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ABSTRACT
This paper proposes a novel method to detect smoke in video.
It is assumed the camera monitoring the scene is stationary.
The smoke is semi-transparent at the early stages of a fire.
Therefore edges present in image frames start loosing their
sharpness and this leads to a decrease in the high frequency
content of the image. The background of the scene is esti-
mated and decrease of high frequency energy of the scene
is monitored using the spatial wavelet transforms of the cur-
rent and the background images. Edges of the scene pro-
duce local extrema in the wavelet domain and a decrease in
the energy content of these edges is an important indicator
of smoke in the viewing range of the camera. Moreover,
scene becomes grayish when there is smoke and this leads
to a decrease in chrominance values of pixels. Periodic be-
havior in smoke boundaries is also analyzed using a Hidden
Markov model (HMM) mimicking the temporal behavior of
the smoke. In addition, boundary of smoke regions are rep-
resented in wavelet domain and high frequency nature of the
boundaries of smoke regions is also used as a clue to model
the smoke flicker. All these clues are combined to reach a
final decision.

1. INTRODUCTION

In this paper, we present an automatic real-time smoke de-
tection method in video. Conventional point smoke and fire
detectors typically detect the presence of certain particles gen-
erated by smoke and fire by ionization or photometry. An im-
portant weakness of point detectors is that in large rooms, it
may take a long time for smoke particles to reach a detector
and they cannot be operated in open spaces.

The main importance of using ordinary video in fire de-
tection is the ability to serve large and open spaces. Cur-
rent fire detection algorithms are based on the use and anal-
ysis of color and motion information in video to detect the
flames [1, 2, 3, 4, 5]. However, smoke detection is vital for
fire alarm systems when large and open areas are monitored,
because the source of the fire and flames cannot always fall
into the field of view. However, smoke of an uncontrolled fire
can be easily observed by a camera even if the flames are not
visible. This results in early detection of fire before it spreads
around.

Smoke gradually smoothens the edges in an image. This
characteristic property of smoke is a good indicator of its
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presence in the viewing range of the camera. Edges in an im-
age correspond to local extrema in wavelet domain. Degrada-
tion of sharpness in the edges result in a decrease in the values
of these extrema. However, these extrema values correspond-
ing to edges do not totally boil down to zero when there is
smoke in the scene. In fact, they simply loose some of their
energy but they still stay in their original locations, occluded
partially by the semi-transparent smoke.

Independent of the fuel type, smoke naturally decrease the
chrominance channels U and V values of pixels. Apart from
this, it was reported that turbulent flames flicker with a fre-
quency of around 10Hz [2]. In practice, flame flicker pro-
cess is time-varying and it is far from periodic. Therefore, a
Markov model based modeling of flame flicker process pro-
duces more robust performance compared to frequency do-
main based methods trying to detect peaks around 10 Hz in
the Fourier domain [4]. As a result, smoke boundaries also
oscillate with a lower frequency at the early stages of fire.

In this paper, boundaries of smoke regions are estimated
in each video image frame. A one-dimensional curve (1-D)
representing the distance to the boundary from the center of
mass of the region is extracted for each smoke region. The
wavelet transform of this 1-D curve is computed and the high
frequency nature of the contour of the smoke region is de-
termined using the energy of the wavelet signal. This spatial
domain clue is also combined with temporal clues to reach a
final decision.

2. SMOKE DETECTION ALGORITHM

The flames of a fire may not always fall into the visible range
of the camera monitoring a scene covering large areas like
plane hangars or open spaces. Fire detection systems should
tackle with such situations by successful detection of smoke
without flame. In this paper, temporal and spatial wavelet
analysis as well as an analysis of contours of possible smoke
regions are carried out for the detection of smoke.

Smoke detection algorithm consists of five steps:
(i)moving pixels or regions in the current frame of a video are
determined, (ii)the decrease in high frequency content corre-
sponding to edges in these regions are checked using spatial
wavelet transform. If the edges loose their sharpness with-
out vanishing completely (iii)the decrease in U and V chan-
nels of them are checked, (iv)flicker analysis is carried out
by HMMs which use temporal wavelet transform coefficients.
Finally (v)wavelet domain analysis of object contours are car-
ried out. Moving objects in video are detected using the back-
ground estimation method developed by Collins et al. [6].



