be the thickness of material 
“2”, then h given by 21 aa + . Assuming that the stress is 
uniform, we can express stress (σ ) in terms of force ( P ) and 
cross sectional area ( A ).  

A
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Figure 2: Schematic of bilayer cantilevers 

 
Moment of inertia, I , for each layer is expressed given by the 

following equation (5).  
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Also using Beam Theory [7], one can compute the maximum 
static deflection (δ ) for a beam clamped at one end, which is 
expressed as follows.  

ρ
δ

2

2l
=  (6) 

Substituting equations (4), and (6) in (3) and simplifying the 
equation, the following resultant equation is obtained  
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Which can be further simplified to result in (8). 
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Now substituting equation (5) in (8) and using 21 aah +=  , 

the above equation can be further simplified to  
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Assuming that the terms in equation (9) can be decoupled, we 
can extract the relationship of the elastic modulus with the other 
quantities. Thus the proportionality equation is expressed as 
follows.  

( )δσ ,,, alE ∝  (10) 
The above described mathematical analysis illustrates that the 

Young’s Modulus of the thin film is independent of the width 
of the cantilever beams. However, this argument has been 
contested by many researchers [6]. Experimental analysis of 
bilayer cantilevers of various dimensions illustrate that the 
width of the cantilever clearly affects the Young’s Modulus of 
thin films [6]. This is because the stresses induced in the 
cantilever (see Figure 2) are not limited to the X axis but are 
also present in the Z axis.  Thus, this questions the existing 
models that estimate the Young’s Modulus of wide and slender 
beams of the same length [6].  As a result, in the proposed 
methodology, the width of the cantilevers is taken into account 
to in estimating the Young’s Modulus. Also, as discussed 
before residual stresses induced into the materials are to a large 
extent dependent upon the process variables. Thus, the 
relationship in the equation (10) is nonlinear and can only be 
estimated empirically. Hence the effective elastic modulus can 
be expressed as a function of the beam dimensions as well as 
the stress induced into the bilayer cantilevers during the 
fabrication process as illustrated in equation (11). 

( )δσ ,,,,ˆ alwfE =  (11) 
Thus the above equation illustrates the relationship between the 
material property under consideration and the physical 
parameters. This relation forms the basis for data collection as 
well as the model generation algorithms.  

 

B. Finite Element modeling and search techniques 
Large out-of-plane rotations of the cantilever beams were 

modeled in ANSYS, a finite element analysis software tool. 
Simulations were performed in the two-dimensional structural 
analysis mode using the Plane 82 solid element. The solution 
was computed by using non-linear steady state static analysis 
which uses the Newton-Raphson method along with an initial 
stress value.   

Effective Young’s Modulus values were computed for 
aluminum and TEOS for each data set obtained from the 
fabrication results. These values were computed by modifying 
the bulk values until the simulations matched the experimental 
results. A literature survey as well as previous simulation 
results obtained by the authors indicated that the search space 
was material dependent [18]. It was found that aluminum 
varied between 2 GPa to 70 GPa (bulk value) and TEOS varied 
between 10GPa to 73GPa [11, 18].  Due to this wide spread in 
the search space, intelligent search techniques are desired for 
faster results and better accuracy. In this analysis, two types of 
search techniques viz. two dimensional gradient search 
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technique and micro-genetic algorithms were analyzed and 
their performance was compared. The following sub-section 
describes these two algorithms briefly. 
 

1) Two dimensional gradient search technique 
This search technique is commonly used in optimization 

problems where the solutions cannot be obtained using 
analytical methods [20]. In this technique, the effective 
Young’s modulus of the material is computed using an iterative 
gradient descent vector that determines the step size as well as 
direction of the movement.  The following equations describe 
this behavior mathematically.  

