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Abstract

The theory of q-analogs develops many combinatorial formulas for finite vector spaces over a
finite field with q elements—all in analogy with formulas for finite sets (which are the special
case of q = 1). A direct-sum decomposition of a finite vector space is the vector space analogue
of a set partition. This paper uses elementary methods to develop the formulas for the number
of direct-sum decompositions that are the q-analogs of the formulas for: (1) the number of
set partitions with a given number partition signature; (2) the number of set partitions of an
n-element set with m blocks (the Stirling numbers of the second kind); and (3) for the total
number of set partitions of an n-element set (the Bell numbers). The paper also develops the
formulas to enumerate: (4) the number of direct-sum decompositions in an n-dimensional vector
space over GF (q) with m blocks and where any given nonzero vector is in one of the blocks,
and (5) the number of direct-sum decompositions in an n-dimensional vector space over GF (q)
where any given nonzero vector is in one of the blocks.
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1 Reviewing q-analogs: From sets to vector spaces

The theory of q-analogs shows how many "classical" combinatorial formulas for finite sets can be
extended to finite vector spaces where q is the cardinality of the finite base field, i.e., q = pn, a power
of a prime.

The natural number n is replaced by:

[n]q =
qn−1
q−1 = 1 + q + q

2 + ...+ qn−1

so as q → 1, then [n]q → n in the passage from vector spaces to sets. The factorial n! is replaced, in
the q-analog

[n]q! = [n]q [n− 1]q ... [1]q
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where [1]q = [0]q = 1.
To obtain the Gaussian binomial coeffi cients we calculate with ordered bases of a k-dimensional

subspace of an n-dimensional vector space over the finite field GF (q) with q elements. There are qn

elements in the space so the first choice for a basis vector has (qn − 1) (excluding 0) possibilities,
and since that vector generated a subspace of dimension q, the choice of the second basis vector is
limited to (qn − q) elements, and so forth. Thus:

(qn − 1) (qn − q)
(
qn − q2

)
...
(
qn − qk−1

)
= (qn − 1) q1

(
qn−1 − 1

)
q2
(
qn−1 − 1

)
...qk−1

(
qn−k+1 − 1

)
=

[n]q !

[n−k]q !
q(1+2+...+(k−1)) =

[n]q !

[n−k]q !
qk(k−1)/2.

Number of ordered bases for a k-dimensional subspace in an n-dimensional space.

But for a space of dimension k, the number of ordered bases are:(
qk − 1

) (
qk − q

) (
qk − q2

)
...
(
qk − qk−1

)
=
(
qk − 1

)
q1
(
qk−1 − 1

)
q2
(
qk−1 − 1

)
...qk−1

(
qk−k+1 − 1

)
= [k]q!q

k(k−1)/2

Number of ordered bases for a k-dimensional space.

Thus the number of subspaces of dimension k is the ratio:(
n
k

)
q
=

[n]q !q
k(k−1)/2

[n−k]q ![k]q !qk(k−1)/2
=

[n]q !

[n−k]q ![k]q !
Gaussian binomial coeffi cient

where
(
n
k

)
q
→
(
n
k

)
as q → 1, i.e., the number of k-dimensional subspaces → number of k-element

subsets. Many classical identities for binomial coeffi cients generalize to Gaussian binomial coeffi cients
[5].

2 Counting partitions of finite sets and vector spaces

2.1 The direct formulas for counting partitions of finite sets

Using sophisticated techniques, the direct-sum decompositions of a finite vector space over GF (q)
have been enumerated in the sense of giving the exponential generating function for the numbers
([2]; [8]). Our goal is to derive by elementary methods the formulas to enumerate these and some
related direct-sum decompositions.

Two subspaces of a vector space are said to be disjoint if their intersection is the zero subspace
0. A direct-sum decomposition (DSD) of a finite-dimensional vector space V over a base field F is
a set of (nonzero) pair-wise disjoint subspaces, called blocks (as with partitions), {Vi}i=1,...,m that
span the space. Then each vector v ∈ V has a unique expression v =

∑m
i=1 vi with each vi ∈ Vi.