Fig. 1. Image frame with smoke and its single level wavelet
subimages. Blurring in the edges is visible. The analysis is
carried out in small blocks.

This method assumes that the camera is stationary. Moving
pixels are determined by subtracting the current image from
the background image and thresholding. A recursive thresh-
old estimation is described in [6]. Other methods can be also
used for moving object estimation.

It is necessary to analyze these moving regions further to
determine if the motion is due to smoke or an ordinary moving
object. Smoke obstructs the texture and edges in the back-
ground of an image. Since the edges and texture contribute
to the high frequency information of the image, energies of
wavelet subimages drop due to smoke in an image sequence.
Based on this fact we monitor wavelet coefficients as in Fig.1
and we detect decreases in local wavelet energy, and detect
individual wavelet coefficients corresponding to edges of ob-
jects in background whose values decrease over time in video.
It is also possible to determine the location of smoke using the
wavelet subimages as shown in Fig.1.

Let wn(x,y) = |LHn(x,y)|2 + |HLn(x,y)|2 + |HHn(x,y)|2
represent a composite image containing high-frequency in-
formation at a given scale. This subband image is di-
vided into small blocks of size (K1,K2) and the en-
ergy e(l1, l2) of each block is computed as e (l1,l2) =
∑(x,y)∈R〉 wn(x+ l1K1,y+ l2K2) where Ri represents a block

of size (K1,K2) in the wavelet subimage. If the wavelet
subimages are computed from the luminance (Y) image then
there is no need to include the chrominance wavelet im-
ages. If wavelet transforms of R, G, and B color images are
computed then the energy e(l1, l2) is computed using all of
wavelet subimages of the R, G, and B color images. In our
implementation, subimages are computed from the luminance
image and the block size is taken as 8 by 8 pixels.

The above local energy values computed for the wavelet
transform of the current image are compared to correspond-
ing local high-frequency energies computed from the wavelet
transform of the background which contains information
about the past state of the scene under observation. If there
is a decrease in value of a certain e(l1, l2) then this means
that the texture or edges of the scene monitored by the cam-
era no longer appear as sharp as they used to be in the current
image of the video. Therefore, theremay be smoke in the im-
age region corresponding to (l1, l2) th block. One can set up
thresholds for comparison. If a certain e(l1, l2) value drops
below the pre-set threshold a warning is issued. It is also
well-known that wavelet subimages contain the edge infor-
mation of the original image. Edges produce local extrema in
wavelet subimages [7]. Wavelet subimages LH, HL and HH

contains horizontal, vertical and diagonal edges of the origi-
nal image, respectively. If smoke covers one of the edges of
the original image then the edge initially becomes less visi-
ble and after some time it may disappear from the scene as
the smoke gets thick. Let the wavelet coefficient HLn(x,y)
be one of the wavelet coefficients corresponding to the edge
covered by the smoke. Initially, its value decreases due to the
reduced visibility, and in subsequent image frames it becomes
either zero or close to zero whenever there is very little visi-
bility due to thick smoke. Therefore locations of the edges of
the original image is determined from the significant extrema
of the wavelet transform of the background image in our sys-
tem. Slow fading of a wavelet extrema is an important clue
for smoke detection. If the values of a group of wavelet co-
efficients along a curve corresponding to an edge decrease in
value in consecutive frames then this means that there is less
visibility in the scene. In turn, this may be due to the existence
of smoke. An instantaneous disappearance or appearance of
a wavelet extremum in the current frame cannot be due to
smoke. Such a change corresponds to an ordinary moving
object covering an edge in the background or the boundary
of a moving object and such changes are ignored. In order to
determine the decrease in visibility of the edges, we set two
thresholds 1 > T 1 > T2 > 0. For a decrease in visibility to
occur, at a given scale, the composite image value wn(x,y)
corresponding to an edge in the current image at location
(x,y) and the composite image value wbn(x,y) similarly cal-
culated for the background image at the same location, must
satisfy T 1wbn(x,y) > wn(x,y) > T2wbn(x,y). Since T 2 > 0,
we guarantee to have edges that are not totally invisible due
to semi-transparent nature of initial smoke.

