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The perturbation theory of energy-level widths in coupled nuclear systems is applied to the relaxation
processes activated by molecular reorientation, i.e., to the dipolar relaxation, the quadrupolar relaxation,
the relaxation due to the chemical shift anisotropy, the intermolecular relaxation, and the relaxation due
to the spin-rotation interaction. The relaxation processes are divided into two groups with respect to
their behavior under rotations of molecular coordinates; the first three are of tensor character while the
last two are of vector character. For each of the two groups a theory is developed based on the properties
of normed spherical operators. This sheds some new light on the two previously studied cases, i.e., the
dipolar relaxation and the intermolecular relaxation, and leads to the solutions of the other cases. The
theory of the quadrupolar relaxation is documented by two simple examples. It turns out that in the case
of molecules containing quadrupolar nuclei useful information about the molecular structure can be ob-
tained from the linewidth patterns. The same also holds, of course, for the other relaxation processes provided
they lead to experimentally accessible effects. Explicit formulas are given for the cross-term contributions
due to simultaneous action of two different relaxation mechanisms.

In the preceding two papers!'? (henceforth referred
to as I and IT, respectively), the theory of homogeneous
broadening in coupled nuclear systems was developed
and applied to the intramolecular dipolar broadening
(I) and to the broadening due to intermolecular effects
(II). In the present paper two general types (IT and A)
of random processes are distinguished on the basis of
their behavior under rotations of coordinates. To each
of these classes the general theory of homogeneous
broadening is applied. The resulting formulae enable
one to treat very easily any individual random process.
The relaxation mechanisms discussed in detail in this
paper are all characterized by their dependence on
molecular reorientation. Apart from dipolar relaxation
these are: quadrupolar relaxation, relaxation due to
spin-rotation interaction, and relaxation due to the
chemical shift anisotropy. The existence of cross-term
contributions has been mentioned in I; in the present
paper the cross terms are studied in a more detailed
manner.,

I. THE THEORY OF A-TYPE PROCESSES
First, the following operators are defined:
Fi;=(1/2) (KK~ L —L714),
Tix=(62/4) (KJI++1K,),

D= (6"2/2) I 1=, (1)

with I+, I;-, and K; =21 being the usual spin operators
for the nucleus 7. The operators (1) behave under rota-
tions of laboratory coordinates like the second-order
spherical harmonics® ¥, ,, where u=0 for the flip-flop
operators F, u=-1 for the transition operators T, and
p=:£2 for the double-transition operators D. From
these transformation properties the ‘“‘spectroscopic”
designation of the individual types of processes is also
derived.

Any random interaction with zero average value
which is of second order in the spin coordinates can be
written in the form

H'= TH,
ij
H,)V =F " F+FiV T+ F 0Tt

+FijV'2D1'j_+F’ijV'—2D1j+) (2)

where V specifies the interaction and F,;V-# are pseudo-
scalar functions behaving under molecular rotations like
spherical harmonics Y, . Because of this property, the
F;¥# can always be expressed by means of the com-
ponents of a traceless second-order tensor F;;V:

Fi¥ 0= (1/2) (Fii¥) 2z,
Fy¥#=(1/6")[(F ") ax+i(F V) zv],
Fi¥#2=[1/2(6) V][ (F ;" Yxx— (Fi¥ ) vy £ 2i(F i) xv],
(3)

where X, ¥V, and Z denote the laboratory axes of co-
ordinates. The tensor F,;¥ is fixed with respect to the
molecule; if the molecule reorientates, its components
become random functions of time. In such a case, the
correlation functions G;;,;:;"#(7) are introduced by the

relations
GijdV #(r) =AJ[F V(O PV (i) ], (4)

where A, is the statistical-averaging operator. The cor-
responding spectral densities J ;" #(w) are then defined
as

+ o0
Jij,sz"‘(w)=/ exp(—iwt)Gij ¥ B (r)dr.  (5)

If Yu ., Y&, are any two spherical tensor operators?
transforming like V3, and ¥, respectively, and if r
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and s denote any two eigenstates of the system, then
<Y/v'vu>rs <Yk,v’>sr7éo only if utr=0. (6)

(Throughout this paper, (W)= (s|W]r) for any
operator W.) This rule (6) is a generalization of the
rules (I, Eq. 11); it leads to a substantial simplification
of the expressions for the transition probabilities

-+
’WV(r—»s)=/ exp{ — iwrT)

XA (s [HY (1) | r){r |HY(t47) [5). (7)

In the case of a molecule in an isotropic medium,
similar simplification could be obtained also on the basis
of the properties of the correlation functions. The rules
(6) are, of course, much more general as they do not
require the isotropy of the surrounding medium.

