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Abstract. Inversion sequences are in natural bijection with permutations and have surprising
connections with Lecture hall polytopes and partitions. Recently, Martinez and Savage carried
out the systematic study of inversion sequences avoiding triples of relations. They established
many connections with known integer sequences and highlighted several interesting conjectures,
some of which have already been solved. In this paper, we address the remaining enumeration
conjectures posed by them.

1. Introduction

An integer sequence (e1, e2, . . . , en) is an inversion sequence of length n if 0 ≤ ei < i for all
1 ≤ i ≤ n. Inversion sequences and its generalization have remarkable connections with Lecture
hall polytopes and partitions [15]. Let In be the set of all inversion sequences of length n. There
is a natural bijection Θ between Sn, the set of all permutations of [n] := {1, 2, . . . , n}, and In
defined for π = π1π2 · · ·πn ∈ Sn by

Θ(π) = (e1, e2, . . . , en), where ei := |{j : j < i and πj > πi}|.
We view permutations and inversion sequences as words over N. A word W = w1w2 . . . wn is said
to avoid the word (or pattern) P = p1p2 . . . pk (k ≤ n) if there exists i1 < i2 < · · · < ik such that
the subword wi1wi2 . . . wik of W is order isomorphism to P . For example, the word W = 32421
contains the pattern 231, because the subword w2w3w5 = 241 of W has the same relative order as
231. However, W is 101-avoiding. For a set W of words, the set of words in W avoiding patterns
P1, . . . , Pr is denoted by W(P1, . . . , Pr).

Pattern avoidance in permutations has already been extensively studied in the literature (see
the book survey by Kitaev [7]), while the systematic study of patterns in inversion sequences was
initiated only recently in [4] and [11], where inversion sequences avoiding patterns of length 3 are
exploited. Martinez and Savage [12] further considered a generalization of pattern avoidance to a
fixed triple of binary relations (ρ1, ρ2, ρ3). For each relation triple (ρ1, ρ2, ρ3) ∈ {<, >, ≤, ≥, =
, 6=, −}3, they studied the set In(ρ1, ρ2, ρ3) consisting of those e ∈ In with no i < j < k such that
ei ρ1 ej , ej ρ2 ek and ei ρ3 ek. Here the relation ′′−′′ on a set S is all of S × S, i.e., x ′′−′′ y for all
x, y ∈ S. For example, In(<,>,=) = In(010) and In(>,−,≤) = In(101, 102).

The study of inversion sequences avoiding relation triples turns out to be unexpected fruitful
and interesting. The pioneering work of Martinez and Savage [12] classifies all the 343 possible
relation triples into 98 equivalence classes of patterns, which were conjectured to have exactly 63
Wilf-equivalence classes. Among these 63 Wilf classes, 30 Wilf classes were suspected to have con-
nections with integer sequences in the OEIS, the On-Line Encyclopedia of Integer Sequences [13]
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founded by N.J.A. Sloane in 1964. Many of these connections were either established in [12] or first
conjectured in [12] and latter solved by others in [2,3,6,8–10,18]. To be more precise, Bindi, Guer-
rini and Rinaldi [2] constructed a bijection between set partitions of [n] and In(=,≥,−), which also
restricts to a bijection between non-crossing partitions of [n] and In(≥,−,≥). Bouvel, Guerrini,
Rechnitzer and Rinaldi [3] proved that (>,≥,−)-avoiding inversion sequences are counted by Semi-
Baxter numbers. Via the obstinate kernel method: Kim and Lin [8] showed that In(≥,≥, >) is
counted by the n-th Baxter number; Lin [10] and independently Bindi–Guerrini–Rinaldi [2] proved
that In(≥,≥,≥) has the same cardinality as set partitions of [n] avoiding enhanced 3-crossings.
The latter result was also proved bijectively by Yan [18] via 01-fillings of triangular shape. More-
over, several classical statistics on pattern avoiding inversion sequences that are enumerated by
Large Schröder numbers and Euler numbers were studied in [8, 9].

Nevertheless, those connections highlighted in [12, Table 2] with a “no” in column 3 are still
unsolved. In this paper, we address the remaining enumeration conjectures posed in [12, Table 2],
leaving only those related to the OEIS sequence [13, A098746] open. In particular, several con-
nections between pattern avoiding inversion sequences and restricted ordered trees, underdiagonal
lattice paths and restricted set partitions are established.

In the rest of this paper, we deal with the pattern (≥,−,≥) in Section 2, the pattern (−,−,≥)
in Section 3, the pattern (>,−,≤) in Section 4, the pattern (>,≤,−) in Section 5, the patterns
(=,≥,−) and (≥,−,=) in Section 6, and the pattern (−,−,=) in Section 7.

Statistics on inversion sequences. For an inversion sequence e = (e1, e2, . . . , en) ∈ In, we
define five classical statistics:

• asc(e) = |{i ∈ [n− 1] : ei < ei+1}|, the number of ascents of e;
• dist(e) = |{e1, e2, . . . , en} \ {0}|, the number of distinct positive entries of e;
• rmin(e) = |{i ∈ [n] : ei < ej for all j > i }|, the number of right-to-left minima of e;
• zero(e) = |{i ∈ [n] : ei = 0}|, the number of zero entries in e;
• satu(e) = {i ∈ [n] : ei = i− 1}|, the number of saturated entries of e.

