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Hook length formulas for partitions and plane trees

Summary:

• Some well-known examples

• How to discover new hook formulas ?

• The Main Theorem

• Specializations

• Latest news on the subject
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Some well-known examples: Hook length multi-set

Partition
λ = (6, 3, 3, 2)

v

Hook length of v
hv(λ) = 4

2 1
4 3 1
5 4 2
9 8 6 3 2 1

Hook lengths

H(λ)

The hook length multi-set of λ is

H(λ) = {2, 1, 4, 3, 1, 5, 4, 2, 9, 8, 6, 3, 2, 1}
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Some well-known examples: permutations

fλ : the number of standard Young tableaux of shape λ

Frame, Robinson and Thrall, 1954

fλ =
n!

∏

h∈H(λ) h
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Some well-known examples: permutations

fλ : the number of standard Young tableaux of shape λ

Frame, Robinson and Thrall, 1954

fλ =
n!

∏

h∈H(λ) h

Robinson-Schensted correspondence:
∑

λ⊢n

f2
λ = n!

∑

λ∈P

x|λ|
∏

h∈H(λ)

1

h2
= ex
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Some well-known examples: involutions

The number of standard Young tableaux of {1, 2, . . . , } is equal
to the number of involutions of order n.

∑

λ∈P

x|λ|
∏

h∈H(λ)

1

h
= ex+x2/2
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Some well-known examples: partitions

Generating function for partitions:

∑

λ∈P

x|λ|
∏

h∈H(λ)

1 =
∏

k≥1

1

1− xk
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Some well-known examples: binary trees

hook length for unlabeled binary trees
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T

Hv(T ) = 5 H(T ) = {1, 1, 1, 3, 5, 6}
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Some well-known examples: binary trees

fT : the number of increasing labeled binary trees

fT =
n!

∏

h∈H(T ) h
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Some well-known examples: binary trees

Each labeled binary tree with n vertices is in bijection with a
permutation of order n

∑

T∈B(n)

n!
∏

v∈T

1

hv
= n!
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Some well-known examples: binary trees

Each labeled binary tree with n vertices is in bijection with a
permutation of order n

∑

T∈B(n)

n!
∏

v∈T

1

hv
= n!

Generating function form:

∑

T∈B

x|T |
∏

h∈H(T )

1

h
=

1

1− x
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Some well-known examples: binary trees, Catalan

The number of binary trees with n vertices is equal to the n-th
Catalan number

∑

T∈B(n)

1 =
1

n + 1

(

2n

n

)

Generating function form:

∑

T∈B

x|T |
∏

h∈H(T )

1 =
1−
√

1− 4x

2x
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Some well-known examples: tangent numbers

∑

T∈B

x|T |
∏

h∈H(T ),h≥2

1

2h
= tan(x) + sec(x)

Question: What is its combinatorial interpretation ?
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Some well-known examples: tangent numbers

∑

T∈B

x|T |
∏

h∈H(T ),h≥2

1

2h
= tan(x) + sec(x)

Question: What is its combinatorial interpretation ?

A : The tangent number counts the alternating permutations

(André, 1881).
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Some well-known examples: tangent numbers

∑

T∈B

x|T |
∏

h∈H(T ),h≥2

1

2h
= tan(x) + sec(x)

Question: What is its combinatorial interpretation ?

A : The tangent number counts the alternating permutations

(André, 1881).

B : The tangent number counts André permutations (Foata,
Schützenberger, Strehl, 1973).
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Some well-known examples: tangent numbers

∑

T∈B

x|T |
∏

h∈H(T ),h≥2

1

2h
= tan(x) + sec(x)

Question: What is its combinatorial interpretation ?

A : The tangent number counts the alternating permutations

(André, 1881).

B : The tangent number counts André permutations (Foata,
Schützenberger, Strehl, 1973).

Answer : B !
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Some well-known examples: tangent numbers

But what is A ?
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Some well-known examples: tangent numbers

But what is A ?