The contribution of the random interaction V to the
rth energy-level width is

IV(r)= %T‘W"(r—%'). (8)

Following the general principles explained in I, this
reduces to

IV(r)= 3 X Tyn"

i Rl
Lot (1) =T i5.10"0(0) Gyt 0 (r) +J 1 1”21 — B5)
X Gy iV (1) +2 Red i, H(®7) Gy pt¥ M (1)
T g0 (81) G (7)
T (Bt $) Gigt” (7)),
where the G functionals have the form*
Gijuet” (r) = (1/4) Lere (KK ) (L T+ T T )
+ e (LAL 4 I71H) (KK o),
~ (e KK+ L) = e (AL L LH KK,
+ KK KK~ (KK (KK Y ],
O(r) = (1/4) Leuen] LAL LA+ LT AL
SRL¢ Tis Fug WG iy Cab RS o PL NG g WY
Fepen AL L1 LALAL ),
~ (AL )l L e~ (L) (L L) ]},
Gijp” 1 (r) = (3/8) Lean (K KL )r
+ e (KIALK )0,
G 1(7) = (3/8) [ean TAK K r
Feal{l KK,
2(r) = (3/2) (eaentenes—eneq) LILAITT ).
(10)

The indicator e,; in these equations is equal to 1 if the
nuclei 7 and 7 are of the same kind and is zero otherwise.

. Al

(9)

1] kl

G;] lci,
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Let us return now to the correlation functions (4).
In connection with them, two mutually independent
approximations are widely used?:

(1) The reduced correlation functions are assumed to
be identical (the IRCOF approximation), i.e.,

GtV (1) /Gij " #(0) = xa(7), (11)

where the function x;(7) is the same for all A processes
activated by the same random phenomenon. It is easy
to show that in an isotropic medium

O) 91;1.
_‘(1/30) Z Z (F‘”V) (Flrlv)ﬁcosz(aw/\ﬂkl)y

am] Bea]

1J.kl

(12)

where (F;;¥)# is the ath main axis of the tensor FV
and (@;APBr) denotes the angle between the ath axis
of ;¥ and the Bth axis of F,”. Note that the quantities
GV * do not depend on p.

The spectral density functions (5) are now

T H(w) =Gy 1" Fa(w),

where {3(w) is the Fourier transform of x; (7).
(ii) The exponential-decay approximation (EDA)
by which

(13)

x:(7) = exp(—|7|/m). (14)
The function {»(w) then becomes
F2(w) =275/ (14-wPrs?). (15)

This equation can often be further simplified as either
w1l (fast reorientation limit) or wri>1 (slow re-
orientation limit).

A. Broadening Due to Dipolar Interactions (D)

In the case of dipolar interactions, the tensor F;? has
the form

(FiP) ap= (vov3/Ri?) [Bas—3 (55 a(Bis) 8],

a,f=X,V,Z, (16)

where v, is the gyromagnetic ratio for the nucleus 7,
R,; is the distance between the nuclei 7 and 7, and 5
is the unit vector along the line connecting these two
nuclei. The surnmation (2) runs over all pairs of nuclei
which implies <7

As the dipolar broadening has been discussed in
detail in I, no further discussion is given here.

B. Broadening Due to Quadrupolar Interactions (Q)
The quadrupolar interaction tensor FiQisp
Fi@=[¢0:/25:28:~1) 1%y, (17)

where (; and S; are the quadrupole moment and the
total spin of the ith nucleus, respectively. The sym-
metric, traceless tensor e¢J' denotes the anisotropy of
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the gradient of the electric field &' at the nucleus 4:
eQi=e(Q") as=— () asgt+(1/3)805 2 (8 )y  (18)
I

where o, 8, u=X, YV, Z.