Since a direct-sum decomposition can be seen as the vector-space version of a set partition, we begin
with counting the number of partitions on a set.

Each set partition {B1, ..., Bm} of an n-element set has a "type" or "signature" number partition
giving the cardinality of the blocks where they might be presented in nondecreasing order which we
can assume to be: (|B1| , |B2| , ..., |Bm|) which is a number partition of n. For our purposes, there is
another way to present number partitions, the part-count representation, where ak is the number of
times the integer k occurs in the number partition (and ak = 0 if k does not appear) so that:

a11 + a22 + ...+ ann =
∑n

k=1 akk = n.
Part-count representation of number partitions keeping track of repetitions.
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Each set partition {B1, ..., Bm} of an n-element set has a part-count signature a1, ..., an, and
then there is a "classical" formula for the number of partitions with that signature ([1, p. 215]; [6,
p. 427]).

Proposition 1 The number of set partitions for the given signature: a1, ..., an where
∑n

k=1 akk = n
is:

n!
a1!a2!...an!(1!)

a1 (2!)a2 ...(n!)an .
.

Proof: Suppose we count the number of set partitions {B1, ..., Bm} of an n-element set when the
blocks have the given cardinalities: nj = |Bj | for j = 1, ...,m so

∑m
j=1 nj = n. The first block B1

can be chosen in
(
n
n1

)
ways, the second block in

(
n−n1
n2

)
ways and so forth, so the total number of

ways is: (
n
n1

)(
n−n1
n2

)
...
(
n−n1−...−nm−1

nm

)
= n!

n1!(n−n1)!
(n−n1)!

n2!(n−n1−n2)! ...
(n−n1−...−nm−1)!
nm!(n−n1−...−nm)!

= n!
n1!...nm!

=
(

n
n1,...,nm

)
the multinomial coeffi cient. This formula can then be restated in terms of the part-count signature
a1, ..., an where

∑n
k=1 akk = n as: n!

(1!)a1 (2!)a2 ...(n!)an . But that overcounts since the ak blocks of size
k can be permuted without changing the partition’s signature so one needs to divide by ak! for
k = 1, ..., n which yields the formula for the number of partitions with that signature. �

The Stirling numbers S (n,m) of the second kind are the number of partitions of an n-element
set with m blocks. Since

∑n
k=1 ak = m is the number of blocks, the direct formula (as opposed to a

recurrence formula) is:

S (n,m) =
∑

1a1+2a2+...+nan=n
a1+a2+...+an=m

n!
a1!a2!...an!(1!)

a1 (2!)a2 ...(n!)an

Direct formula for Stirling numbers of the second kind.

The Bell numbers B (n) are the total number of partitions on an n-element set so the direct
formula is:

B (n) =
∑n

m=1 S (n,m) =
∑

1a1+2a2+...+nan=n

n!
a1!a2!...an!(1!)

a1 (2!)a2 ...(n!)an

Direct formula for total number of partitions of an n-element set.

2.2 The direct formulas for counting DSDs of finite vector spaces

Each DSD π = {Vi}i=1,...,m of a finite vector space of dimension n also determines a number partition
of n using the dimensions ni = dim (Vi) in place of the set cardinalities, and thus each DSD also
has a signature a1, ..., an where the subspaces are ordered by nondecreasing dimension and where∑n

k=1 akk = n and
∑n

k=1 ak = m.

Proposition 2 The number of DSDs of a vector space V of dimension n over GF (q) with the
part-count signature a1, ..., an is:

1
a1!a2!...an!

[n]q !

([1]q !)
a1 ...([n]q !)

an q
1
2 (n

2−
∑

k akk
2)

Number of DSDs for the given signature a1, ..., an where
∑n

k=1 akk = n.

Proof: Reasoning first in terms of the dimensions ni, we calculate the number of ordered bases in a
subspace of dimension n1 of a vector space of dimension n over the finite field GF (q) with q elements.
There are qn elements in the space so the first choice for a basis vector is (qn − 1) (excluding 0),
and since that vector generated a subspace of dimension q, the choice of the second basis vector is
limited to (qn − q) elements, and so forth. Thus:
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(qn − 1) (qn − q)
(
qn − q2

)
...
(
qn − qn1−1

)
= (qn − 1) q1

(
qn−1 − 1

)
q2
(
qn−1 − 1

)
...qn1−1

(
qn−n1+1 − 1

)
= (qn − 1)

(
qn−1 − 1

)
...
(
qn−n1−1 − 1

)
q(1+2+...+(n1−1))

Number of ordered bases for an n1-dimensional subspace of an n-dimensional space.