1
1,

11
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1
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 (12)      (12) 
2

1,
22

1,
2

, −− ×∇±= itreffconstitreffitreff EEEE  (13)              (13) 

where 1
,itreffE and 2

,itreffE represent the current effective 

Young’s modulus for the top layer material and the base layer 
material, respectively. The symbols 1

constE∇  and 2
constE∇  are 

the constant gradients given as 0.7 and 0.12 for material “1”and 
material “2” respectively.  

Figure 3 is a pictorial representation of the working of 2D 
search technique in computing the effective values of Young’s 
Modulus.  

 
Figure 2: Implementation of 2D Search technique 

 
The algorithm starts with the use Bulk values for materials as 

initial values. In every epoch, four combinations of effective 
values are computed and their corresponding deflections are 
determined using a MATLAB and ANSYS interface [19]. 
These deflections are ranked based on the error and the 
combination that results in the least error is used for the next 
iteration. The process is repeated until the error is less than a 
tolerance value of 5%. 

 
2) Micro-genetic Algorithm (MGA) 

Another popular non-linear search technique is the genetic 
algorithm [21]. In this technique Young’s modulus is 
quantified into 32 levels. Each element of the Young’s 
Modulus is treated as a gene and a standard GA procedure is 

applied optimally to select crossover and mutation functions 
[21].  Although this technique has been proved to yield good 
results, its major drawback is the massive amount of 
computational power and time required to reach a solution 
[21-22].  

A modification of this technique is the micro-genetic 
algorithm [22]. In MGA, only five parents are used in any 
generation and the successive generations are computed with 
the crossover of two parents. Figure 4 illustrates the crossover 
and new parent formation in MGA. The crossover and mutation 
algorithms used in MGA are similar to the corresponding GA 
application.  The stopping criteria used in this algorithm is the 
mean square error with a tolerance of 5%. 

 

 
Figure 4: Implementation of MicroGenetic Algorithm (MGA) 

 

C. Empirical Estimation Technique 
As discussed in previous sections, due to lack of proper 

understanding of the physical phenomena that relate the device 
dimensions and process dependent parameters, developing 
analytical techniques may be a complex task. In this case of 
bilayer cantilevers the various factors that influence the 
Young’s Modulus are the dimensions of the beam and the 
initial stress induced into the thin films during deposition.  Due 
to the highly non-linear relationship between the parameters, 
effective models can be developed only by empirical models. In 
literature various techniques have been reported for predicting 
as well as learning the behavior of complex relationships 
between the design variables [20-24]. Among the various 
factors that affect the choice of the algorithms is the amount of 
training data available and the number of design variables.  

The available algorithms can be broadly classified as 
parametric and non-parametric based algorithms. In the 
parametric methods, the behavior that is being predicted is 
assumed to obey some distribution that is known and can be 
described mathematically (e.g. Gaussian). Examples that 
describe this algorithm are the maximum likelihood estimation, 
Bayesian estimation method and standard regression 
techniques [20]. The main disadvantage with parametric 
methods is that they assume that the sample space describes the 
whole space. In most cases this assumption may not be valid.  
 This disadvantage is overcome by the non-parametric 
methods were the primary assumption is that similar inputs 
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have similar outputs [20]. As a result the emphasis is in 
modeling the similarities in the data. Also in this technique 
available data is classified into training set and testing vectors. 
By doing so, the performance of the learning algorithm can be 
easily monitored. Most learning algorithms such as RBF and 
Neural networks fall in this category. In this research these two 
techniques were analyzed and their performance was 
compared.   
 