∑

T∈C

x|T |
∏

h∈H(T )

1

h
= tan(x) + sec(x)

C : complete binary trees
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Discover new hook formulas

Partitions Trees

Discovering

Proving

19



Discover new hook formulas

Partitions Trees

Discovering Hard

Proving
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Discover new hook formulas

Partitions Trees

Discovering Hard Hard

Proving
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Discover new hook formulas

Partitions Trees

Discovering Hard Hard

Proving Hard
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Discover new hook formulas

Partitions Trees

Discovering Hard Hard

Proving Hard Easy
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Discover new hook formulas

We now introduce an efficient technique for discovering new
hook length formulas:
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Discover new hook formulas

We now introduce an efficient technique for discovering new
hook length formulas:

hook length expansion
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Discover new hook formulas: expansion

ρ(h): weight function
f(x): formal power series
They are connected by the relation:

∑

λ∈P

x|λ|
∏

h∈H(λ)

ρ(h) = f(x)
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Discover new hook formulas: expansion

ρ(h): weight function
f(x): formal power series
They are connected by the relation:

∑

λ∈P

x|λ|
∏

h∈H(λ)

ρ(h) = f(x)

• generating function : ρ −→ f
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Discover new hook formulas: expansion

ρ(h): weight function
f(x): formal power series
They are connected by the relation:

∑

λ∈P

x|λ|
∏

h∈H(λ)

ρ(h) = f(x)

• generating function : ρ −→ f

• hook length expansion : ρ←− f
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Discover new hook formulas: expansion

ρ(h): weight function
f(x): formal power series
They are connected by the relation:

∑

λ∈P

x|λ|
∏

h∈H(λ)

ρ(h) = f(x)

• generating function : ρ −→ f

• hook length expansion : ρ←− f

• hook length formula : when both ρ and f have “nice” forms
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Discover new hook formulas: algorithm

• Does the hook length expansion exist ? Yes.
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Discover new hook formulas: algorithm

• Does the hook length expansion exist ? Yes.

• Is there an algorithm for computing the hook length expan-
sion ? Yes.
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Discover new hook formulas: algorithm

• Does the hook length expansion exist ? Yes.

• Is there an algorithm for computing the hook length expan-
sion ? Yes.

1
2
3
4

1
2
4 1

2 1
3 2

1
4 2 1 4 3 2 1
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Discover new hook formulas: algorithm

• Does the hook length expansion exist ? Yes.

• Is there an algorithm for computing the hook length expan-
sion ? Yes.

1
2
3
4

1
2
4 1

2 1
3 2

1
4 2 1 4 3 2 1

ρ4ρ3ρ2ρ1 + ρ4ρ2ρ1ρ1 + ρ3ρ2ρ2ρ1 + ρ4ρ2ρ1ρ1 + ρ4ρ3ρ2ρ1 = f4
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Discover new hook formulas: algorithm

• Does the hook length expansion exist ? Yes.

• Is there an algorithm for computing the hook length expan-
sion ? Yes.

1
2
3
4

1
2
4 1

2 1
3 2

1
4 2 1 4 3 2 1

ρ4ρ3ρ2ρ1 + ρ4ρ2ρ1ρ1 + ρ3ρ2ρ2ρ1 + ρ4ρ2ρ1ρ1 + ρ4ρ3ρ2ρ1 = f4

We can solve ρ4 when knowing ρ1, ρ2, ρ3, f4, because there is
at most one “4” in each partition (linear equation with one
variable)
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Discover new hook formulas: maple package

Maple package for the hook length expansion

HookExp

Two procedures

hookgen: ρ −→ f

hookexp: ρ←− f
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Discover new hook formulas: permutation

Example : permutations

> read("HookExp.mpl"):

> hookexp(exp(x), 8);

[

1,
1

4
,
1

9
,

1

16
,

1

25
,

1

36
,

1

49
,

1

64

]

∑

λ∈P

x|λ|
∏

h∈H(λ)

1

h2
= ex
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Discover new hook formulas: involution

Example: involutions

> hookexp(exp(x+x^2/2), 8);

[

1,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
1

8

]