If we then divide by the number of ordered bases for an n1-dimension space:

(qn1 − 1) (qn1 − q) ...
(
qn1 − qn1−1

)
= (qn1 − 1)

(
qn1−1 − 1

)
... (q − 1) q(1+2+...+(n1−1))

we could cancel the qn1(n1−1) terms to obtain the Gaussian binomial coeffi cient

(qn−1)(qn−1−1)...(qn−n1−1−1)q(1+2+...+(n1−1))

(qn1−1)(qn1−1−1)...(q−1)q(1+2+...+(n1−1)) =
(
n
n1

)
q
=

[n]q !

[n−n1]q ![n1]q !
Number of different n1-dimensional subspaces of an n-dimensional space.

If instead we continue to develop the numerator by multiplying by the number of ordered bases
for an n2-dimensional space that could be chosen from the remaining space of dimension n− n1 to
obtain:

(qn − 1) (qn − q)
(
qn − q2

)
...
(
qn − qn1−1

)
× (qn − qn1)

(
qn − qn1+1

)
...
(
qn − qn1+n2−1

)
= (qn − 1)

(
qn−1 − 1

)
...
(
qn−n1−n2+1 − 1

)
q(1+2+...+(n1+n2−1)).

Then dividing by the number of ordered bases of an n1-dimensional space times the number of
ordered bases of an n2-dimensional space gives the number of different "disjoint" (i.e., only overlap
is zero subspace) subspaces of n1-dimensional and n2-dimensional subspaces.

=
(qn−1)(qn−1−1)...(qn−n1−n2+1−1)q(1+2+...+(n1+n2−1))

(qn1−1)(qn1−1−1)...(q−1)q(1+2+...+(n1−1))×(qn2−1)(qn2−1−1)...(q−1)q1+2+...+(n2−1) .

Continuing in this fashion we arrive at the number of disjoint subspaces of dimensions n1, n2, ..., nm
where

∑m
i=1 ni = n:

(qn−1)(qn−1−1)...(q−1)q(1+2+...+(n−1))∏
i=1,...,m

(qni−1)(qni−1−1)...(q−1)q(1+2+...+(ni−1))
=

[n]q !q
n(n−1)/2

[n1]q !q
n1(n1−1)/2×...×[nm]q !qnm(nm−1)/2

=
[n]q !

[n1]q !...[nm]q !
q
1
2 [n(n−1)−

∑m
i=1 ni(ni−1)].

There may be a number ak of subspaces with the same dimension, e.g., if nj = nj+1 = k, then
ak = 2 so the term [nj ]q!q

nj(nj−1)/2×[nj+1]q!qnj+1(nj+1−1)/2 in the denominator could be replaced by(
[k]q!

)ak
qakk(k−1)/2. Hence the previous result could be rewritten in the part-count representation:

[n]q !

([1]q !)
a1 ...([n]q !)

an q
1
2 [n(n−1)−

∑
k akk(k−1)].

And permuting subspaces of the same dimension k yields a DSD with the same signature, so we
need to divide by ak! to obtain the formula:

[n]q !

a1!...an!([1]q !)
a1 ...([n]q !)

an q
1
2 [n(n−1)−

∑
k akk(k−1)].

The exponent on the q term can be simplified since
∑

k akk = n:

1
2 [n (n− 1)− (

∑
k akk (k − 1))] = 1

2

[
n2 − n−

(∑
k akk

2 −
∑

k akk
)]

= 1
2

[
n2 − n−

(∑
k akk

2 − n
)]
= 1

2

(
n2 −

∑
k akk

2
)
.
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This yields the final formula for the number of DSDs with the part-count signature a1, ..., an:

[n]q !

a1!...an!([1]q !)
a1 ...([n]q !)

an q
1
2 (n

2−
∑

k akk
2). �

Note that the formula is not obtained by a simple substitution of [k]q! for k! in the set partition

formula due to the extra term q
1
2 (n

2−
∑

k akk
2), but that it still reduces to the classical formula for

set partitions with that signature as q → 1. This formula leads directly to the vector space version
of the Stirling numbers of the second kind to count the DSDs with m parts and to the vector space
version of the Bell numbers to count the total number of DSDs.