Because of the 8;; factor in (18), the summation (2)
now runs over the nuclei. Substituting the two identical
indices by a unique one, the general formulas (1)-(13)
can be substantially simplified. The contribution to the
rth energy-level width then becomes

Ie(r)= Z Z Tal(r),
Tal(r) =Ju2(0)G,2(r)
+2 Re[J @ (®:) Gu®'(r) +T a2 2(28:) G (1) ],

where

(19)

G’ ; »Q’O 7’) = (3/4) 2[ <K ’2ch2>rr_ <Ki2 >r'r<Kk2>rr]7
G.21(r) = (3/8) ear ((KJIF+IAK,) (KiLi +I:Ky) )y
G1kQ'2(7’> = 3/2) [ (Ii+I,:+Ik—Ik~'>rr. ( 20)

In the IRCOF approximation, and assuming that the
spectral density functions are real, Eq. (19) can be
written as

il (r) =Ga? 20 5(u®)Quk(7),

u=0

(21)

where
Qu(r) =G,2%r),
Q.ul(r) =(3/8) e {{ K, IF+IK,) (K L+ 1K)
+ (KL + LK) (Kt 4+ LK) ey,
Qu2(r) = (3/) e (L AL L+ L I LA L), (22)

One-particle (i=%) and two-particle (k) terms can
be distinguished. In the one-particle case the spectral
density functions are necessarily real so that Eq. (21)
is valid.

The quantities G;;2 are now

((,)“_Qz 64QiQkC,;k/12OSiS};<ZS¢"‘ 1) (25&‘ 1) ,

3 3
Cu= 22 20 Qa'0s" cos?(a; A Bx),

a=1 f=1

(23)

where .’ denotes the length of the ath main axis of the
tensor € and (a;AB:) is the angle between the ath
axis of §% and the 8th axis of §%. If both Q% and Q* are
axially symmetric then

Cu= (3/4) 6,‘6;\-(3 COSZGik—— 1) s (24)

where ¢, is the length of the symmetry axis of §¢ and
0;x is the angle between the symmetry axes of QF and QF.

Another special case concerns the one-particle quan-
tities Cy;. Let ¢;= ;" be the length of the dominant axis
of @ and define the parameter® 5, as

7= (@ —Q5%) /1. (25)
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Then
Cii=(3/2) 1+ (1/3)n] (26)

In the fast reorientation limit and assuming the
validity of the approximations IRCOF and EDA,
Eq. (21) becomes

I‘ikQ(r) =

Q0w 2
Ci- ‘ M .
605,85, (25;— 1) (25,—1) k“{%Qk (r)

(27)
1. Application to an 8X System

The aim of this paper is not to give a detailed discus-
sion of relaxation in various systems but rather to give
a general feeling of what kind of effects can be expected.
For this purpose, only very simple applications based
on Eq. (27) will be considered.

Let 8 be a system composed exclusively of spin-3
nuclei and let X be a nucleus with spin S>1. In this
case, the quadrupolar broadening is reduced to the one-
particle contribution arising from X.

Because of the $~X interaction, each transition in 8§
splits into a multiplet of (2541) lines. The present
theory may only be applied to the case where the con-
sidered multiplet is well resolved (see I, Sec. III; a more
detailed discussion of this problem is being prepared).
Let us denote the eigenvectors of the composite system
by | 8) | m), m being the I* value of the nucleus X. In
this case Q°(r) =0 for any eigenstate and the values of
Q'(r) and Q2%(») depend on m but do not depend on the
state of the subsystem 8. Consequently, the X multi-
plets arising from the §-X interaction are composed of
lines of which the widths are identical. The values of
Q!(m) and Q%*(m) resulting from (22) are

Q'(m) =3{ (4m*+1)[S(S+1) —m*]—4m*},

Q*(m) =3{[S(S+1) —m* JLS(S+1) —m*—2]+3m?}.
(28)
In the simplest case of S=1 one obtains
Q=1 =Q'(1)=3, Q'(0)=6,
Q-1 =Q* (=6, Q¥0)=

The levels with m=+1 are thus always broader than
the levels with m=0. In consequence, the sideband
components of each of the S-transition triplets are
broader than the central peak. If the quadrupolar
broadening is dominant, and assuming that all the above
approximations are valid, the ratio of the linewidths in
each triplet should be 3:2:3. This is in agreement both
with experiment® (2.95:2:2.95) and with the previous
calculations for this simple case.?

Analogous results for X nuclei with higher spin values
are easily obtained from (28). Note that for §> 2 each
of the lines of the X multiplet is composed of several
components with different linewidths.

The §X system is, of course, a rather trivial example
which can be treated in other ways’® as well. The equa-
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TasLE I. The eigenvectors and the values of Q functionals for an 4B system composed of spin-1 nuclei.»