∑

λ∈P

x|λ|
∏

h∈H(λ)

1

h
= ex+x2/2

37



Discover new hook formulas: interpolation

permutations :
∑

λ∈P

x|λ|
∏

h∈H(λ)

1

h2
= ex

involutions :
∑

λ∈P

x|λ|
∏

h∈H(λ)

1

h
= ex+x2/2

♥♥♥ What about the interpolation

ex+zx2/2 ?
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Discover new hook formulas: interpolation

Try

> hookexp(exp(x+z*x^2/2), 8);

[

1,
1 + z

4
,

3z + 1

9 + 3z
,

z2 + 6z + 1

16 + 16z
,

5z2 + 10z + 1

5z2 + 50z + 25
,

z3 + 15z2 + 15z + 1

120z + 36z2 + 36
,

7z3 + 35z2 + 21z + 1

7z3 + 147z2 + 245z + 49

]

Many binomial coefficients, so that ...
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Discover new hook formulas: interpolation

Interpolation between permutations and involutions:

First Conjecture (H., 2008)

∑

λ∈P

x|λ|
∏

h∈H(λ)

ρ(z;h) = ex+zx2/2

where

ρ(z;n) =

⌊n/2⌋
∑

k=0

(

n

2k

)

zk

n

⌊(n−1)/2⌋
∑

k=0

(

n

2k + 1

)

zk
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Discover new hook formulas: partition

Another example: generating function for partitions

> hookexp(product(1/(1-x^k), k=1..9), 9);

[1, 1, 1, 1, 1, 1, 1, 1, 1]

∑

λ∈P

x|λ|
∏

h∈H(λ)

1 =
∏

k≥1

1

1− xk
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Discover new hook formulas: partition

Another example: generating function for partitions

> hookexp(product(1/(1-x^k), k=1..9), 9);

[1, 1, 1, 1, 1, 1, 1, 1, 1]

∑

λ∈P

x|λ|
∏

h∈H(λ)

1 =
∏

k≥1

1

1− xk

♥♥♥ What about
∏

k(1− xk) ?
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Discover new hook formulas: partition

Another example: generating function for partitions

> hookexp(product(1/(1-x^k), k=1..9), 9);

[1, 1, 1, 1, 1, 1, 1, 1, 1]

∑

λ∈P

x|λ|
∏

h∈H(λ)

1 =
∏

k≥1

1

1− xk

♥♥♥ What about
∏

k(1− xk) ?

♥♥♥ or more generally
∏

k(1− xk)z ?
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Discover new hook formulas: partition

Try it by using HookExp
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Discover new hook formulas: partition

Try it by using HookExp

> hookexp(product((1-x^k)^z, k=1..7), 7);

[

−z,
3− z

4
,
8− z

9
,
15− z

16
,
24− z

25
,
35− z

36
,
48− z

49

]
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Discover new hook formulas: partition

Try it by using HookExp

> hookexp(product((1-x^k)^z, k=1..7), 7);

[

−z,
3− z

4
,
8− z

9
,
15− z

16
,
24− z

25
,
35− z

36
,
48− z

49

]

We see that the ρ has a very simple expression:

ρ(h) =
h2 − 1− z

h2
= 1− z + 1

h2
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Discover new hook formulas: Nekrasov-Okounkov

The previous hook length expansion suggests:

Theorem (Nekrasov-Okounkov, 2003; H., 2008)

∑

λ∈P

∏

h∈H(λ)

(

1− z + 1

h2

)

x =
∏

k≥1

(

1− xk
)z
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Discover new hook formulas: proofs

How to prove ?
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Discover new hook formulas: proofs

How to prove ?

The Russian-Physics Proof

Nekrasov, Okounkov (2003): arXiv: hep-th/0306238, 90 pages

(The last formula is deeply hidden in N-O’s paper. See
formula (6.12) on page 55)
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Discover new hook formulas: proofs

How to prove ?

