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A new method is presented for determining the moments of nuclear magnetic resonance absorption
lines from the shape of either the free induction decay or that of the echo. Unlike previously used techniques,
this method does not require the assumption of an analytic function for the line shape or the fitting of
the experimental decay with a polynomial. A fast, suitably precise and numerically stable algorithm
has been developed for performing the integration required by the new method.

The moments of the NMR absorption line of a solid
are important structure-sensitive parameters. The
increasing application of NMR rf-pulse methods to
solids has led to an interest in determining the moments,
especially the second moment, from the data obtained
in such experiments. Two different approaches have
been employed to extract the moments from the shape
of either the free induction decay (FID) or that of the
solid echo.

In one, the experimental decay curve is fitted by an
assumed analytic function! and the moments are then
calculated from the parameters describing the optimal
fit. The main drawback of this method is the required
assumption of a particular absorption line shape.

In the second approach, the beginning of the experi-
mental decay curve is fitted by a polynomial.? The
coefficient of #* in this expansion is then set equal to
(— 1) M s/ (2kY), where M, denotes the nth moment.
The odd moments are obtainable in the same way from
the out-of-phase component of the induced signal.
While avoiding any assumption about the line shape,
this method is unreliable from a numerical point of
view since, as we will describe in the discussion, very
good fits may often be obtained with very different
polynomials.

In this article we present a new method for determin-
ing the moments which requires neither an assumption
about the functional form of the line shape nor the
fitting of the experimental decay by an analytic func-
tion.

THEORETICAL

The nth moment of the absorption line g(w) is
defined as

M= [Targtartorio [ [ g, ()

where w is the center of the band, chosen such that
M,=0. (2)

The shape of the FID (or of the echo) obtained by
phase-sensitive detection is

G(t, o) = Re{expli(Q+a)] /ng(w) exp (—iwt) dw},

(3)

where Q is the irradiation frequency and « is the phase
of the detector. If a pair of mutually orthogonal phase-
sensitive detectors is used, for the first of which a=¢,
one obtains two FID curves described by

+o0

G, (1) =G (1, ¢) = Relexp[i(QU+9)] 3 g{w)

X exp(—iwt)dw},

G/ () =Gt p+im) =~ Imfeli@+8)] [ g(0)
X exp(—iwt)dw}. (4)
The functions G4(¢) and G, (¢) satisfy the relations,
Gy(—1) =G4 (1) cos2¢—Gy' (1) sin2,
Gy (—1) = —G4(t) sin2¢—G,'(f) cos2é. (5)
For =0 these relations lead to the condition
tang=—G,'(0) /G4 (0), (6)

which provides an operational definition of the phase
¢. In particular, it makes it possible to adjust the phase-
sensitive detector® until G,’(0)=0 in which case
¢=0 [if G4(0)>0].

Assuming that the phase has been properly adjusted,
we introduce the notation

Gi(H)=G(,0) and Gi(t)=G(, 3m). (7
Equation (5) now reduces to
G (=0 =G;(t) and Gu(—1)=—G1(t). (8)

From Eq. (4) it follows that:
40
glavte) = 2m)=1 [ LG —iG2(n)]
X exp[t(w—28)t]dt, (9)
where 6 =Q—wy.

By substituting Eq. (9) in the definition of the first
moment and using Eq. (8) to simplify the result, we
obtain

My=5+G1(0) /Gy (0),

where the dot denotes the derivative with respect to
time. By Eq. (2), this implies that

3=0—wp= —G1(0) /G (0),

(10)

(11)
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which may serve as an operational definition of 8.
Accordingly, to satisfy experimentally the on-resonance
condition §=0, one simply adjusts wg so that G1(0) =0,
with Gy, (0) ;é()

With this adjustment made, we may shift the origin
of the frequency scale by putting w,=0. Equation (9)
then becomes

s =0 [ (GG ewtands, (12)

where the superscript r refers to the on-resonance
condition. The even moments of g(w) are identical
with the corresponding moments of its symmetrical
part which, by Egs. (12) and (8), can be written as

g (w) =7 Re f TG esplioh)d.  (13)
0

Correspondingly, the odd moments of g(w) are the
moments of its antisymmetrical part

ga(w) =71 Tm f TG () explied.  (14)
]

Note that G.17(t) =0 if the absorption line is symmetri-
cal.
Next, we introduce quantities Q. (¢) defined as