Color information is also used for identifying smoke in
video as the third step. Initially, when the smoke starts to
expand, it is semi-transparent thus it preserves the direction
of the RGB vector of the background image. This is another
clue for differentiating between smoke and an ordinary mov-
ing object. By itself, this information is not sufficient because
shadows of moving objects also have the same property. As
the smoke gets thicker, however, the resemblance of the cur-
rent frame and the background decreases and the chrominance
values U and V of the candidate region in the current frame
become smaller than corresponding values in the background
image. Only those pixels with lower chrominance values are
considered to be smoke.

The flicker in smoke is also used as an additional informa-
tion. The candidate regions are checked whether they contin-
uously appear and disappear over time. It was reported in me-
chanical engineering literature that turbulent flames due to an
uncontrolled fire flicker with a frequency of 10 Hz [2]. This,
in turn induces a less frequent flicker in the smoke boundaries.
In [8], the shape of fire regions are represented in Fourier do-
main. Since, Fourier Transform does not carry any time in-
formation, FFTs have to be computed in windows of data and
temporal window size is very important for detection. If it
is too long then one may not get enough peaks in the FFT
data. If it is too short than one may completely miss cycles
and therefore no peaks can be observed in the Fourier do-
main. Furthermore, one may not observe a peak at 10 Hz but
a plateau around it, which may be hard to distinguish from the
Fourier domain background.



Fig. 2. Single-stage wavelet filter bank.

Fig. 3. Three-state Markov models for smoke(left) and non-
smoke moving pixels.

Another problem is that, one may not detect periodicity in
fast growing fires because the boundary of smoke region sim-
ply grows in video. Actually, the smoke and fire behaviors
are wide-band random activities around 10 Hz and a random
process based modelling approach is naturally suited to char-
acterize the rapid time-varying characteristic of smoke and
flame boundaries. In general, a pixel especially at the edge
of a smoke becomes part of the smoke and disappears in the
background several times in one second of a video at random.
This characteristic behavior is very well suited to be mod-
eled as a random Markov model which are extensively used
in speech recognition systems and recently they have been
used in computer vision applications [9].

In this paper, three-state Markov models are temporally
trained for both smoke and non-smoke pixels (cf.Fig.3).
These models are trained using a feature signal which is de-
fined as follows: Let I(n) be the intensity value of a pixel
at frame n. The wavelet coefficients of I is obtained by the
filter bank structure shown in Fig.2. Non-negative thresholds
T1 < T 2 introduced in wavelet domain, define the three states
of the hidden Markov models for smoke and non-smoke mov-
ing objects. At time n, if |w(n)| < T1, the state is in F1;
if T 1 < |w(n)| < T 2, the state is F2; else if |w(n)| > T 2,
the state Out is attained. The transition probabilities between
states for a pixel are estimated during a pre-determined period
of time around smoke boundaries. In this way, the model not
only learns the way smoke boundaries flicker during a period
of time, but also it tailors its parameters to mimic the spatial
characteristics of smoke regions.

3. WAVELET DOMAIN ANALYSIS OF OBJECT
CONTOURS

In addition to temporal and color analysis, contours of pos-
sible smoke regions are further analyzed. For this purpose,
the centers of masses of the moving objects are determined.
A one dimensional (1-D) signal is obtained by computing the

Fig. 4. Two moving objects in video: smoke image (top), and
a vehicle (bottom). The object boundaries are determined by
the background subtraction algorithm.

distance from the center of mass of the object to the object
boundary for 0 ≤ θ < 2π. In Fig.4, two image frames are
shown. Example feature functions for moving vehicle and the
fire region in Fig.4 are shown in Fig.5 for 64 equally spaced
angles. The high-frequency variations of the feature signal of
the smoke region is clearly distinct from that of the car and
lights.