I, State Energy Eigenvector Qa4 Qua! Qa4 Qar° Qup! Quar?

2 1 2948 [++) 0 (3/9) 6 0 0 0

1 2 &+-de(x) cosg | +0)+sing | 0+ ) P (3/4) (1+r) 6s 0 2p 0

1 3 d—Be(x) —sing | +0)+cose | 04 ) p° (3/4) (1+s) Or 0 —2p 0

0 i=4,5,6 de;(x) Ai| +—)+B;]00)+C;| —+) v214; (3/49)U; 6ut; ©3%11; —2vZ; 124,C:
—1 7 —P+de(x) cosg | 0— Y+sing | —0) P (3/4) (1+s) 6r 0 2p 0

1 8 —p—de(x) —sing | 0— )+cose | —0) P2 3/4) (14-7) 6s 0 —2p 0
—2 9 —2&+-6x | ——> 0 (3/4) 6 0 0 0

8 ®=(vs+vp)/2; 6=va—vp; x=29/8 =tan2¢; £ (x) = (L+a2)1'2; p=
(3/8) sin2¢; r =sinkp; s =coskp; u; =1—B;% U; =1+4-B;2; v; =3B;/4; Z; =
A;+Ci; gi(x) denote the eigenvalues of the matrix M (x) defined in text

tion (21) assumes its real importance only in the case
of several mutually coupled quadrupolar nuclei.

2. AB System Composed of Spin-1 Nuclei

The AB system is described by the chemical shift
d=v,—vp and by the coupling constant . Let us intro-
duce the interaction parameter

x=29/8= tan2p (29)
and the matrix
2—x x 0
Mxx)=| » 0 x (30)

0 x —2—x

Then the energies, eigenvectors, and the values of the
Q functionals can be expressed by means of x and M («x)
as shown in Table I. Equation (27) now gives

I9(r) = (¢*Q%/60) o[ Caavaa(r) +Crpyrn(r)
+2Capyas(r)], (31)

where v44(r) =Q44°(7r) +Qaa'(r) +Qa4%(r), analogous
equations being valid for ypp and y4z.

TasirE II. Energy-level widths in a typical 4B system
composed of spin-1 nuclei.»

Eigenstate T (r) /ACq4P

r Type i i iii iv
1 +4 6.8 13.5 13.5 13.5
2 +0 6.6 8.3 8.8 7.8
3 0+ 1.7 8.3 7.8 8.8
4 4+~ 6.5 13.0 14.8 11.3
5 00 1.9 3.8 3.6 4.0
6 —+ 6.7 13.0 11.9 14.7
7 0— 1.7 8.3 8.8 7.8
8 —0 6.6 8. 7.8 8.8
9 —_— 6.8 13.5 13.5 13.5

a§=10, 3=1.82 (p=10°); A =¢e1Q212/60.
b (i) Cpp=Cap=0; (ii) Cpap=Cad, Cap=0; (ili) Cpp=Cap=Caa;
(iv) Cpp= —Cap=Cya.

and (Aq, Bi, C;) are the corresponding eigenvectors of this matrix. The
equality Qpa* =Qp* holds for all u. If r and s are interchanged, Qpp*
values result on the place of Q44".

Instead of a general discussion, let us see the results
for some typical cases assuming that (31) is valid. As
this discussion is particularly interesting in connection
with deuterated compounds, the values §=10 and =
1.82 (¢=10°) have been chosen which are considered
sufficiently characteristic for this type of problem.

The energy-level parameters and the transition pa-
rameters are summed in Tables IT and ITI, respectively.
As far as the transition frequencies are concerned, the
multiplet is always symmetrical with six intense transi-
tions in each half. The transitions are grouped in
doublets which may be unresolved. All the character-
istics of both components of each doublet are very
similar. The following conclusions can be drawn from
the data given in Table I11:

(1) CBB<<CAA
The linewidths do not respect the symmetry of the
multiplet. If Cx3=0, the 4 part of the multiplet is very

TasLe III. Transition parameters for the A B system
specified in Table I1.