Before giving those formulas, it should be noted that there is another q-analog formula called
"generalized Stirling numbers" (of the second kind)—but it generalizes only one of the recurrence
formulas for S (n,m). It does not generalize the interpretation "number of set partitions on an n-
element set with m parts" to count the vector space partitions (DSDs) of finite vector spaces of
dimension n with m parts. The Stirling numbers satisfy the recurrence formula:

S (n+ 1,m) = mS (n,m) + S (n− 1,m) with S (0,m) = δ0m.

Donald Knuth uses the braces notation for the Stirling numbers,
{
n
m

}
= S (n,m), and then he defines

the "generalized Stirling number" [6, p. 436]
{
n
m

}
q
by the q-analog recurrence relation:{

n+1
m

}
q
=
(
1 + q + ...+ qm−1

) {
n
m

}
q
+
{

n
m−1

}
q
;
{
0
m

}
q
= δ0m.

It is easy to generalize the direct formula for the Stirling numbers and it generalizes the set
partition interpretation to vector space partitions:

Dq (n,m) =
∑

1a1+2a2+...+nan=n
a1+a2+...+an=m

[n]q !

a1!...an!([1]q !)
a1 ...([n]q !)

an q
1
2 (n

2−
∑

k akk
2)

Number of DSDs of a finite vector space of dimension n over GF (q) with m parts.

The number Dq (n,m) is Snm in [8]. Taking q → 1 yields the Stirling numbers of the second kind,
i.e., D1 (n,m) = S (n,m). Knuth’s generalized Stirling numbers

{
n
m

}
q
and Dq (n,m) start off the

same, e.g.,
{
0
0

}
q
= 1 = Dq (0, 0) and

{
1
1

}
q
= 1 = Dq (1, 1), but then quickly diverge. For instance,

all
{
n
n

}
q
= 1 for all n, whereas the special case of Dq(n, n) is the number of DSDs of 1-dimensional

subspaces in a finite vector space of dimension n over GF (q) (see table below for q = 2). The formula
Dq (n, n) is M (n) in [9, Example 5.5.2(b), pp. 45-6] or [8, Example 2.2, p. 75.].

The number Dq(n, n) of DSDs of 1-dimensional subspaces is closely related to the number of
basis sets. The old formula for that number of bases is [7, p. 71]:

1
n! (q

n − 1) (qn − q) ...
(
qn − qn−1

)
= 1

n! (q
n − 1)

(
qn−1 − 1

)
...(q1 − 1)q(1+2+...+(n−1))

= 1
n! [n]q!q

(n2) (q − 1)n

since [k]q =
qk−1
q−1 = 1 + q + q

2 + ...+ qk−1 for k = 1, ..., n.
In the formula for Dq (n, n), there is only one signature a1 = n and ak = 0 for k = 2, ..., n

which immediately gives the formula for the number of DSDs with n 1-dimensional blocks and each
1-dimensional block has q − 1 choices for a basis vector so the total number of sets of basis vectors
is given by the same formula:

Dq (n, n) (q − 1)n =
[n]q !

a1!
q
1
2 (n

2−a112) (q − 1)n = 1
n! [n]q!q

(n2) (q − 1)n.
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Note that for q = 2, (q − 1)n = 1 so D2 (n, n) is the number of different basis sets.
Summing the Dq (n,m) for all m gives the vector space version of the Bell numbers B (n):

Dq (n) =
∑n

m=1Dq (n,m) =
∑

1a1+2a2+...+nan=n

1
a1!a2!...an!

[n]q !

([1]q !)
a1 ...([n]q !)

an q
1
2 (n

2−
∑

k akk
2)

Number of DSDs of a vector space of dimension n over GF (q).