To determine the high-frequency content of a curve, we
use a single scale wavelet transform shown in Fig.2. The ab-
solute wavelet (w) and low-band (c) coefficients of the smoke
region and the moving car are shown in Fig.6 and Fig.7, re-
spectively. The ratio of the wavelet domain energy to the en-
ergy of the low-band signal is a good indicator of a smoke
region. This ratio is defined as ρ = ∑n |w[n]|

∑n |c[n]| . The likelihood of
the moving region to be a smoke region is highly correlated
with the parameter ρ.

4. EXPERIMENTAL RESULTS

The proposed method (Method1) is implemented in a PC with
an AMD AthlonXP 2000+ 1.66GHz processor and tested for
a large variety of conditions including real-time and off-line
videos containing only smoke, both flame and smoke, and
videos with no smoke or flame.

The computational cost of the wavelet transform is low.
The filterbank in Fig.2 have integer coefficient low and high-
pass Lagrange filters. The same filters are used for a single
level wavelet decomposition of image frames in the spatial
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Fig. 5. Equally spaced 64 contour points of the smoke (top)
and the vehicle regions (bottom) shown in Fig.4.
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Fig. 6. The absolute a)wavelet and b)low-band coefficients
for the smoke region.
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Fig. 7. The absolute a)wavelet and b)low-band coefficients
for the vehicle.

Table 1. Detection results of Method1 and Method2 for some
live and off-line videos.

wavelet analysis step and also for contour analysis. Smoke
detection is achieved in realtime. The processing time per
frame is about 5 msec for frames with sizes of 160 by 120
pixels.

Detection results for some of the test sequences are pre-
sented in Table 1. Smoke is successfully detected in all of
the shots containing smoke. No false alarms are issued in
live tests and off-line videos recorded in the day time. False
alarms are eliminated also for the videos recorded in the night
with the help of the contour analysis. A false alarm is is-
sued with the method in [10], Method2, in Movie 9 which is
recorded at night. A parking car is captured from its front in
this video. The driver intentionally varies the intensity of the
front lights of the car. The light beams directed towards the
camera at night defines artificial edges around them. These
edges appear and disappear continuously as the intensity of
the lights change. The U,V channel values of the pixels de-
crease as the light intensities are lowered, since everywhere
in the scene is dark other than the car lights. In this way, car
lights at night mimic the smoke characteristics in the day time
and a false alarm is issued using Method2. However, using the
method proposed in this paper (Method1), this false alarm is
eliminated, because the contour of the moving region defined
by the car lights does not possess high frequency characteris-
tics as in a smoke region.

Proposed smoke detection method, Method1, is also
compared with the fire detection method presented in [5],
Method3, in videos containing both smoke and flame. The
comparison results in some of the test sequences are presented
in Table 2. At the early stages of fire, smoke is released before
flames become visible. Method1 successfully detects smoke
in such situations earlier than Method3. Hence, early de-
tection of fire is possible with the proposed smoke detection
method. In Movies 11 and 12, flames are not in the viewing
range of the camera. A fire detection system without smoke
detection capability fails in detecting the fire before it spread
around.

5. CONCLUSION

A novel method for detecting smoke in video is developed.
The algorithm is mainly based on determining the edge re-
gions whose wavelet subband energies decrease with time



Table 2. Smoke and flame detection time comparison of
Method1 and Method3, respectively. Smoke is an early in-
dicator of fire. In Movie 11 and 12, flames are not in the
viewing range of the camera.

and wavelet based contour analysis of possible smoke re-
gions. These regions are then analyzed along with their corre-
sponding background regions with respect to their RGB and
chrominance values. The flicker process of the smoke is also
modeled and set as a clue for the final decision.

The method can be used for detection of smoke in movies
and video databases as well as real-time detection of smoke.
It can be incorporated with a surveillance system monitoring
an indoor or an outdoor area of interest for early detection of
fire. It can also be integrated with the flame detection method
in [5] in order to have a more robust video based fire detection
system.
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