It is known (cf. [5]) that “asc” and “dist” are Eulerian statistics on In, while “rmin”, “zero” and
“satu” are Stirling statistics on In. These five statistics will play important roles throughout this
paper.

2. The pattern (≥,−,≥) and ordered trees

In the first version of their paper [12, Section 2.14], Martinez and Savage suspected that the
number of e ∈ In(≥,−,≥) with asc(e) = n − 1 − k is equal to the number of ordered trees with
n edges and with k interior vertices (non-root, non-leaf) adjacent to a leaf. The following result
confirms their conjecture when comparing with the formula for the latter object in OEIS [13,
A108759].

Theorem 2.1. For n ≥ 1 and dn/2e ≤ k < n− 1, we have

(2.1) |{e ∈ In(≥,−,≥) : asc(e) = k − 1}| = 1

n+ 1

(
n+ 1

2k − n

)(
2n− k
n− k

)
.

Proof. We will apply the following decomposition of (≥,−,≥)-avoiding inversion sequences. For
any e ∈ In(≥,−,≥), we distinguish two cases:

• If en = n− 1, then

asc(e) = asc(e1, . . . , en−1) + χ(n 6= 1).
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Here χ(S) equals 1, if the statement S is true; and 0, otherwise.
• If k = max{i : ei = i−1} < n, then it is straightforward to show that e can be decomposed
into two smaller inversion sequences: f = (e1, . . . , ek−1, ek+1) in Ik(≥,−,≥) and g =
(ek+2 − k, ek+3 − k, . . . , en − k) in In−1−k(≥,−,≥) (possibly empty). This decomposition
is reversible and satisfies the property:

asc(e) = asc(f) + asc(g) + 1− χ(k = n− 1) + χ(ek−1 ≥ ek+1 or k = 1).

Let Ĩn(≥,−,≥) := {e ∈ In(≥,−,≥) : n = 1 or en−1 < en} and let C(x, t), A(x, t) be the generating
functions of inversion sequences respectively from In(≥,−,≥) and Ĩn(≥,−,≥), counted by the
length (variable t) and asc (variable x):

C(x, t) :=
∑
n≥1

tn
∑

e∈In(≥,−,≥)

xasc(e) = t+ (1 + x)t2 + (4x+ x2)t3 + · · · ,

A(x, t) :=
∑
n≥1

tn
∑

e∈Ĩn(≥,−,≥)

xasc(e) = t+ xt2 + (2x+ x2)t3 + · · · .

Translating the above decomposition of (≥,−,≥)-avoiding inversion sequences into generating
functions (we omit the variables x, t) gives

B := C −A
A = t+ txC + txA2 + tx2AB = t+ txC + txA(A+ xB),

B = t(A+ xB) + tx(A+ xB)B = t(A+ xB)(1 + xB).

We are going to solve this system of equations. Let E = A+ xB, then

C = A+B = t+ txC + tE(1 + x(A+B)) = t+ txC + tE(1 + xC),

which is equivalent to

(2.2) E =
C − t− txC
t(1 + xC)

.

On the other hand, we have E = A + xB = t + txC + tE(x + xE). Substituting (2.2) into this
equation yields the algebraic equation for C:

t(1 + xC)(tx2C2 + 2txC + t+ 1)− C = 0

Setting C̃ = t(xC + 1), then the above equation is further simplified to

xC̃3 + (tx− 1)C̃ + t = 0,

which is equivalent to

t =
C̃(1− xC̃2)

1 + xC̃
.

By applying the Lagrange inversion formula (cf. [17, Theorem 5.4.2]), we get (2.1). �
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3. The pattern (−,−,≥) and restricted ordered trees

It was observed by Martinez and Savage [12, Section 2.10] that the sequences e ∈ In(−,−,≥)
are those for which ei > max{e1, . . . , ei−2} for i = 3, . . . , n. For e ∈ In, this is equivalent to the
conditions

(3.1) ei > max{ei−2, ei−3} for 3 ≤ i ≤ n,

where we use the convention e0 = 0. For example,

I3(−,−,≥) = {(0, 0, 1), (0, 0, 2), (0, 1, 1), (0, 1, 2)}.

Using this characterization, they derived a 4-parameter recurrence that enabled them to conjecture
that

{| In(−,−,≥)|}n≥1 = {1, 2, 4, 10, 25, 68, 187, 534, 1544, . . .}
is the integer sequence A049125 in OEIS [13]. As described by David Callan, this integer sequence
enumerates ordered trees with n edges in which every interior vertices has at most one leaf child.
This section is devoted to a proof of the above assertion algebraically.

For an inversion sequence e ∈ In, an index i, 1 ≤ i ≤ n, is said to be a saturated (resp. double
saturated) position of e if ei = i− 1 (resp. if ei = i− 1 and ei+1 = i). Let NDSn be the set of all
inversion sequences e ∈ In(−,−,≥) with no double saturated positions. Let NDS′n the set of all
inversion sequences e ∈ NDSn satisfying en < n− 1. Note that NDS′1 = ∅.