Our notation Dq (n) is Dn (q) in Bender and Goldman [2] and |Qn| in Stanley ([8], [9]). Setting q = 1
gives the Bell numbers, i.e., D1 (n) = B (n).

2.3 Counting DSDs with a block containing a designated vector v∗

Set partitions have a property not shared by vector space partitions, i.e., DSDs. Given a designated
element u∗ of the universe set U , the element is contained in some block of every partition on U .
But given a nonzero vector v∗ in a space V , it is not necessarily contained in a block of any given
DSD of V . Some proofs of formulas use this property of set partitions so the proofs do not generalize
to DSDs.

Consider one of the formulas for the Stirling numbers of the second kind:

S (n,m) =
∑n−1

k=0

(
n−1
k

)
S (k,m− 1)

Summation formula for S (n,m).

The proof using the designated-element u∗ reasoning starts with the fact that any partition of
U with |U | = n with m blocks will have one block containing u∗ so we then only need to count the
number of m− 1 blocks on the subset disjoint from the block containing u∗. If the block containing
u∗ had n − k elements, there are

(
n−1
k

)
blocks that could be complementary to an (n− k)-element

block containing u∗ and each of those k-element blocks had S (k,m− 1) partitions on it with m− 1
blocks. Hence the total number of partitions on an n-element set with m blocks is that sum.

This reasoning can be extended to DSDs over finite vector spaces, but it only counts the number
of DSDs with a block containing a designated nonzero vector v∗ (it doesn’t matter which one), not
all DSDs. Furthermore, it is not a simple matter of substituting

(
n−1
k

)
q
for

(
n−1
k

)
. Each (n− k)-

element subset has a unique k-element subset disjoint from it (its complement), but the same does
not hold in general vector spaces. Thus given a subspace with (n− k)-dimensions, we must compute
the number of k-dimensional subspaces disjoint from it.

Let V be an n-dimensional vector space over GF (q) and let v∗ be a specific nonzero vector in V .
In a DSD with an (n− k)-dimensional block containing v∗, how many k-dimensional subspaces are
there disjoint from the (n− k)-dimensional subspace containing v∗? The number of ordered basis

sets for a k-dimensional subspace disjoint from the given (n− k)-dimensional space is:(
qn − qn−k

) (
qn − qn−k+1

)
...
(
qn − qn−1

)
=
(
qk − 1

)
qn−k

(
qk−1 − 1

)
qn−k+1... (q − 1) qn−1

=
(
qk − 1

) (
qk−1 − 1

)
... (q − 1) q(n−k)+(n−k+1)+...+(n−1)

=
(
qk − 1

) (
qk−1 − 1

)
... (q − 1) qk(n−k)+ 1

2k(k−1)

since we use the usual trick to evaluate twice the exponent:

(n− k) + (n− k + 1) + ...+ (n− 1)
+(n− 1) + (n− 2) + ...+ (n− k)
= (2n− k − 1) + ...+ (2n− k − 1)

= k (2n− k − 1) = 2k (k + (n− k))− k2 − k = 2k (n− k) + k2 − k.

Now the number of ordered basis set of a k-dimensional space is:(
qk − 1

) (
qk−1 − 1

)
... (q − 1) q 12k(k−1)
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so dividing by that gives:

qk(n−k)

The number of k-dimensional subspaces disjoint from any (n− k)-dimensional subspace.1

Note that taking q → 1 yields the fact that an (n− k)-element subset of an n-element set has a
unique k-element subset disjoint from it.

Hence in the q-analog formula, the binomial coeffi cient
(
n−1
k

)
is replaced by the Gaussian bino-

mial coeffi cient
(
n−1
k

)
q
times qk(n−k). Then the rest of the proof proceeds as usual. Let D∗q (n,m)

denote the number of DSDs of V with m blocks with one block containing any designated v∗. Then
we can mimic the proof of the formula S (n,m) =

∑n−1
k=0

(
n−1
k

)
S (k,m− 1) to derive the following:

Proposition 3 Given a designated nonzero vector v∗ ∈ V , the number of DSDs of V with m blocks
one of which contains v∗ is:

