A small universal spiking neural P system

Turlough Neary

Boole Centre for Research in Informatics,
University College Cork, Ireland,

Funded by Science Foundation Ireland Research
Frontiers Programme grant number 07/RFP/CSMF641.

August 27, 2008

Introduction

» In this talk we present two small universal spiking neural P
systems.

» Spiking neural P systems are the result of a synergy inspired
by spiking neural networks and P systems.

» These systems were first presented and proved universal in
2006 by lonescu, Paun and Yokomori.

Previous small spiking neural P systems

» P3un and P3un gave a strongly universal spiking neural P
system with 84 neurons and another that has extended rules
with 49 neurons.

» Subsequently, the number of neurons used for strong
universality was reduced from 84 to 67 and from 49 to 41 by
Zhang et al.

» Recently we proved that there exists no universal (extended)
spiking neural P system that simulates Turing machines in less
then exponential time and space.

» A universal spiking neural P system with exhaustive use of
extended rules has been given that simulates Turing machines
in polynomial time. This system has only 18 neurons.

Our results

» Here we present a weakly universal spiking neural P system
that has extended rules and only 12 neurons. This system
simulates a weakly universal 2 register machine.

» By adapting our algorithm we can simulated more general
register machines with more registers. We show that there
exists a strongly universal spiking neural P system that has
extended rules and 18 neurons.

Extended spiking neural P systems

A spiking extended neural P system is a tuple

N=(0,01,02, " ,0m,Ssyn,in,out), where:
1. O = {s} is the unary alphabet (s is known as a spike),
2. 01,09, -+ ,0m, are neurons, of the form
oi = (ni, Ri),1 < i< m, where:
2.1 n; > 0 is the initial number of spikes contained in o,
2.2 R; is a finite set of rules of the following two forms:
221 E/sb — s, d, where E is a regular expression over s,
b>c>1and d >0,
2.2.2 s® — X, where X is the empty word, e > 1, and for all
E/s® — s;d from R; s¢ ¢ L(E) where L(E) is the language
defined by E,
3. syn C{1,2,--- ,m} x {1,2,--- ,m} is the set of synapses
between neurons, where i # j for all (i,) € syn,
4. in,out € {01,02, -+ ,0m} are the input and output neurons,

respectively.

Extended spiking neural P system

linput
ﬂ

output

An extended spiking neural P systems executing rule
E/sb — s d
linput

01

output

t1:01 =4, (s)*/s® — s%0.

On the left ox = y gives the number y of spikes in neuron oy at
time t; and on the right is the next rule that is to be applied at
time t; if there is an applicable rule at that time.

An extended spiking neural P systems executing rule
E/sb — s d
linput

01

output

t1:01 =4, (s?)*/s® — s%;0.

On the left ox = y gives the number y of spikes in neuron oy at
time t; and on the right is the next rule that is to be applied at
time t; if there is an applicable rule at that time.

An extended spiking neural P systems executing rule
E/s® — s d
linput

01

(o) 03

output

t1 101 =4, (s2)*/s® — s%0.

On the left ox = y gives the number y of spikes in neuron oy at
time t; and on the right is the next rule that is to be applied at
time t; if there is an applicable rule at that time.

An extended spiking neural P systems executing rule
E/sb — s d
linput

01

output
th:o1 =1,
oy =2,

o3 =2, 2\

An extended spiking neural P systems executing rule

s — A
linput

01

output
th:o1 =1,
oy =2,

o3 =2, 2\

An extended spiking neural P systems executing rule

s¢— A
linput

01

output
t3:01 =1,
op = 2,

o3 =0,

Register machine definition

A register machine is a tuple C = (z, r1, rm, Q, g1, gn), where z
gives the number of registers, r; and r,, are the input and output
registers respectively, @ = {q1, g2, , gn} is the set of
instructions, g1, g, € Q are the initial and halt instructions,
respectively.

Register machine operation

Each register r; stores a natural number value x > 0. Each
instruction g; is of one of the following two forms g; : INC(j) or
gi : DEC(j)qx, and is executed as follows:

> g; : INC(j) increment the value x stored in register r; by 1
and move to instruction gj41.
> q; : DEC(j)qx if the value x stored in register r; is greater

than 0 then decrement this value by 1 and move to
instruction gj;1, otherwise if x = 0 move to instruction qy.

Korec's notions of universality for register machines

Let (¢o, @1, 2, ..) be a Godel enumeration of all unary partial
recursive functions. A register machine U is weakly universal if
Px(y) = F(U(g(x,y)) or ¢x(y) = U(g(x,y)) where g and f are
recursive functions. A register machine U is strongly universal if
odx(y) = U(x, y) where g and f are recursive functions.

Universality of 2 register machines

In his book “Finite and infinite machines”, Minsky proves the
universality 2 register machines by showing that they simulate
Turing machines. If we use Minsky's algorithm to construct a
universal 2 register machine it will in fact be weakly universal.