The Russian-Physics Proof

Nekrasov, Okounkov (2003): arXiv: hep-th/0306238, 90 pages

(The last formula is deeply hidden in N-O’s paper. See
formula (6.12) on page 55)

The Lotharingian-Combinatorics Proof

H. (2008): arXiv:0805.1398 [math.CO], 28 pages
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Discover new hook formulas: Combinatorial proof

Basic tools in the Lotharingian-Combinatorics Proof

•Macdonald’s identities (1972): Affine root systems and Dedekind’s

η-function

• Garvan, Kim, Stanton’s bijection (1990): Cranks and t-cores

• Lagrange interpolation formula

51



Discover new hook formulas

“This is great !

But can we do more ?”
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Main Theorem: 1 + xk

We have (when z = 1):

∑

λ∈P

x|λ|
∏

h∈H(λ)

(

1− 2

h2

)

=
∏

k≥1

(1− xk).
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Main Theorem: 1 + xk

We have (when z = 1):

∑

λ∈P

x|λ|
∏

h∈H(λ)

(

1− 2

h2

)

=
∏

k≥1

(1− xk).

♥♥♥ What about
∏

(1 + xk) ?

54



Main Theorem: 1 + xk

Try

> hookexp(product(1+x^k, k=1..14),14);

[

1,
1

2
, 1,

7

8
, 1,

17

18
, 1,

31

32
, 1,

49

50
, 1,

71

72
, 1,

97

98

]

We have

∑

λ∈P

x|λ|
∏

h∈H(λ),h even

(

1− 2

h2

)

=
∏

k≥1

(1 + xk).
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Main Theorem: 1 + xk

• How to prove ?
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Main Theorem: 1 + xk

• How to prove ?

It seems very hard !
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Main Theorem: 1 + xk

• How to prove ?

It seems very hard !

• Can it be generalized ?
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Main Theorem: 1 + xk

• How to prove ?

It seems very hard !

• Can it be generalized ?

- No, with the right-hand side by hookexp(←−), because no
“nice” expansion for

∏ 1

1 + xk
or

∏

(1 + xk)z.
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Main Theorem: 1 + xk

• How to prove ?

It seems very hard !

• Can it be generalized ?

- No, with the right-hand side by hookexp(←−), because no
“nice” expansion for

∏ 1

1 + xk
or

∏

(1 + xk)z.

- Yes, with the left-hand side by hookgen(−→).
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Main Theorem: 1 + xk variation

We have just seen:

ρ =
[

1,
1

2
, 1,

7

8
, 1,

17

18
, 1,

31

32
, 1,

49

50
, 1,

71

72
, 1,

97

98

]

−→
∏

k≥1

(1+xk).

Try the following variations of ρ with hookgen:

[

1, 1− z

2
, 1, 1− z

8
, 1, 1− z

18
, 1, 1− z

32
, 1, 1− z

50
, 1

]

[1, 1,−1, 1, 1,−1, 1, 1,−1, 1, 1,−1, 1, 1,−1, 1, 1]

[1, 1, z, 1, 1, z, 1, 1, z, 1, 1, z, 1, 1, z]
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Main Theorem: 1 + xk variation

> ...

[

1, 1− z

2
, 1, 1− z

8
, 1, 1− z

18
, 1, 1− z

32
, 1, 1− z

50
, 1

]

> hookgen(%): etamake(%, x, 10): simplify(%);

∏

k≥1

(1− x2k)z

1− xk

When z = 1

∏

k≥1

(1− x2k)z

1− xk
=

∏

k≥1

1− x2k

1− xk
=

∏

k≥1

(1 + xk)
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Main Theorem: 1 + xk variation

> r:=n-> if n mod 3=0 then -1 else 1 fi:

> [seq(r(i), i=1..17)];

[1, 1,−1, 1, 1,−1, 1, 1,−1, 1, 1,−1, 1, 1,−1, 1, 1]

> hookgen(%): etamake(%, x, 17): simplify(%);

∏

k≥1

(1− x12k)3(1− x3k)6

(1− x6k)9(1− xk)
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Main Theorem: 1 + xk variation

> f := k -> (1-x^(3*k))^3/(1-(z*x^3)^k)^3/(1-x^k):

> hookexp(product(f(k),k=1..15), 15);

[1, 1, z, 1, 1, z, 1, 1, z, 1, 1, z, 1, 1, z]

> ...