D∗q (n,m) =
∑n−1

k=0

(
n−1
k

)
q
qk(n−k)Dq (k,m− 1). �

Note that it is Dq (k,m− 1), and not D∗q (k,m− 1), on the right-hand side of the formula. Further
note that D∗q (n,m) is the q-analog of Stirling numbers of second kind S (n,m) in the sense that

taking q = 1 gives the right-hand side of:
∑n−1

k=0

(
n−1
k

)
S (k,m− 1) since D1 (k,m− 1) = S (k,m− 1),

and the left-hand side is the same as S (n,m) since every set partition of an n-element with m blocks
has to have a block containing some designated element u∗. Thus both Dq (n,m) and D∗q (n,m) can
be seen as q-analogs of the Stirling numbers S (n,m).

Since the Bell numbers can be obtained from the Stirling numbers of the second time as: B (n) =∑n
m=1 S (n,m), there is clearly a similar formula for the Bell numbers:

B (n) =
∑n−1

k=0

(
n−1
k

)
B (k)

Summation formula for B (n).

This formula can also be directly proven using the designated element u∗ reasoning, so it can
be similarly be extended to computing D∗q (n), the number of DSDs of V with a block containing a
designated nonzero vector v∗.

Proposition 4 Given any designated nonzero vector v∗ ∈ V , the number of DSDs of V with a block
containing v∗ is:

D∗q (n) =
∑n−1

k=0

(
n−1
k

)
q
qk(n−k)Dq (k). �

Note that D∗q (n) is the q-analog of the Bell numbers B (n) in the sense that taking q = 1 yields the
classical summation formula for B (n) since D1 (k) = B (k) and every partition has to have a block
containing a designated element u∗. Thus both Dq (n) and D∗q (n) can be seen as q-analogs of the
Bell numbers B (n).

Furthermore the D∗ numbers have the expected relation:

Corollary 1 D∗q (n) =
∑n

m=1D
∗
q (n,m). �

Since we also have formulas for the total number of DSDs, we have the number of DSDs where
the designated element is not in one of the blocks: Dq (n,m)−D∗q (n,m) and Dq (n)−D∗q (n).

For a natural interpretation for the D∗-numbers, consider the pedagogical model of quantum
mechanics using finite-dimensional vector spaces V over GF (2) = Z2, called "quantum mechanics
over sets," QM/Sets [4]. The "observables" or attributes are defined by real-valued functions on basis

1This was proven using Möbius inversion on the lattice of subspaces by Crapo [3].
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sets. Given a basis set U = {u1, ..., un} for V = Zn2 ∼= ℘ (U), a real-valued attribute is a function
f : U → R. It determines a set partition

{
f−1 (r)

}
r∈f(U) on U and a DSD

{
℘
(
f−1 (r)

)}
r∈f(U)

on ℘ (U). In full QM, the important thing about an "observable" is not the specific numerical
eigenvalues, but its eigenspaces for distinct eigenvalues, and that information is in the DSD of its
eigenspaces. The attribute f : U → R cannot be internalized as an operator on ℘ (U) ∼= Zn2 (unless
its values are 0, 1), but it nevertheless determines the DSD

{
℘
(
f−1 (r)

)}
r∈f(U) which is suffi cient to

pedagogically model many quantum results. Hence a DSD can be thought of an "abstract attribute"
(without the eigenvalues) with its blocks serving as "eigenspaces." Then a natural question to ask
is given any nonzero vector v∗ ∈ V = Zn2 , how many "abstract attributes" are there where v∗ is an
"eigenvector"—and the answer is D∗2 (n). And D

∗
2 (n,m) is the number of "abstract attributes" with

m distinct "eigenvalues" where v∗ is an "eigenvector."

3 Computing initial values for q = 2

In the case of n = 1, 2, 3, the DSDs can be enumerated "by hand" to check the formulas, and then
the formulas can be used to compute higher values of D2 (n,m) or D2 (n).