A weakly universal spiking neural P system

We give a universal spiking neural P system that simulates a
universal 2 register machine. Using Minsky’s algorithm to encode a
Turing machine, and its input, as input to our spiking neural P
system we get recursive encoding and decoding functions.

Small weakly universal spiking neural P system

linput
01

Encoding

Ny
—
[}
-
]
o0
(D)
pud

Encoding

Let x3 and x» be the values stored in the registers r; and rp,
respectively. Then x; and x» are stored as 4hx; and 4hxp spikes in
neurons o4 and os, respectively. The next instruction g; to be
executed is stored in each of the neurons o4 and o5 as 2(h+ i)
spikes.

Simulate g; : INC(1)

tj:oq = 4hxy +2(h4 1), s2ht(s¥h)x/s2(h+i) _, g2(h+i)=1.
o5 = 4hx, + 2(h + i), st (hhyx s2(h+i) .0,

On the left oy = y gives the number y of spikes in neuron oy at time t;
and on the right is the next rule that is to be applied at time t; if there is
an applicable rule at that time.

Simulate g; : INC(1)

tj: o4 = 4hx +- 2 (g3 (i) 2(hi) =1,

o5 = 4hxp +- s2Ahti) (ghhyx /s2(h+i) _, 5.0,

On the left o = y gives the number y of spikes in neuron oy at time t;
and on the right is the next rule that is to be applied at time t; if there is
an applicable rule at that time.

Simulate g; : INC(1)

t; 1 o4 = 4hx, 52(h+i)(54h)*/s2(h+i) _ A=l

o5 = 4hxy, sAhHD) (ghhyx 520+, 5.0,

On the left oy = y gives the number y of spikes in neuron o at time t;
and on the right is the next rule that is to be applied at time t; if there is
an applicable rule at that time.

Simulate g; : INC(1)

t o4 = bhxq, 2 (ghhyx g2(h+i) _ 2(ht)=1, ¢

o5 = 4hxo, S2(h+i)(s4h)*/s2(h+i) — s:0.

On the left ox = y gives the number y of spikes in neuron oy at
time t; and on the right is the next rule that is to be applied at
time t; if there is an applicable rule at that time.

Simulate g; : INC(1)

tj 1 04 = 4hxq,

s2(h+i)(s4h)*/52(h+i) BN s2(h+i)—1; 07
o5 = 4hxo, S2(h+i)(s4h)*/s2(h+i) — 50.
On the left ox = y gives the number y of spikes in neuron oy at

time t; and on the right is the next rule that is to be applied at
time t; if there is an applicable rule at that time.

[m]

=

Simulate g; : INC(1)

04

tiy1 1 04 = 4hxy,

05 = 4hX2,
06,07,08 = 2(h+1i), 2+ y2h+i) _, 2k
09,011,012 = 2(h + i), s2hH)

010 = 2(h 4 I), 52(h+i)/s2(h+i) BN 52(i+1); 0.

Simulate g; : INC(1)

NS4

04

tiv1:04= 4hxy,

05 = 4hxo,
06,07,08 = 2(h + i), b+ j2h+i) _, 2h

010 = 2(h + ,)7 S2(h+i)/52(h+i) N 52(l'+1); 0.

Simulate g; : INC(1)

tit1: 04 = 4hx,

Op = 4hX2,
-0'3 _ 2(h + ,-), s2(h+i)/s2(h+i) N S2h; 0,

o10 = 2(h+), 52(h+i)/52(h+i) — it o,

Simulate g; : INC(1)

tiv1:04= 4/7(X1 + 1),
05 = 4-/'IX27
o5 = 2(h + i), S2Uh) j20hi) _, g2h.

o10 = 2(h + I), 52(h+i)/s2(h+i) N 5.2(I'+1); 0.

Simulate g; : INC(1)

tit1: 04 =4h(xg + 1),
05 = 4hX27
og =2(h+1), 2(h i) yg2(hti) _, g2h. o

o10 = 2(h + 1), 52(h+i)/s2(h+i) — i+ g,

Simulate g; : INC(1)

tiv1:04= 4h(X1 + 1),
05 = 4hX2,

g8l = 2(h + i), $2r) 5200+) _, (SR o,
G = 2(h+), s s [o

Simulate g; : INC(1)

tio o4 =4h(x1 +1)+2(h+i+1),
o5 =4hxp +2(h+i+1).

At time tj, o the simulation of g; : INC(1) is complete. The
encoded register value has been incremented by increasing it from
4hxy to 4h(x1 + 1). The encoding 2(h+ i + 1) of the next
instruction g;;1 has been established.