Linewidth A]/Q/)\CAA“

Transition Frequency Intensity i ii il iv
1 —17.55 (0.00) 6.9 15.7 14.8 16.7
2 —14.10 (0.01) 6.7 15.4 16.7 14.3
3 —7.15 0.66 9.5 15.8 15.6 16.1
4 —6.90 0.78 9.4 15.7 14.2 17.2
5 —-5.55 0.82 2.5 9.1 95 8.7
6 —5.10 0.88 2.5 9.1 8.5 9.7
7 —3.50 1.34 9.5 15.8 16.1 15.6
8 —3.45 1.51 9.3 15.4 17.2 13.7
9 3.45 1.51 6.7 15.4 17.2 13.7
10 3.50 1.34 7.0 15.8 16.1 15.6
1 5.10 0.88 6.9 9.1 85 9.7
12 5.55 0.82 6.9 9.1 9.5 8.7
13 6.90 0.77 6.9 15.7 14.2 17.2
14 7.15 0.66 7.0 15.8 15.6 16.1
15 14.10 (0.01) 9.3 15.4 16.7 14.3
16 17.55 (0.00) 9.4 15.7 14.8 16.7

& See Table II for the description of the individual cases.
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regular with no marked differences in linewidths. On the
other hand, the lines of the central doublet in the B part
are surprisingly narrower and the other B transitions
somewhat broader than the A-part transitions. The
linewidths ratio between the broad and the narrow
components of the B-part multiplet is almost 4!

(11) CAA=CBB=C but CAB((C (i.e., 0AB"“54°)
In this case, the linewidth pattern is symmetrical. The
central doublets in each half of the multiplet are
narrower than the other lines; the linewidth ratio is now
about 5:3.

(111) Cus=Cprp==+Cyp
In the previous two cases the two components of each
doublet had roughly the same linewidth but in this case
they differ. From the difference one could obtain, at
least in principle, both the absolute value and the sign
of C4p. If the coupling is weak the effect does not seem
sufficiently pronounced but it increases rapidly with
increasing value of «.

Let us see now the energy-level widths (Table II).
It has been noticed in I that the energy-level widths
can be “tested” directly through the X-transition line-
widths if another nucleus X is weakly coupled to the
system which determines the relaxation. In the present
case it means that in an 4BX system with X being a
spin-} nucleus (proton), the X-part transitions reflect
directly the energy-level widths of the 4B subsystem.
The X multiplet is composed of nine transitions with
equal integral intensities. The linewidths follow directly
from Table IT and do not need, I think, any comment.

C. Broadening Due to the Chemical Shift Anisotropy (S)

_ Let 3* be the shielding tensor of the £th nucleus and
Hy= Hyh, the intensity of the magnetic field, Then the
asymmetric part of the shielding leads to the perturba-
tion

HS=H, > H,
¥
Hkszﬁo'gk'ik, (32)
where B
Sk=gk—(1/3) Tra*. (33)

Despite being of first order with respect to the spin
operators, the relaxation through (32) is still governed
by rotations of a tensor quantity and, hence, belongs
to the type A.

By means of the spherical tensor quantities we have

fk= hosz— (1/2) <h0+1k_+ ho_Ik+) = Kk,
tit = (612/2) (he'Li*+he*Li7) = (6'2/2) I#,

dit= (6Y2/2) hy*I,==0. (34)
Equation (32) can be rewritten as
HkS=FICS,Ofk__I_FkS,ltk—_i_FkS,——ltk—F, (35)

2473

where
F80=(1/2)8zz% and FS#+=(1/612) (Szx*iSzp*).

(36)
For the energy-level widths one obtains

PS(r) = T X T),
PaS(r) = H{J 5 %(0) 850 (r) +2 Re[J a2 (2:) Sa(r) 1},
(37)

where

Siko(f) = <K7,Kk>rr_ <Ki>rr<Kk>rr,
Sikl(r) = (3/2)611@ <Ii+Ik_>rr- (38)

The spectral density functions J;5:#(w) and their prop-
erties follow immediately from Egs. (4), (5), and (11)-
(15); it is only necessary to put (ij) =i and (k) =k.

In the fast reorientation limit, and assuming the
validity of the approximations IRCOF and EDA, (37)
reduces to

TaS(r)=2HdrGu8
X8 (r)+ (3/2) e T AL+ Tty

with G;® defined by (12).

In proton resonance the perturbations due to the
chemical shift anisotropy start, in general, with smaller
absolute amplitudes than those due to dipolar inter-
actions.® Moreover, the double transition terms do not
appear in (37). In the case of dipolar relaxation the
D-transition terms are dominant (I). Consequently,
the contributions of the chemical shift anisotropies are
expected to be rather small. Because of their dependence
on He?, they could become important in connection with
the high-field spectrometers with superconducting mag-
nets which are being developed.