All vectors in the n-dimensional vector space Zn2 over GF (2) = Z2 will be expressed in terms of
a computational basis {a} , {b} , ..., {c} so any vector S in Zn2 would be represented in that basis as a
subset S ⊆ U = {a, b, ..., c}. The addition of subsets (expressed in the same basis) is the symmetric
difference: for S, T ⊆ U ,

S + T = (S − T ) ∪ (T − S) = (S ∪ T )− (S ∩ T ) .

Since all subspaces contain the zero element which is the empty set ∅, it will be usually suppressed
when listing the elements of a subspace. And subsets like {a} or {a, b} will be denoted as just a and
ab. Thus the subspace {∅, {a} , {b} , {a, b}} is denoted as {a, b, ab}. A k-dimensional subspace has 2k

elements so only 2k − 1 are listed.
For n = 1, there is only one nonzero subspace {a}, i.e., {∅, {a}}, and D2 (1, 1) = D2 (1) = 1.
For n = 2, the whole subspace is {a, b, ab} and it has three bases {a, b}, {a, ab}, and {b, ab}. The

formula for the number of bases gives D2 (2, 2) = 3. The only D2 (2, 1) = 1 DSD is the whole space.
For n = 3, the whole space {a, b, c, ab, ac, bc, abc} is the only D2 (3, 1) = 1 and indeed for any n

and q, Dq (n, 1) = 1. For n = 3 and m = 3, D2 (3, 3) is the number of (unordered) bases of Z32 (recall{
n
n

}
q
= 1 for all q). Since we know the signature, i.e., a1 = 3 and otherwise ak = 0, we can easily

compute D2 (3, 3):

1
a1!a2!...an!

[n]q !

([1]q !)
a1 ...([n]q !)

an q
1
2 (n

2−
∑

k akk
2)

= 1
3!

[3]2!

([1]2)
3 2

1
2 (3

2−3) = 1
6
7×3
1 2

1
2 (6) = 28 = D2(3, 3).

And here they are.

{a, b, c} {a, b, ac} {a, b, bc} {a, b, abc}
{a, c, ab} {a, c, bc} {a, c, abc} {a, ab, ac}
{a, ab, bc} {a, ab, abc} {a, ac, bc} {a, ac, abc}
{b, c, ab} {b, c, ac} {b, c, abc} {b, ab, ac}
{b, ab, bc} {b, ab, abc} {b, ac, bc} {b, bc, abc}
{c, ab, ac} {c, ab, bc} {c, ac, bc} {c, ac, abc}
{ab, ac, abc} {ab, bc, abc} {ac, bc, abc} {bc, ab, abc}

All bases of Z32.

For n = 3 and m = 2, D2 (3, 2) is the number of binary DSDs, each of which has the signature
a1 = a2 = 1 so the total number of binary DSDs is:
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D2 (3, 2) =
1
1!1!

[3]2!

([1]!)1([2]!)1
2
1
2 (3

2−1−22) = 7×3
3 2

1
2 (4) = 7× 4 = 28.

And here they are:

{{a} , {b, c, bc}} {{a} , {ab, ac, bc}} {{a} , {c, ab, abc}} {{a} , {b, ac, abc}}
{{b} , {a, c, ac}} {{b} , {ab, ac, bc}} {{b} , {c, ab, abc}} {{b} , {a, bc, abc}}
{{ab} , {b, c, bc}} {{ab} , {a, bc, abc}} {{ab} , {b, ac, abc}} {{ab} , {a, c, ac}}
{{c} , {a, b, ab}} {{c} , {ab, ac, bc}} {{c} , {a, bc, abc}} {{c} , {b, ac, abc}}
{{ac} , {a, b, ab}} {{ac} , {a, bc, abc}} {{ac} , {c, ab, abc}} {{ac} , {b, c, bc}}
{{bc} , {a, b, ab}} {{bc} , {b, ac, abc}} {{bc} , {c, ab, abc}} {{bc} , {a, c, ac}}
{{abc} , {a, b, ab}} {{abc} , {b, c, bc}} {{abc} , {a, c, ac}} {{abc} , {ab, ac, bc}}

All binary DSDs for Z32.