Our decomposition of (−,−,≥)-avoiding inversion sequences is a bit intricate. For any sequence
e ∈ In(−,−,≥), we need to distinguish two cases:

• If e ∈ NDSn.
• Otherwise e ∈ In(−,−,≥) \NDSn. Let k be the leftmost double saturated position of e.
Then e can be decomposed into two sequences:

(e1, . . . , ek−1) ∈ NDS′k−1 and

(ek+1 − k, ek+2 − k, . . . , en − k) ∈ In−k(−,−,≥).

This decomposition is reversible.

Let us introduce Ĩn(−,−,≥) := {e ∈ In(−,−,≥) : n = 1 or en−1 < en} and ÑDSn := NDSn ∩
Ĩn(−,−,≥). Define five generating functions

A(t) := 1 +
∑
n≥1
| In(−,−,≥)|tn = 1 + t+ 2t2 + 4t3 + 10t4 + · · · ,

Ã(t) :=
∑
n≥1
|Ĩn(−,−,≥)|tn = t+ t2 + 3t3 + 6t4 + · · · ,

B(t) :=
∑
n≥1
|NDSn|tn = t+ t2 + 2t3 + 5t4 + · · · ,

B̃(t) :=
∑
n≥1
|ÑDSn|tn = t+ 2t3 + 2t4 + · · · ,

C(t) :=
∑
n≥2
|NDS′n|tn = t2 + t3 + 4t4 + · · · .
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Since |NDSn| = |NDS′n|+ |NDS′n−1|, the above decomposition gives

(3.2)


B(t) = t+ (1 + t)C(t),

A(t) = 1 +B(t) + t(1 + C(t))(A(t)− 1),

Ã(t) = B̃(t) + t(1 + C(t))Ã(t).

Furthermore, a sequence e = (0, 0, e3, . . . , en) ∈ NDSn (n ≥ 2) can be decomposed as follows.

• If there does not exist k ≥ 3 such that ek = k − 1, then (e3 − 1, e4 − 1, . . . , en − 1) ∈
In−2(−,−,≥).
• Otherwise, let k ≥ 3 be the leftmost saturated position of e. We need to consider three
cases:
(i) If k = n, then (e3 − 1, e4 − 1, . . . , en−1 − 1) ∈ In−3(−,−,≥).
(ii) If 3 ≤ k < n and ek+1 < k− 1, then e can be decomposed into two smaller sequences:

(e3 − 1, e4 − 1, . . . , ek−1 − 1, ek+1 − 1) ∈ Ĩk−2(−,−,≥) and

(0, 0, ek+2 − k + 1, ek+3 − k + 1, . . . , en − k + 1) ∈ NDSn−k+1.

This decomposition is reversible.
(iii) If 3 ≤ k < n and ek+1 = k− 1, then e can be decomposed into two smaller sequences:

(e3 − 1, e4 − 1, . . . , ek−1 − 1) ∈ Ik−3(−,−,≥) and

(0, 0, ek+2 − k + 1, ek+3 − k + 1, . . . , en − k + 1) ∈ NDSn−k+1.

This decomposition is again reversible.

Translating the above decomposition into generating functions gives

(3.3)

{
B(t) = t+ (t2 + t3)A(t) + (tÃ(t) + t2A(t))(B(t)− t)
B̃(t) = t+ t2Ã(t) + t3A(t) + (tÃ(t) + t2A(t))(B̃(t)− t).

Solving the system of equations (3.2) and (3.3) (cf. using Maple) leads to the following algebraic
equation for A(t).

Theorem 3.1. The generating function A(t) for (−,−,≥)-avoiding inversion sequences satisfies
the algebraic equation:

t2A3(t) + (t2 − t)A2(t) + (2t− 1)A(t) + 1 = 0.

Equivalently, tA(t) is the composition inverse of t(1 + t− t2)(1 + t)−2.

Comparing with the definition of the integer sequence [13, A049125] in OEIS we arrive at the
following equinumerosity, as was conjectured by Martinez and Savage [12].

Corollary 3.2. The number of (−,−,≥)-avoiding inversion sequences of length n equals that of
ordered trees with n edges in which every interior vertices has at most one leaf child.

It would be interesting to find a bijective proof of Corollary 3.2.
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4. The pattern (>,−,≤) and (4123, 4132, 4213)-avoiding permutations

The integer sequence A106228

{1, 1, 2, 6, 21, 80, 322, 1347, 5798, 25512, . . .}

in the OEIS [13] are defined as the coefficients of the algebraic generating function

(4.1) A(t) = 1 +
tA(t)

1− tA(t)2
.

Recently, Albert, Homberger, Pantone, Shar and Vatter [1, Section 3.2] showed that this integer
sequence enumerates permutations avoiding the patterns (4123, 4132, 4213). Based on calculations,
Martinez and Savage [12, Section 2.21] conjectured that inversion sequences avoiding the triple of
relations (>,−,≤) are also counted by A106228. The following result confirms their conjecture
affirmatively.

Theorem 4.1. The cardinality of In(>,−,≤) equals the number of permutations of length n
avoiding (4123, 4132, 4213).

The rest of this section is devoted to an algebraic proof of Theorem 4.1. It would be interesting
to see whether there is a bijective proof of this result with further refinement.