II. THE THEORY OF II-TYPE PROCESSES

(39)

The spherical spin operators of first order are K and
VvZI%. Consequently, the random interactions of first
order can always be written as

H= Z Hkv’
k

H].-V =ka’0KL-+\/2 ( ka ’IIL\—+ka '_lIlc+) ) (40)

where the pseudoscalar functions fi"'* (u=-—1,0,1)
behave under molecular rotations like spherical har-
monics Vi .. A vector f,7 exists such that

ka'O: (1/2) (ﬁv)zr
fiF = (V2/H)[(F)xi( fi¥) v ] (41)

As the vector f;V reorientates randomly, the functions
fi¥* are random functions of time. The correlation
functions g4"#(7) are then defined

ga¥ #(r) = AL [V H(O)fi" #(14T) ], (42)

which generate the corresponding spectral density
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TaBLE IV. Values of the R functionals for an AB system
composed of spin-} nuclei.s

r Eigenvector RAAO RAAI RABO RABI
1 | ca) 0 2 0 0

2 cose|af)t sing|Ba)  p? 2 - 2p
3 cosp|Ba)— sing|aB) 2 —p? —2p
4 | 88) 0 2 0 0

® p=sin2¢p, tan2¢ =J/8; § and 8 are the coupling constant and the chemi-
cal shift, respectively. The values of the R functionals do not change if
A and B are permuted.

functions

+o0
gaV (1) exp(—iwr)dr.

—0

Jul #(w) = (43)

Following the usual lines, the contribution of the inter-
action V to the rth energy-level width becomes

Y= ED T,

TV (r) =7V 2(0)Pul(r) +2 Re[ juV () Pul(7) ],

(44)
where the P functionals are given as
P,;]\-O(T) = <K1Kk>rr_ <Ki>rr<Kk>rr;
Pqikl (7') = 261‘1\: <I1'+Ik_ >rr- (45)

In the approximation IRCOF, the correlation functions
are assumed to be

ga” (7)) =gaV #(0)xa (1), (46)

where x1(7) is a function common to all processes of the
I type activated by the same random phenomenon. In
an isotropic case

g’ #(0) =GuV = (1/12) A, ( f¥-/iV).

The spectral density functions are then independent
of u:

(47)

Ja" *(w) =Gu" 1 (w), (48)

{1{w) being the Fourier transform of x1(7). If, moreover,
the approximation EDA is valid then

xi(7) = eXp(—I T |/'rl)—>§‘1(w) =27/ (1+wir?). (49)

Once again the fast reorientation limit and the slow
reorientation limit can be distinguished.

With (49), the spectral density functions are real;
consequently

TaV(r) =727 (ORGP () +7uV (B:)Rut(r), (30)
where

R (r)=P,o(r), Rikl(r)=2€ik<Ii+Ik_+Ii—Ik+>rr- (51)

These functionals are the same for all II processes.
Their values for a simple A B system composed of spin-}
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nuclei are given in Table IV. If the coupling is not too
strong, the main contribution to the linewidths comes
from the one-particle terms connected with Ryl(r).
In spin-3 systems Ry (7) is equal to 2 for all eigenstates.
In the special case of intermolecular relaxation, this
uniformity has been already noticed in II.

A. Intermolecular Relaxation (R)

Although intermolecular relaxation is not a typical
IT process, it obeys the same equations (40)-(51). The
vector fi® is equal to yihi, i being the fluctuating mag-
netic field due to intermolecular interactions. This case
has been discussed in detail in I1; here it is mentioned
only for completeness.

B. Broadening Due to Spin-~Rotation Interaction (J)

The general importance of this type of relaxation was
demonstrated by Gutowsky et al.*® and, for uncoupled
systems, discussed by Hubbard.* It seems! that for
small molecules the spin-rotation relaxation can even
be more important than the dipolar one. Let us notice
here that the same should hold also for small fragments
like methyl groups provided they undergo free rotation.

In a polyatomic molecule, the coupling of the nuclear
spins I with the angular momentum J can be approx-
imated by its leading term

H/= Z J-Ci -1, (32)
where (. is the coupling tensor for the kth nucleus. As
both ] and C; follow the molecular rotations, the quan-
tity J-C) really behaves like a vector under them and
can thus be identified with the vector f”.