1) Neural Networks 
Artificial neural networks were conceptualized to imitate the 

human brain in order to solve complex optimization issues in 
the engineering and sciences fields [20, 23]. These networks 
are known for their ability to learn a particular solution to a 
problem and then apply it towards finding a general solution. A 
typical neural network consists of three layers viz. input layer, 
hidden layer and output layer.  This configuration is often 
called multilayer perceptron network. Nodes in each layer are 
represented by a sigmoid function. Equations 14 and 15 
illustrate the mathematical representation of the hidden nodes 
and the output nodes. 
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where )(mh represents the thm hidden node, ix is the thi  
input, and miw ,  are corresponding weights of the neural 
network.  The effective Young’s modulus is computed as 
follows.  
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Figure 5: Architecture of the back propagation based neural networks 

 
The most popular technique that is used for training these 

networks is the back propagation algorithm [23]. The physical 
dimensions of the beams as well as the fabrication induced 
parameters are fed as the input to the network. The weights of 
the network are iteratively adjusted such that the output of the 
network tracks the effective Young’s Modulus values. As this 
technique uses gradient descent for updating the weights, it is 
simple and easy to use. However, it is susceptible to long 
training times [23]. 

 
2) One-dimensional Radial basis networks 

In the literature, for empirical models in multi-dimensional 
space, RBF networks are the most popular [23, 24]. These 
networks compute a surface in the multi-dimensional space that 
best fits the training data. In this analysis, a modified version of 
RBF called one dimensional radial basis functions (1D-RBF) is 
used for modeling due to advantages such as sensitivity to the 
inputs and outputs [24].  The 1D-RBF networks consist of three 
layers viz. input layer, hidden layer, and the output layer. The 
input layer consists of four elements which are stress, length, 
width, and thickness of the beam. The output of the network is 
the estimated Young’s Modulus ( ∧

E ).   
 

 
 

Figure 6: Architecture of 1D- Radial Basis Function Networks 
 
The outputs of the hidden RBFs’ used in this network are 

Gaussian in form and are given by equation (16). 
 

( )( )22
)1( /exp pkpkpMpk cxF σ−−=−+ , Mk ,....2,1=  (16) 

where p is the number of input elements, M  is the number of 
RBFs associated with each input, pkc is the center of the kth 

RBF for the pth input vector, and pkσ is the dilation (spread) of 

the kth RBF for the pth input vector. The output layer weights w  
are calculated using the following equations.  

 ( ) TT FFFF .
1−+ =  and outDFw +=  

 
where outD  is the desired output which is the ANSYS® 
estimate of the Young’s Modulus.  
 

III. RESULTS 
In this section experimental data obtained by fabricating 

bilayer cantilevers is analyzed. The effective Young’s Modulus 
of thin films is estimated using the combination of search and 
learning techniques described previous. The performance of 
these soft computing techniques is evaluated under various 
scenarios.  
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A. Fabrication 
Bilayer cantilever beams comprising of aluminum on TEOS 

were fabricated at SMFL [24]. The fabrication process 
involved two deposition steps (for TEOS and aluminum) and 
one photo lithography step which was used to pattern the 
cantilever beams. Metrology tools such as scanning electron 
microscope (SEM) and optical microscope were used to 
compute the dimensions of the cantilevers [24]. The stress 
induced on the wafers was computed using a stylus based 
profilometer [24]. Figure 7 illustrates the SEM picture of a 
released cantilevers illustrated in Table 1.  

 

 
Figure 7: SEM picture of released microcantilevers 

 
In this table the length, width, thickness, and the static 

deflection are represented by LB, WB, TB, and dB, respectively 
 

Table 1: Microcantilevers fabricated at RIT 
No. Stress  

Al     LB WB dB Thickness 
Al      TEOS 

Units MPa µm µm µm µm µm 
1 27.4 94.24 26.98 53.78 0.41 0.51 
2 27.4 100.8 47.62 39.7 0.41 0.51 
3 13.67 489.8 61.44 342.5 0.39 0.99 
4 13.67 402.8 65.64 255.47 0.39 0.99 
5 13.67 205.8 62.64 74.547 0.39 0.99 
6 55.49 205.8 64.6 35.10 0.45 2.36 
7 55.49 156.6 51.2 11.48 0.45 2.36 
8 55.49 485.8 62.3 176.77 0.45 2.36 
9 35.92 301.4 41.8 68.119 0.41 2.94 
10 35.92 487.4 99.8 112.78 0.41 2.94 
11 35.92 207.4 99.8 15.23 0.41 2.94 