Simulate g; : DEC(1)qy for x; > 0

tj: o= bhxq + 2(h+ ,-)7 S4h+2(h+i)(s4h)*/s4h+2(h+i) N 52(h+i);0,

o5 = 4hxo + 2(h + i), sAhH) (shhyx s s2(h+i) _, s- 0.,

Simulate g; : DEC(1)qy for x; > 0

tj 104 = 4hxy +2(h+ i), s4h+2(h+i)(54h)*/- — k).
o5 = 4hxy + 2(h + i), s2(h+i)(s4h)*/52(h+i) . s0.

Simulate g; : DEC(1)qy for x; > 0

tj+1 :

06,07,09, 011,012 = 2(h+1) + 1,
og =2(h+1i)+1,
o0 =2(h+1i)+1,

52(h+l)+1 N)\7

s2(h+:)+1/52(h+:)+1 — %0,

52(h+i)+1/52(h+i)+1 _ i) o,

Simulate g; : DEC(1)qy for x; > 0

tj+1 :

06,07,09, 011,012 = 2(h+1) + 1,
og =2(h+1i)+1,
o0 =2(h+1i)+1,

52(h+l)+1 N)\7

s2(h+:)+1/52(h+:)+1 — %0,

52(h+i)+1/52(h+i)+1 _ i) o,

Simulate g; : DEC(1)qy for x; > 0

S/ |

tiy1:04 = 4h(X1 — 1),

05 = 4hX2,
06,07,09,011,012 = 2(h+ i) + 1, s2(hH+L

[Gg =2(h+i)+1, s2hHF1 b1 -; 0,
el = 2(h+ i) + 1, G2+ 24+ -; 0.

Simulate g; : DEC(1)qy for x; > 0

tio o4 =4h(xy — 1)+ 2(h+i+1),
o5 =4hxo +2(h+i+1).

At time tj o the simulation of g; : DEC(1) is complete. The
encoded register value has been decremented by decreasing it from
4hxy to 4h(x; — 1). The encoding 2(h+ i + 1) of the next
instruction gj;1 has been established.

Simulate g; : DEC(1)qy for x; =0

tj:os=2(h+1i), s2(hti) jg2(hti) _, g2hti)=1. o

05 = 4[7)(2 + 2(h + i), S2(h+i)($4h)>1</52(h+i) —s:0.

Simulate g; : DEC(1)qy for x; =0

s =2+ i), EUEUCE)

o5 = 4hxo + 2(h + i), s2hH)(g4hyx js2(h+) 50,

Simulate g; : DEC(1)qy for x; =0

tiy1 1 05 = 4hxy,

06,07,09,011, 012 = 2(h + i), s2(h)\
og =2(h+1), 52(h+i)/52(h+i) . s?h0,

o10 = 2(h+1i), s2h+i) g2 _, 2k

Simulate g; : DEC(1)qy for x; =0

tiyo 104 = 2(h—|— k),
05 = 4hX2 + 2(h + k)

Note that at time tj;o, when the simulation is complete, the encoding
2(h + k) of the next instruction g1 has been established.

Halting and output

tj 04 = 4hxg + 2h+ 3, $BhH3 (st /0 s s: 0,
05 = 4hX2+2h+3

Halting and output

tiv1: 04 =4h(x — 1)+ 3, sT(s*M)* /st — s2M 0,

05 :4-/’1X2—|-2h—i-37

06,07,08,010,011,012 = 17 s— Av

Halting and output

tito 1 04 = 4h(x —2) + 3, s7(s*)* /s*h — %M 0,

o5 = 4hx, +2h 4+ 3,

2h
06, 07,08,009, 010,011, 012 = 2h, s — A

Halting and output

tj+2 04 = 4h(X1 - 2) + 3,
o5 = 4hxo +2h + 3,

2h
06,07, 08,09, 010, 011, 012 = 2h, 2.

Halting and output

05 :4hX2+2h+3,

2h
06,07,08,09,010,011,012 = 2h’ s = A

Halting and output

tits, @ 02 =3, s3/s3 — 5,0,
o5 = 4hxo +2h + 3,

2h
06, 07,08,09, 010,011, 012 = 2h, 57— A

Halting and output

titxg @ 02 =3, s*/s* — gl 0,
o5 = 4hxo +2h + 3,

2h
06, 07,08,009, 010,011, 012 = 2h, 57— A

Halting and output

tj+>q+1 .05 = 4hX2 + 2h + 3,

06,07,08,010,011,012 = 1, s — A,

m- sps 0.

Small weakly universal spiking neural P system

linput
01

linput

Small strongly universal spiking neural P system

linput

Small strongly universal spiking neural P system

linput

Small strongly universal spiking neural P system

linput

Small strongly universal spiking neural P system

Conclusions

» We have given an extended spiking neural P system with 12
neurons that is weakly universal and another with 18 neurons
that is strongly universal.

» We have given a new simulation technique of register
machines for spiking neural P system.

» The simulation technique given for our spiking neural P
systems is easily adapted to simulate more general register
machines.

» There exist spiking neural P systems with 8 neurons which
have undecidable reachability questions.

	Introduction
	Extended spiking neural P systems

	Conclusions