In the approximation IRCOF the only parameters to
be specified are the Gi7. From (47) one obtains

Su’=(1/12)A,(J-Du-J), (53)

where D;=C,(,*, the cross denoting the transposed
tensor.

Note that, because of the ensemble averaging in (47),
the TI processes depend on the temperature not only
through the correlation times but also through the tem-
perature dependence of the ensemble averages (see
Ref. 10 for a very clear demonstration of this effect).

Another important feature of the spin-rotation inter-
action is that it is governed by the correlation time 7,
which is different both from 7, characterizing A proc-
esses and from 7. characterizing the intermolecular
relaxation. Furthermore, 71 is characteristic for the
molecular reorientation only if /i preserves its absolute
value; this evidently does not hold for f;7. Gordon'? has
shown, of course, that in many cases the infrared band
shapes are consistent with the assumption that the
redistribution of the absolute value of J is much slower
than the redistribution of its direction. If this is true
then the random jumps between states with different
J values have little influence on ;.
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III. CROSS TERMS BETWEEN VARIOUS TYPES
OF INTERACTIONS

The existence of the cross-term contributions to the
energy-level widths was mentioned in I but no particular
case has so far been treated. They arise from the con-
tributions to the transition probabilities of the type

+o0
WUV (r—ss) = f exp(— twysT)

XA |HU) | r){r [HY (147) | s)Jdr.  (54)

Many of the cross terms can be immediately excluded.
If the time dependence of the two interactions U and V
is due to two different, uncorrelated random processes
then WYY =0 for all transitions. Even if both U and V
are activated by the same random process, the cross
terms between them disappear as long as they are of
different symmetry types (provided the medium is
isotropic). Consequently, the only nonzero cross terms
connected with the above cited interactions are those
between the three A-type mechanisms.

Consider now two different, but correlated, relaxation
mechanisms U and V and let the orders of magnitude
of the linewidth contributions connected with them be
in a ratio #/v>1. The cross terms are then expected to
be of the order of (uv)'? and, moreover, they can be
both positive and negative. The cross-term contribu-
tions thus change the linewidths by a value which is of
the order of 200(%/v)"*9,. For #/v=~10? this gives about
20%,; it means that the cross terms can be significant
even if the direct influence of one of the mechanisms
is negligible.

The derivation of the expressions for the cross terms
is quite straightforward but the resulting formulas are
a little cumbersome. Only the final formulas are given
here which result in the fast reorientation limit if the
approximations IRCOF and EDA are valid.

A. Cross Terms Between the Dipolar Interaction and
the Quadrupolar Interaction

The contribution to the energy-level width due to
D-Q cross terms is

3¢? Q. YiY1
FDQ —_— ———e S
N==5mZ k% [si(zsi—n Rip

X Zﬁ: Qs’ cosg'yklﬂ]cqz,kz(r), (55)
where vi/f is the angle between the vector 5;; and the
Bth main axis of Q. The functional C; 4,(7) has the form
Coni(r) =260 K)o (LA L+ LT )~ 2K 2 (KK e

+ KKK —eu[K2, L4101+ ]
+[KI+17K, 0K+ el K, )
+ [K I +IAK, oKl +eli K, )
+deuey([TALY, L L 14 [0, LitLet ) Do,

the bold face brackets denoting anticommutators.

(56)
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B. Cross Terms Between the Dipolar Interaction and
the Chemical Shift Anisotropy

The contribution to the energy-level width is

IP3(r) = — (r2/20) 2, EI (yive/ Rid®)
X (Z Sﬁi COSZ’yle)Di_kl(r), (57)
8

where 83t is the length of the Sth main axis of S%, v./f
is the angle between p;; and the §th main axis of Si, and

Diu(r) = e (K (LA LIt ) — (Kl KK e
+EKEKK— (1/2) e [Ki, LI ++1 1]
+(3/4) [L+, e Kl +eali K ]

+ (3/4> [Ii—y eilKkIl++eika+Kl ]>rr- (58)
C. Cross Terms Between the Quadrupolar Interaction
and the Chemical Shift Anisotropy

The contribution to the energy-level width is
T9(r) = (¢'r/80) 22 yk‘_, {[Q«/S:(25:~1)]
X 220 Qu'gk cos®(a:AB) JEa(r), (59)
a 8

where (a;ABi) is the angle between the ath main axis
of ¢ and the Sth main axis of S*, and

Eu(r) = 2K 2K )rr— 2{K 2 (Ko s
+eu([Lt, K1+ K, 4+ [Ii, KIA+LK .
(60)
ACKNOWLEDGMENTS

I thank Professor G. Zerbi for his continuous support
and Dr. A. B. Dempster for revising this as well as the
previous two manuscripts from the linguistic point of
view.