Inversion sequences avoiding (>,−,≤) are these that avoid the patterns 101 and 102, whose
set is denoted by Inv(101, 102). For an inversion sequence e, denote |e| the length of e and
max(e) = max{ei : 1 ≤ i ≤ |e|} the value of maximal entries of e. For any inversion sequence
e ∈ Inv(101, 102) with max(e) = k, if en = k is the rightmost maximal entry of e (equivalently,
en = k > en+1) and |e| = n + m, then by definition, the subsequence (ei : 1 ≤ i ≤ n) is weakly
increasing and ej ≤ k − 1 for all n + 1 ≤ j ≤ n + m (if any). The case for k = 0 is trivial, so we
consider the case k ≥ 1. Let us introduce

An,k,m = {e ∈ Inv(101, 102) : |e| = n+m, en = max(e) = k > en+1}

and define the generating functions

A(t; q, w) =

∞∑
n=k+1

∞∑
m=0

∞∑
k=1

|An,k,m|(tw)ntmqk,

M(t; q, w) = A(t; q, w)−H(t; q, w) =

∞∑
m=0

∞∑
k=1

|Ak+1,k,m|(tw)k+1tmqk.

So the generating function A(t) of Inv(101, 102), counted by the length (variable t), is given by
A(t) = (1− t)−1 +A(t; 1, 1).

In order to derive a functional equation for A(t; q, w), we divide the set

T =
⋃

n,k 6=0,m

An,k,m
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into the following disjoint subsets:

T1 =
⋃

n,k 6=0,m

{e ∈ An,k,m : en−1 = k},

T2 =
⋃

n,k 6=0,m

{e ∈ An,k,m : en−1 < k, (k − 1) 6∈ {en+i : 1 ≤ i ≤ m}},

T3 =
⋃

n,k 6=0,m

{e ∈ An,k,m : en−1 < k, (k − 1) ∈ {en+i : 1 ≤ i ≤ m}}.

Lemma 4.2. The generating function A(t; q, w) satisfies

A(t; q, w) =
q(wt)2

(1− wt)(1− t)
+ wtA(t; q, w) +

qtw2

1− w
H(t; qw, 1)(4.2)

+
q(1− w − tw)

1− w
H(t; q, w).

Proof. We count the generating function for each Ti separately.
First, the generating function for T1 is wtA(t; q, w), since there is an easy one-to-one correspon-

dence between T1 and T , that is, for any e ∈ T1 ∩ An+1,k,m, removing the rightmost maximal
en+1 = k gives a sequence in An,k,m.

Second, the generating function for T2 is qH(t; q, w), since there is a bijection between T2∩An,k,m

and An,k−1,m, for any n ≥ k + 1. More precisely, for any e ∈ T2 ∩ An,k,m, since en−1 ≤ k − 1
and all entries after en are not equal to (k − 1), according to the definition of Inv(101, 102), after
replacing k by (k − 1) on the n-th position of e, we obtain a sequence in An,k−1,m with n 6= k.

Third, the generating function for T3 is
q(wt)2

(1− wt)(1− t)
+

qtw2

1− w
H(t; qw, 1)− qtw

1− w
H(t; q, w).

For k = 1, the set T3 ∩ An,1,m contains all sequences (0, . . . , 0, 1, 0, . . . , 0) and the corresponding
generating function is q(wt)2(1−wt)−1(1− t)−1. For any fixed k ≥ 2, n ≥ k+2 and k+2 ≤ i ≤ n,
there is a bijection between

{e ∈ T3 ∩ Ai,k+1,n+m−i+1 : en+1 = k > en+2} and {(e, i) : e ∈ An,k,m}.
For any e ∈ T3 ∩ Ai,k+1,n+m−i+1, we claim that the subsequence (ei−1, ei+1, . . . , en+1) is weakly
increasing. Note that ei−1 ≤ ei+1. Because if ei−1 > ei+1, then all entries after ei+1 must be less
than ei−1 in order to avoid patterns 101 and 102, which implies k ≤ ei−1 − 1 and it contradicts
the assumption that ei−1 ≤ k. Similarly, we can show ej ≤ ej+1 for all i + 1 ≤ j ≤ n. Since
en+1 = k > en+2, removing the unique entry (k + 1) from e results in a new sequence in An,k,m.
Conversely, for any pair (e, i) such that e ∈ An,k,m and k+ 2 ≤ i ≤ n, we insert (k+ 1) right after
the (i− 1)-th entry of e, yielding a sequence from T3 ∩ Ai,k+1,n+m−i+1 such that the rightmost k
is located on the (n+ 1)-th position. In terms of the generating functions, we do the substitution

wn → wk+2 + · · ·+ wn =
wk+2 − wn+1

1− w
in the generating function qtH(t; q, w), that is,

qtw2

1− w
H(t; qw, 1)− qtw

1− w
H(t; q, w),
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as desired.
Combining all the above three cases, we get (4.2), which completes the proof. �

Next we turn to derive a functional equation for the generating functionM(t; q, w).

Lemma 4.3. The generating functionM(t; q, w) satisfies

M(t; q, w) =
qtw2

1− qw
A(t; qw, 1)− qtw2

1− qw
A(t; 1, qw) +

q(tw)2

(1− t)(1− twq)
.(4.3)

Proof. The generating function for all sequences (0, . . . , 0, i, 0 . . . , 0) such that i is on the (i+1)-th
position is q(tw)2(1− t)−1(1− twq)−1.