∑

λ∈P

x|λ|zhmult(λ) =
∏

k≥1

(1− xtk)t

(1− (zxt)k)t(1− xk)

where hmult(λ) is the number of boxes v such that hv(λ) is a
multiple of t.
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Main Theorem

The previous and many other experimentations suggest:

Main Theorem (H. 2008)

∑

λ∈P

x|λ|
∏

h∈Ht(λ)

(

y − tyz

h2

)

=
∏

k≥1

(1− xtk)t

(1− (yxt)k)t−z(1− xk)

Ht(λ) = {h | h ∈ H(λ), h ≡ 0(mod t)}.
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Main Theorem: fields of interest

This work has some links with the following fields:

• General Mathematical Community: Euler, Jacobi, Gauss

• High Energy Physics Theory: Nekrasov, Okounkov

• Lie Algebra and Representation Theory: Macdonald, Dyson,
Kostant, Milne, Adin, Schlosser

• Modular Forms and Number Theory: Ramanujan, Lehmer,
Ono, Stanton

• q-Series, Combinatorics: (Here we are !)

• Algorithm, Computer Algebra: RSK, Krattenthaler (rate),
Garvan (qseries), Sloane

• Plane Trees: Viennot, Foata, Schützenberger, Strehl, Gessel,
Postnikov
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Main Theorem: Specializations

The Main Theorem has so many specializations:

• the Jacobi triple product identity →
• the Gauss identity →
• the Nekrasov-Okounkov formula

• the generating function for partitions

• the Macdonald identity for A
(a)
ℓ

• the classical hook length formula

• the marked hook formula →
• the generating function for t-cores

• the t-core analogues of the hook formula

• the t-core analogues of the marked hook formula

• ...

67



Specializations, Jacobi + Gauss

The Main Theorem unifies Jacobi and Gauss identities.

t = 1, y = 1, z = 4:

Jacobi
∏

m≥1

(1− xm)3 =
∑

m≥0

(−1)m(2m + 1)xm(m+1)/2

t = 2, y = 1, z = 2:

Gauss

∏

m≥1

(1− x2m)2

1− xm
=

∑

m≥0

xm(m+1)/2
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Specializations, t-cores

Let {z = t or y = 0}, we get the well known formula:

∑

λ: t-cores

x|λ| =
∏

k≥1

(1− xtk)t

1− xk
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Specializations, t-cores

Let {z = t or y = 0}, we get the well known formula:

∑

λ: t-cores

x|λ| =
∏

k≥1

(1− xtk)t

1− xk

♥♥♥ What about

∏

k≥1

(1 + xtk)t

1− xk
?

70



Specializations, t-cores

Let {z = t or y = 0}, we get the well known formula:

∑

λ: t-cores

x|λ| =
∏

k≥1

(1− xtk)t

1− xk

♥♥♥ What about

∏

k≥1

(1 + xtk)t

1− xk
?

♥♥♥ How to generalize it ?
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Specializations, t-cores

First, try hookexp (←−):

∑

λ∈P

x|λ|2#{h∈H(λ),h=t} =
∏

k≥1

(1 + xtk)t

1− xk
.
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Specializations, t-cores

First, try hookexp (←−):

∑

λ∈P

x|λ|2#{h∈H(λ),h=t} =
∏

k≥1

(1 + xtk)t

1− xk
.

Then, try hookgen (−→):

Theorem (H. 2008)

∑

λ∈P

x|λ|y#{h∈H(λ),h=t} =
∏

k≥1

(1 + (y − 1)xtk)t

1− xk
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Specializations, marked hook formula

• {z = −b/y, y → 0} in Main Theorem:

∑

λ∈P

x|λ|
∏

h∈Ht(λ)

tb

h2
= ebxt

∏

k≥1

(1− xtk)t

1− xk

• Compare the coefficients of bnxtn:

∑

λ⊢tn,#Ht(λ)=n

∏

h∈Ht(λ)

1

h2
=

1

tnn!