APPENDIX

A. Transition Probabilities

The transition probabilities WUV (r~s) due to various
random interactions have not been needed in an explicit
form in this series of papers. They are, of course, impor-
tant basic quantities for the study of such problems like
saturation and dynamical behavior (spin—echo, satura-
tion recovery) or for problems connected with random
perturbations which are too strong to be treated by
perturbation methods.’

Starting from the corresponding perturbation Hamil-
tonians and using Eq. (54), the expressions for the
transition probabilities can be easily obtained. Their
further simplification is possible using the same prin-
ciples as in the case of linewidths; Eq. (6) is particularly
important in this step.
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B. Units

In I it was stated that there is a relation between the
mean lifetime I'(7) of an eigenstate and its energy-level
width 8. of the type §,=gT'(r), where g~1 depends on
the shape of the density profile of the energy level. It
can be shown on a quite general basis® that, for the
Lorentz-shape lines, g=1. The resulting energy-level
widths are then given in Hz; otherwise the convention
fi=1 implies that the energy and frequency units must
be rad sec™! for all the input parameters.
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High-Temperature Heat Contents and Related Thermodynamic Functions of Seven
Trifluorides of the Rare Earths: Y, La, Pr, Nd, Gd, Ho, and Lu*
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Institute for Atomic Research and Department of Chemistry, Iowa State University, Ames, Iowa 50010
(Received 31 August 1970)

The high-temperature heat contents of high-purity YF;, LaF;, PrF;, NdI;, GdF;, HoF3, and Lul; were
measured from 100-1600°C. The heat capacity, heats of transition, heats of fusion, and related thermo-
dynamic functions were calculated. The smoothed values of H°p—HCgs, Cp, S°r— S°9s, and — (FF°p—
II°43) /T are tabulated at 100° intervals. A comparison of the values for the transition temperature, melting
points, and lattice parameters of the higher-purity fluorides of this work with those of less pure fluorides
indicated that a reduction in oxygen content does not affect these properties.

INTRODUCTION

The rare-earth trifluorides have been of particular
interest in the preparation of the rare-earth metals for
many vears. As part of an effort to improve the purity
of the rare-earth metals, a program to prepare and
characterize very high-purity rare-earth fluorides was
undertaken. A significant part of this program was con-
cerned with the measurement of the high-temperature
thermodynamic properties of the trifluorides, including
the latent heats of transition and of fusion. This paper is
the first of a series from this Laboratory reporting the
properties of the fluorides. In this segment of the
investigation we have measured the high-temperature
heat contents of seven rare-earth trifluorides, specif-
ically, YF;, LaF;, PrF;, NdF;, GdF;, HoF;, and LuFs.

The light rare-earth fluorides, LaFs, PrF;, and NdFs,
were originally thought to have a hexagonal structure.'=3
Recent single-crystal data*® show LaF; has a trigonal
structure rather than the hexagonal structure. No
crystalline transformation was reported for the light

fluorides. The heavy rare-earth fluorides, GdIy, Hol%,
LuF;, and YF; have an orthorhombic structure at room
temperature.2” However, the heavy fluorides have been
reported to transform to a high-temperature hexagonal
structure.?’ The high-temperature transitions for GdFs,
Lul;, and YF; have been observed by Dennison using
differential thermal analysis,® but the transition for
HoF; has been detected only by high-temperature x-ray
diffraction.®

Very little thermodynamic data are available for the
rare-earth fluorides. As far as we know, the only
previous experimental data on the high-temperature
heat contents or heat capacities of the rare-earth
fluorides are the measurements on PrI, NdF;, GdFs,
and YbF; over the temperature range of 500-1400°K,*
and both the low- and high-temperature data for
CeF,. 112

MATERIALS AND EQUIPMENT

The rare-earth fluorides were prepared by a two-step
process.’® In the first step, high-purity rare-earth oxide
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