Let
A′i+1,i,n+m−i = Ai+1,i,n+m−i \ {(0, . . . , 0, i︸ ︷︷ ︸

length=i+1

, 0, . . . , 0)}.

For k ≥ 1 and k + 1 ≤ i ≤ n, there is a bijection between

{e ∈ A′i+1,i,n+m−i : max{ej : j 6= i+ 1} = k, en+1 = k > en+2} and {(e, i) : e ∈ An,k,m}.

For any e ∈ A′i+1,i,n+m−i such that the second largest entry is k, we simply remove the unique i
from e to get a new sequence in An,k,m. Conversely, for any pair (e, i) such that e ∈ An,k,m and
n ≥ i ≥ k+1, we insert i right after the i-th entry of e to get a new sequence in A′i+1,i,n+m−i whose
rightmost second largest entry k is located on the (n+ 1)-th position. In terms of the generating
functions, we do the substitution

wnqk → twk+2qk+1 + twk+3qk+2 + · · ·+ twn+1qn = tw
(qw)k+1 − (qw)n+1

1− qw
in the generating function A(t; q, w), that is,

qtw2

1− qw
A(t; qw, 1)− qtw2

1− qw
A(t; 1, qw).

Combining the above two cases, we conclude that (4.3) holds. �

We are ready to prove Theorem 4.1.

Proof of Theorem 4.1. We aim to show that the ordinary generating functionA(t) of Inv(101, 102)
satisfies

A(t) = 1 + tA(t)(1− tA2(t))−1,(4.4)

which will finish the proof after comparing with (4.1).
By definitionM(t; q, w) = wM(t; qw, 1). Combining (4.2) and (4.3), we obtain(

1− wt− q(1− w − tw)

1− w

)
A(t; q, w) =

qt2w2(1− q)
(1− t)(1− twq)(1− tw)

(4.5)

+
tqw2(1− q)

(1− qw)(1− w)
A(t; qw, 1)

+
tq2w2

1− qw
A(t; 1, qw).
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We apply the kernel method and set the coefficient of A(t; q, w) to be zero. Solving for q in terms
of t and w gives q = (1− wt)(1− w)(1− w − wt)−1. Let δ be defined by

δ = δ(t, w) = qw =
w(1− wt)(1− w)

1− w − wt
.

Substituting q = δw−1 on the right hand side of (4.5) implies that

A(t; δ, 1) = − z(1− δ)(1− w)

(1− t)(1− tδ)(1− tw)
− δ(1− w)

w − δ
A(t; 1, δ).(4.6)

We set δ(t, z) = w and solve z = z(t, w), which satisfies

tz3 − (t+ 1)z2 + (w + tw + 1)z − w = 0.(4.7)

Replacing w by z and δ by w on both sides of (4.6) leads to

A(t;w, 1) = − t(1− w)(1− z)
(1− t)(1− tw)(1− tz)

− w(1− z)
z − w

A(t; 1, w).(4.8)

Let z1, z2, z3 be the three roots of (4.7), then substituting z1, z2 into (4.8) gives

A(t;w, 1) = − t(1− w)(1− z1)
(1− z)(1− tw)(1− tz1)

− w(1− z1)
z1 − w

A(t; 1, w),

A(t;w, 1) = − t(1− w)(1− z2)
(1− t)(1− tw)(1− tz2)

− w(1− z2)
z2 − w

A(t; 1, w).

Solving this system of two equations yields

A(t; 1, w) = − t

w(1− tw)

(z1 − w)(z2 − w)

(1− tz1)(1− tz2)
.(4.9)

Setting w = 1 in (4.9) gives

A(t; 1, 1) = − t(z1 − 1)(z2 − 1)

(1− t)(1− tz1)(1− tz2)
,

where z1, z2, z3 satisfy tz3−(t+1)z2+(t+2)z = 1, that is, equation (4.7) when w = 1. We will next
express A(t; 1, 1) in terms of z3 and t. Since z1, z2, z3 are the three roots of tz3−(t+1)z2+(t+2)z =
1, clearly z1z2z3 = t−1 and z1 + z2 + z3 = 1 + t−1, leading to

A(t; 1, 1) =
(tz23 − z3 + 1)

(1− t)(tz3 − tz23 − t)
.

It remains to check if A(t) = (1− t)−1 +A(t; 1, 1) satisfies the functional equation (4.4).
In view of tz33 − (t + 1)z23 + (t + 2)z3 = 1, we find that tz3(z23 − z3 + 1) = (1 − z3)2, by which

we can further simplify the formula of A(t; 1, 1) and consequently,

A(t) =
1

1− t
+A(t; 1, 1) =

1

1− t
+

(tz3 − 1)

(1− z3)(1− t)
=

z3
z3 − 1

.

It is easily seen that A(t) = z3(z3 − 1)−1 satisfies (4.4), which completes the proof. �
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5. The pattern (>,≤,−) and underdiagonal lattice paths

As observed by Martinez and Savage [12, Section 2.19], an inversion sequence e belongs to
In(>,≤,−) if and only if there exists some t, 1 < t ≤ n, such that

(5.1) e1 ≤ · · · ≤ et > et+1 > · · · > en.