 
The above mentioned microcantilevers were modeled in 

ANSYS with the bulk values for aluminum and TEOS. These 
simulations were compared to the experimentally obtained data 
as illustrated in Figure 8.  This plot clearly indicates the bulk 
values are unable to predict the mechanical behavior in the 
micro domain and alternative techniques are needed to improve 
the accuracy. On the contrary, the deflections predicted by the 
effective values are very close to the experimental values. This 
discussion illustrates the superior performance of the proposed 
technique. 
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Figure 8: Performance comparison of bulk properties with experimental results 

B. Empirical Analysis   
The proposed technique estimates the effective Young’s 

Modulus values for aluminum and TEOS using experimental 
data and finite element analysis. In this process, empirical 
models are generated using various non-parametric based 
algorithms for searching and learning the mechanical behavior 
of thin films.  

In the searching phase, for each data set, the effective values 
(for each material) are computed such that the experimental 
deflections match the simulations.  Figures 9 and 10 illustrate 
the effective Young’s Modulus values as computed by 2D 
search and MGA technique for aluminum and TEOS for the 11 
data sets under consideration (Table 1). These figures clearly 
indicate that the effective values for Young’s Modulus are 
almost an order of magnitude lower than the bulk value. In the 
case of aluminum, these results are in the same range as 
reported in literature [11].   

 
 

Figure 9: Effective Young’s Modulus for aluminum 
 
Also, the effective values computed by 2D search and MGA 

are very comparable. However the time taken to reach to the 
optimal solution was substantially different between these two 
techniques.  
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Figure 10: Effective Young’s Modulus of TEOS 
 
Figure 11 illustrates the performance evaluation based on the 

number of iterations. This plot clearly shows that MGA reached 
the optimal solution much faster and in less number of 
iterations when compared to 2D Search technique.  

 

 
Figure 11: Performance evaluation of the search techniques based on the 

number of fitness evaluations 
 
The above generated effective values were then learnt using 

1D-RBF networks as well as neural networks. Among the 11 
data sets, 7 of them were used for training the networks and the 
rest were used for testing (data set numbers 2, 5, 8 and 11).  
Figures 12 (a) and (b) illustrate the percentage mean square 
error for aluminum and TEOS respectively.  These bar graphs 
illustrate the performance of four different combinations that 
are possible with the two search and two learning techniques. A 
closer look at these plots indicates that 1D-RBF and GA 
combination results in the lowest MSE.   This observation 
illustrates that 1D-RBF is capable of capturing the behavior 
with lesser number of data sets when compared to NN. This 
salient feature of RBF maybe advantageous in situations where 
there limited amount of fabrication data. 

IV. CONCLUSION 
This research focuses on developing empirical models that 

predict the Young’s Modulus of thin films of aluminum and 
TEOS. This was achieved by fabricating micromachined 
bilayer cantilevers of various dimensions and analyzing the 
data with the various soft computing techniques. Empirical 
models were developed with the help of different search and 
learning algorithms and their performance was compared. This 
analysis revealed that the performance of the proposed 
methodology is superior to the existing methods. In addition, 
the effective values generated using this methodology is 
comparable to the values reported in the literature. Given a 
finite number of data samples, the combination of 1D-RBFN 
(prediction phase) and GA (estimation phase) presented the 
best results. Research is in progress in identifying the 
performance of other algorithms such as support vector 
machines. In addition to this, work is in progress in 
investigating other novel test structures that can extract other 
material properties such as coefficient of thermal expansion.  

 

 
(a) 

 
(b) 

Figure 12: Performance comparison of various learning techniques for 
predicting the effective Young’s Modulus. (a) Aluminum, (b) TEOS 
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empirical models as well as fabrication of the test structures.  
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