• t = 1:
∑

λ⊢n

f2
λ = n!
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Specializations, marked hook formula

• Compare the coefficients of (−z)n−1xntyn

∑

λ⊢nt,#Ht(λ)=n

∏

h∈Ht(λ)

1

h2

∑

h∈Ht(λ)

h2 =
3n− 3 + 2t

2(n− 1)!

• t = 1:

Marked hook formula (H. 2008)

∑

λ⊢n

f2
λ

∑

h∈H(λ)

h2 =
n(3n− 1)

2
n!

75



Specializations, marked hook formula

• Direct combinatorial proof ? Not yet

• Generalizations ? Yes
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Specializations, marked hook formula

• Direct combinatorial proof ? Not yet

• Generalizations ? Yes
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Specializations, marked hook formula

∑

λ⊢n

∏

h∈H(λ)

1

h2

∑

h∈H(λ)

h2 =
3n− 1

2(n− 1)!

∑

λ⊢n

∏

h∈H(λ)

1

h2

∑

h∈H(λ)

h4 =
40n2 − 75n + 41

6(n− 1)!

∑

λ⊢n

∏

h∈H(λ)

1

h2

∑

h∈H(λ)

h6 =
1050n3 − 4060n2 + 5586n− 2552

24(n− 1)!

Second Conjecture (H. 2008)

Pk(n) = (n− 1)!
∑

λ⊢n

(

∏

v∈λ

1

h2
v

)(

∑

u∈λ

h2k
u

)

is a polynomial in n of degree k.
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Specializations, Bessenrodt

• {y = 1; compare the coefficients of z} in Main Theorem

∑

λ∈P

x|λ|
∑

h∈Ht(λ)

1

h2
=

1

t

∏

m≥1

1

1− xm

∑

k≥1

xtk

k(1− xtk)
.

• t = 1:

∑

λ∈P

x|λ|
∑

h∈H(λ)

1

h2
=

∏

m≥1

1

1− xm

∑

k≥1

xk

k(1− xk)
.
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Specializations, Bessenrodt

Direct proof.

By using an elegant result on multi-sets of hook lengths and
multi-sets of partition parts.

It is amusing to see that this result is rediscovered periodically:

• Stanley (1972, partial)

• Kirdar, Skyrme (1982, partial)

• Elder (1984, partial)

• Hoare (1986, partial)

• Bessenrodt (1998)

• Bacher, Manivel (2002)

• H. (2008)
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Hook length formulas for plane trees

New hook length formulas for

plane trees

SLC 62 (2009)
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Latest news on the subject

The First Conjecture has been proved by:

Kevin Carde, Joe Loubert, Aaron Potechin, Adrian Sanborn

under the guidance of Dennis Stanton and Vic Reiner

(the Minnesota school)
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Latest news on the subject

Ameya Velingker, Emily Clader, Yvonne Kemper, Matt Wage

was working on these new hook length formulas and found
interesting applications on Modular Forms and Number Theory

under the guidance of Ken Ono

(the Wisconsin school)
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Latest news on the subject

The Second Conjecture has been proved by Richard Stanley

Tewodros Amdeberhan slightly simplified Stanley’s proof

(the MIT school)
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Latest news on the subject

Laura Yang, Bruce Sagan

have found generalizations and other proofs of certain
hook length formulas for plane trees

85



Papers

• Discovering hook length formulas by expansion technique
• New hook length formulas for binary trees
• Yet another generalization of Postnikov’s hook length formula
for binary trees
• Some conjectures and open problems on partition hook lengths
• The Nekrasov-Okounkov hook length formula: refinement,
elementary proof, extension and applications
• An explicit expansion formula for the powers of the Euler
product in terms of partition hook lengths
• (with Ken Ono) Hook lengths and 3-cores
• Hook lengths and shifted parts of partitions

All papers are available on:
http://www-irma.u-strasbg.fr/˜guoniu/hook
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