They further conjectured that (>,≤,−)-avoiding inversion sequences are counted by [13, A071356]
and the polynomial Un(z) :=

∑
e∈In(>,≤,−) z

dist(e) is palindromic and unimodal. In this section, we
will prove their conjecture and show that Un(z) is γ-positive, which is stronger than palindromic
and unimodal.

Let h(z) = hrz
r + hr+1z

r+1 + · · · + hsz
s be a real polynomial with hr 6= 0 and hs 6= 0. It is

called palindromic (or symmetric) of darga n if n = r + s and hr+i = hs−i for all i. For example,
the darga of 1 + z and z are 1 and 2, respectively. Any palindromic polynomial h(z) of darga n
can be written uniquely as

h(z) =

bn
2
c∑

k=0

γkz
k(1 + z)n−2k,

where γk ∈ R. If γk ≥ 0 then we say that it is γ-positive of darga n. It is clear that γ-positivity
implies palindromicity and unimodality, because each term zk(1 + z)n−2k in the expansion is
palindromic with (the same) center bn2 c. One typical example of γ-positive polynomial is the
Eulerian polynomial

∑
e∈In z

dist(e). For many other γ-positive polynomials arising in enumerative
and geometric combinatorics, we refer the reader to the excellent book exposition by Petersen [14].

Introduce the generating function

D(t, z) :=
∑
n≥1

Un(z)tn.

The following result confirms the above conjectures of Martinez and Savage.

Theorem 5.1. The generating function D(t, z) satisfies the algebraic equation

(5.2) D = 2tzD2 + (tz + t)D + t.

Consequently, the polynomial Un(z) is γ-positive, and therefore palindromic and unimodal.

It is an immediate consequences of Eq. (5.2) that (>,≤,−)-avoiding inversion sequences are
counted by A071356 in the OEIS [13], which Emeric Deutsch notes also counts the number of
underdiagonal lattice paths form (0, 0) to the line x = n using only steps R = (1, 0), V = (0, 1)
and D = (1, 2). The rest of this section is devoted to a proof of Theorem 5.1.

Recall that a Dyck path of length n is a lattice path in N2 from (0, 0) to (n, n) using the east
step (1, 0) and the north step (1, 0), which does not pass above the line y = x. The height of an
east step in a Dyck path equals the number of north steps before this east step. For our purpose,
we will represent a Dyck path as d1d2 · · · dn, where di is the height of its i-th east step. See Fig. 1
for the drawing of Dyck path 001113667. Denote by Dn the set of all Dyck paths of length n. For
any Dyck path D = d1d2 · · · dn ∈ Dn, we are concerned with the following two statistics:

• last(D) = dn, the height of the last east step of D;
• turn(D), the number of turns of D, where a turn is an east step that is followed immedi-
ately by a north step.



PATTERNS IN INVERSION SEQUENCES 11

0 0 1 1 1 3 6 6 7

Figure 1. A Dyck path with its classical decomposition.

For example, if D = 001113667, then last(D) = 7 and turn(D) = 5. Define the generating function
of Dyck paths with respect to these two statistics by:

D(t;x, u) :=
∑
n≥1

tn
∑

D∈Dn

xlast(D)uturn(D)−1.

We have the following functional equation for D(t;x, u).

Lemma 5.2. The generating function D(t;x, u) satisfies

(5.3) D(t;x, u) = t+ txuD(t;x, u) + txuD(tx; 1, u)D(t;x, u) + tD(t;x, u).

Proof. We will apply the usual decomposition of Dyck paths (see Fig. 1). Each Dyck path D =
d1d2 . . . dn ∈ Dn with k = min{i ≥ 2 : di+1 = i or i = n} can be decomposed uniquely into
a pair (D1, D2) of Dyck paths, where D1 = d2d3 . . . dk ∈ Dk−1 (possibly empty) and D2 =
(dk+1 − k)(dk+2 − k) · · · (dn − k) ∈ Dn−k (possibly empty). This decomposition is reversible and
satisfies the following properties:

last(D) = χ(D2 6= ∅) · (k + last(D2)) + χ(D2 = ∅) · last(D1)

and
turn(D) = turn(D1) + turn(D2) + χ(D1 = ∅).

In terms of generating function, this decomposition gives (5.3), as desired. �

The key point to prove Theorem 5.1 lies in the following simple observation.

Lemma 5.3. We have the following relation between D(t, z) and D(t;x, u):

(5.4) D(t, z) = D

(
t; 1 + tz,

z + zt

1 + tz

)
.

Proof. Recall from (5.1) that any (>,≤,−)-avoiding inversion sequence has the form

e1 ≤ · · · ≤ et > et+1 > · · · > en

for some 1 < t ≤ n. The first t entries can be considered as a Dyck path and the remaining (n− t)
entries are chosen from the set {0, 1, . . . , et − 1}, where a chosen entry contributes a new distinct
entry if and only if it is chosen from {0, 1, . . . , et − 1} \ {e1, e2, . . . , et−1}. In terms of generating
functions, this gives (5.4). �
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Proof of Theorem 5.1. Setting x = 1 in (5.3) and solving the resulting functional equation for
D(t; 1, u) gives

D(t; 1, u) =
1− t− tu−

√
t2u2 − 2t2u− 2tu+ t2 − 2t+ 1

2tu
.