The above table has been arranged to illustrate the result that any given k-dimensional subspaces
has qk(n−k) subspaces disjoint from it. For n = 3 and k = 1, each row gives the 22 = 4 subspaces
disjoint from any given 1-dimensional subspace represented by {a}, {b},..., {abc}. For instance, the
four subspaces disjoint from the subspace {ab} (shorthand for {∅, {a, b}}) are given in the third row
since those are the "complementary" subspaces that together with {ab} form a DSD.

For q = 2, the initial values up to n = 6 of D2 (n,m)are given the following table.

n\m 0 1 2 3 4 5 6

0 1
1 0 1
2 0 1 3
3 0 1 28 28
4 0 1 400 1, 680 840
5 0 1 10, 416 168, 640 277, 760 83, 328
6 0 1 525, 792 36, 053, 248 159, 989, 760 139, 991, 040 27, 998, 208

D2 (n,m) with n,m = 1, 2, ..., 6.

The seventh row D2 (7,m) for m = 0, 1, ..., 7 is: 0, 1, 51116992, 17811244032, 209056841728,
419919790080, 227569434624, and 32509919232 which sum to D2 (7).

The row sums give the values of D2 (n) for n = 0, 1, 2, ..., 7.

n D2 (n)

0 1
1 1
2 4
3 57
4 2, 921
5 540, 145
6 364, 558, 049
7 906, 918, 346, 689

D2 (n) for n = 0, 1, ..., 7.

We can also compute the D∗ examples of DSDs with a block containing a designated element.
For q = 2, the D∗2 (n,m) numbers for n,m = 0, 1, ..., 7 are given in the following table.
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n\m 0 1 2 3 4 5 6 7

0 1
1 0 1
2 0 1 2
3 0 1 16 12
4 0 1 176 560 224
5 0 1 3456 40000 53760 13440
6 0 1 128000 5848832 20951040 15554560 2666496
7 0 1 9115648 1934195712 17826414592 30398054400 14335082496 1791885312

Number of DSDs D∗2 (n,m) containing any given nonzero vector v
∗

For n = 3 and m = 2, the table says there are D∗2 (3, 2) = 16 DSDs with 2 blocks one of which
contains a given nonzero vector, say v∗ = ab which represents {a, b}, and here they are.

{{ab} , {b, c, bc}} {{ab} , {a, bc, abc}} {{ab} , {b, ac, abc}} {{ab} , {a, c, ac}}
{{c} , {a, b, ab}} {{c} , {ab, ac, bc}} {{ac} , {c, ab, abc}} {{bc} , {c, ab, abc}}
{{ac} , {a, b, ab}} {{a} , {ab, ac, bc}} {{a} , {c, ab, abc}} {{abc} , {a, b, ab}}
{{bc} , {a, b, ab}} {{b} , {ab, ac, bc}} {{b} , {c, ab, abc}} {{abc} , {ab, ac, bc}}

Two-block DSDs of ℘ ({a, b, c}) with a block containing ab = {a, b}.

The table also says there are D∗2 (3, 3) = 12 basis sets containing any given nonzero vector which we
could take to be v∗ = abc = {a, b, c}, and here they are.

{a, b, abc} {b, ab, abc} {a, c, abc} {b, bc, abc}
{a, ab, abc} {a, ac, abc} {b, c, abc} {c, ac, abc}
{ab, ac, abc} {ab, bc, abc} {ac, bc, abc} {bc, ab, abc}

Three-block DSDs (basis sets) of ℘ ({a, b, c}) with a basis element abc = {a, b, c}.

Summing the rows in the D∗2 (n,m) table gives the values for D
∗
2 (n) for n = 0, 1, ..., 7.

n D∗2 (n)

0 1
1 1
2 3
3 29
4 961
5 110, 657
6 45, 148, 929
7 66, 294, 748, 161

D∗2 (n) for n = 0, 1, ..., 7.

The integer sequence D2 (n, n) for n = 0, 1, 2, ... is known as: A053601"Number of bases of
an n-dimensional vector space over GF (2)" in the On-Line Encyclopedia of Integer Sequences
(https://oeis.org/). The sequences defined and tabulated here for q = 2 have been added to the
Encyclopedia as: A270880 [D2(n,m)], A270881 [D2 (n)], A270882 [D∗2 (n,m)], A270883 [D

∗
2 (n)].
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