Plugging into (5.3) and solving the functional equation for D(t;x, u) results in

D(t;x, u) =
2t

1− tux+ tx− 2t+
√
t2u2x2 − 2t2ux2 + t2x2 − 2tux− 2tx+ 1

In view of relation (5.4), we have

D(t, z) =
2t

1− tz − t+
√
tz(tz − 6t− 2) + (t− 1)2

,

which is equivalent to (5.2).
It remains to show the γ-positivity of Un(z). By (5.2), we have the recursion for Un(z):

Un+1(z) = (z + 1)Un(z) + 2z

n−1∑
i=1

Ui(z)Un−i(z) for n ≥ 1.

The γ-positivity of Un(z) then follows from this recursion and the facts that
• the product of a γ-positive polynomial of darga n with a γ-positive polynomial of darga
m is γ-positive of darga m+ n;
• the sum of two γ-positive polynomials of darga n is γ-positive of darga n.

This completes the proof of the theorem. �

6. The patterns (=,≥,−), (≥,−,=) and set partitions

In [12, Section 2.17], Martinez and Savage made the following two conjectures:
• the number of e ∈ In(=,≥,−) with k repeats, i.e., n−1−dist(e) = k, is given by A124323,
the number of set partitions of [n] with k blocks of size large than 1;
• there exists a bijection between In(=,≥,−) and In(≥,−,=), which preserves the quadruple

(satu,max, zero, dist).
Bindi, Guerrini and Rinaldi [2] constructed recursively a bijection between set partition of [n] and
In(=,≥,−), which proves the cardinality of In(=,≥,−) is the n-th Bell number. In this section,
we show that their bijection actually answers the first conjecture above and we will also construct
the desired bijection for the second conjecture.

Let Πn be the set of all set partitions of {0, 1, . . . , n−1}. For a partition π ∈ Πn and an integer
0 ≤ k ≤ n − 1, we say that k is adjacent to itself in π if k is the minimal element in its block;
otherwise, k is adjacent to j in π, where

j = max{i : i < k and i lies in the same block as k}.

Let adj(k) denote the integer that k is adjacent to. The bijection Ψ : Πn → In(=,≥,−) due to
Bindi et al. [2] can be constructed recursively as

• Ψ({0}) = (0) and for n ≥ 2 and π ∈ Πn,
• if k = adj(n − 1), then Ψ(π) = (e1, e2, . . . , ek, k, ek+1, ek+2, . . . , en−1), where π̂ is the
partition π restricts to {0, 1, . . . , n− 2} and (e1, e2, . . . , en−1) = Ψ(π̂).
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0 1 2 3 4 5

Figure 2. The arc diagram of {{0, 3, 5}, {1}, {2, 4}}.

Example 6.1. For partition π = {{0, 3, 5}, {1}, {2, 4}} ∈ Π6 with its arc diagram depicted in
Fig. 2, we can construct Ψ(π) in the following steps:

(0)→ (0,1)→ (0, 1,2)→ (0, 0, 1, 2)→ (0, 0,2, 1, 2)→ (0, 0, 2,3, 1, 2) = Ψ(π).

Proposition 6.2. Denote by bk(π) and bk≥2(π) the number of blocks and the number of blocks
of size larger than 1 of a partition π, respectively. Then, the bijection Ψ transforms the pair
(bk,bk≥2) on Πn to the pair (rmin, n− 1− dist) on In(=,≥,−).

Proof. For any π ∈ Πn, by the construction of Ψ, an integer is minimal in a block of size larger
than 1 of π if and only if this integer appears two times in entries of Ψ(π). Thus, bk≥2(π) =
n− 1− dist(Ψ(π)). To show that bk(π) = rmin(Ψ(π)), we proceed by induction on n.

Suppose that π̂ ∈ Πn−1 is the partition π restricts to {0, 1, . . . , n− 2} and bk(π̂) = rmin(Ψ(π̂)).
If n − 1 is adjacent to k in π, then k becomes a saturated value of Ψ(π), which becomes a new
right-to-left minimal letter of Ψ(π) if and only if k = n − 1, that is {n − 1} is a block of π.
Therefore, bk(π) = rmin(Ψ(π)) holds and the proof is complete. �

Theorem 6.3. There exists a bijection R : In(=,≥,−) → In(≥,−,=), which preserves the
quadruple (satu,max, zero,dist).

Proof. Notice that In(=,≥,−) = In(000, 110), while In(≥,−,=) = In(000, 101). The idea of the
construction of R is to replace iteratively occurrences of pattern 101 in an inversion sequence in
In(000, 110) \ In(000, 101) with those of patterns 110.

Our R when restricted to In(000, 110) ∩ In(000, 101) is simply identity. So we only need to
define the mapping R from In(000, 110) \ In(000, 101) to In(000, 101) \ In(000, 110). Let e ∈
In(000, 110) \ In(000, 101). Clearly, e must contain the pattern 101 but avoid patterns 000 and
110. We apply the following switch operation to e:

• find the largest letter k such that k plays the role 1 in a pattern 101 of e;
• switch the rightmost entry k with the rightmost entry smaller than k and lies between
these two entries k.

We continue to apply the switch operation until there is no pattern 101 any more. Let R(e) be
the resulting inversion sequence. For example, if e = (0, 0, 1, 3, 2, 1, 4, 5, 7, 3, 4, 5) ∈ I12(000, 110) \
I12(000, 101), then

(0, 0, 1, 3, 2, 1, 4, 5, 7, 3, 4, 5)→ (0, 0, 1, 3, 2, 1, 4, 5, 7, 3, 5, 4)→ (0, 0, 1, 3, 2, 1, 4, 5, 7, 5, 3, 4)

→ (0, 0, 1, 3, 2, 1, 4, 5, 7, 5, 4, 3)→ (0, 0, 1, 3, 2, 3, 4, 5, 7, 5, 4, 1)→ (0, 0, 1, 3, 3, 2, 4, 5, 7, 5, 4, 1)

and we get R(e) = (0, 0, 1, 3, 3, 2, 4, 5, 7, 5, 4, 1) ∈ I12(000, 101) \ I12(000, 110). To retrieve e, we
just need to apply series of inverse switch operation with R(e) = ê as input:

• find the smallest letter k such that k plays the role 1 in a pattern 110 of ê;
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• switch the rightmost entry k with the leftmost entry that is smaller than k and lies after
the rightmost entry k.

In each step of switch, the switch operation and inverse switch operation are inverse of each other.
Therefore, R is a bijection between In(000, 110) and In(000, 101). It is routine to check that R
preserves the quadruple (satu,max, zero, dist), which ends the proof. �

7. The pattern (−,−,=) and restricted set partitions

In [12, Section 2.13], Martinez and Savage showed that

(7.1) s(n, k) = (n− k)s(n− 1, k − 1) + (n− k − 1)s(n− 2, k − 1),

where s(n, k) := |{e ∈ In(−,−,=) : dist(e) = k}|. They suspected that (−,−,=)-avoiding
inversion sequences are counted by the integer sequence [13, A229046] in OEIS. According to Alois
P. Heinz, the sequence A229046 also enumerates set partitions such that the absolute difference
between minimal elements of consecutive blocks (blocks are arranged so that the minimal elements
are in increasing order) is always greater than 1. Let us denote such restricted set partitions of
[n] by RPn. For instance, we have

RP4 = {1234, 12|34, 123|4, 124|3}.

The following equidistribution is a generalization of the Martinez–Savage suspection.

Theorem 7.1. Let bk(π) be the number of blocks of a set partition π. Then,

(7.2) |{e ∈ In(−,−,=) : dist(e) = n− k}| = |{π ∈ RPn+1 : bk(π) = k}|.

Proof. Denote RPn,k = {π ∈ RPn+1 : bk(π) = k} and let p(n, k) be its cardinality. We aim to
show that

(7.3) p(n, k) = kp(n− 1, k) + (k − 1)p(n− 2, k − 1),

which, after comparing with recursion (7.1), establishes the equidistribution (7.2).
To show (7.3), we introduce

a(n, k) = |{π ∈ RPn+1,k : {n+ 1} is a block of π}|

and b(n, k) = p(n, k)−a(n, k). Since b(n, k) is the number of partitions in RPn+1,k such that n+1
is not the only element of its block, we have

(7.4) b(n, k) = kp(n− 1, k).

On the other hand, for each π ∈ RPn+1,k such that {n + 1} is a block of π, we simply remove
the block {n + 1} to get a partition π̂ ∈ RPn,k−1 such that {n} is not a block of π̂ (otherwise,
the absolute difference between the minimal elements of the blocks {n} and {n + 1} of π is 1, a
contradiction). It is clear that the mapping π 7→ π̂ is a one-to-one correspondence between

{π ∈ RPn+1,k : {n+ 1} is a block of π} and {π ∈ RPn,k−1 : {n} is not a block of π}.

Therefore,
a(n, k) = b(n− 1, k − 1) = (k − 1)p(n− 2, k − 1),

where the second equality follows from (7.4). Combining this with (7.4) we get (7.3), which
completes the proof. �
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The refinement p(n, k) is now appears as [13, A298668] in OEIS. Recall that the Stirling number
of the second kind

{
n
k

}
counts the set partitions of [n] with k blocks. We have the following relation

between p(n, k) and
{
n
k

}
.

Proposition 7.2. For any 1 ≤ k ≤ n, we have

p(n, k) = (k − 1)!

{
n− k + 1

k

}
.

Proof. It is well known (cf. [16, Page 33]) that the Stirling numbers satisfy the recursion{
n

k

}
= k

{
n− 1

k

}
+

{
n− 1

k − 1

}
.

It then follows that

S(n, k) := (k − 1)!

{
n− k + 1

k

}
= k(k − 1)!

{
n− k
k

}
+ (k − 1)!

{
n− k
k − 1

}
= kS(n− 1, k) + (k − 1)S(n− 2, k − 1).

Comparing with (7.3), we see S(n, k) and p(n, k) share the same recurrence relation (and also
initial value), thus S(n, k) = p(n, k). This completes the proof. �
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