Qule)= /w W g(w)do,

where e is a positive parameter which has the dimension
of time, and » equals 1 for even # and 0 for odd #. The
quantity Qn(e) is connected to the nth moment by the
extrapolation formula

(15)

M,.= lim Q0.(e) /G, (0). (16)
>0
By using Eqgs. (13)-(15) one may write
0u(@= [ Grifule Nt (17a)
0
and
Oun(0= [ Gurfuwnale, Ndl,  (17b)
0
in which the functions f,(e, ¢) are given as
L + o0 61)2" i
Jou(e, ) =7 /_w m exp (twt)dew, (18a)
’i —+ o0 w2n+1
wiile, )=— = | ———— exp(iot) do.
Sonta(e, £) r/;w 1 (e 2ot exp (iwt)dw. (18b)

For es0 these integrals converge and their values can be
calculated directly from the residue theorem. The
resulting formulas for the first several functions f, (e, ¢)
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are (for positive £):
file, ) = (1/€) exp(—t/e),
fole, ) = (1/€) exp(—1/V2e) cos[ (1/V2e) +in],
file, 1) = (1/¢*) exp(—1/V2e) cos(t/V2e),
file, 1) = (3¢) {exp(—1/€) +2 exp(—1/2¢)
X cos[ (V3t/2e) +3r 1},
fle 1) = (3¢)[exp(—i/e) +2 exp(—1/2¢)

X cos(V3t/2)]. (19)

The individual moments can now be obtained from
the observed decay functions G| "(f) and G.7(i) by
combining Egs. (16), (17), and (19). It is important to
note that the imit, Eq. (16), is reached in each case
with a zero slope since, from Eq. (15},

lim dQ,(¢) /de=0. (20)
)

This greatly facilitates the extrapolation of Q,(¢) for
e—0.

The off-resonance condition of Eq. (11) may lead to
experimental error when either the dead time or the
experimental noise limits the data available in the
vicinity of {=0. For this reason, we now consider the
effects upon the moments of having §7%0. It may be
shown that

+ o0
5= lim / G(Dfile, DAL/G,(0). (21
0

>0
Therefore, the extrapolation procedure used to deter-
mine the moments can serve also for an accurate deter-
mination of 3. By comparing Eq. (9) with Eq. (12)
one obtains the relations,

G, " (1) =G (1) cos(8t) —GL(2) sin(dt),
Gu (1) =Gu(t) cos(6t) 4G () sin(st), (22)

which, once § is known, enable one to calculate the
moments from the off-resonance decays Gy () and
G.(f). Ofi-resonance measurements have lower sensi-
tivity than on-resonance observations and there are
additional experimental errors due to the oscillatory
behavior of G| (t) and G.(#). Therefore, Eqs. (21) and
(22) are best used to correct for small deviations from
resonance.

COMMENTS ON THE NUMERICAL PROCEDURE

For #2>2 and for small € the functions f.(e,f)
rapidly oscillate. This leads to substantial problems in
the numerical integration required by Eq. (17). The
simple Simpson rule proved, in fact, to be inadequate
with any experimentally reasonable spacing between
the digitized data. The choice of a smaller integration
step, combined with suitable interpolation of the
experimental data, increases the numerical stability
but the calculation time increases as well. An algorithm
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Fic. 1. Values of (:(e) calculated numerically as a function
of e for several induction decay curves corresponding to different
values of M, for fluorine nuclei. The solid lines are for ‘“‘data”
points generated with Gy"(f) =exp(—3d¢*?); the dashed line,
with G|7(¢) =exp(—3a2?) X (1/bt) sindt. The points with dashed
line are for the experimentally obtained G’ (f) given in Fig. 2.

was developed which proved to be both fast and
numerically stable.

A quadratic interpolation polynomial y;({)=a;?+
bii+c; is determined for each set of three consecutive
experimental points G({;1), G(4), and G(fiy1).* The
contribution to Q.(e) arising from the interval ==
(G(tiat+ts), 3 (6t tiga) ) is caleulated as

w0= [ Ghenaz [ w0 D, (23)

using explicit formulas for the integral on the right-
hand side of this equation. The quantity Q. (e) is then
set equal to the sum of all ¢.%(e) plus a similarly ob-
tained correction term arising from the initial interval
{0, 1 (t1i+1) ), where # is the coordinate of the first
experimental point.

At this point we have to stress that the difficulties
connected both with the numerical stability and with
the sensitivity of the results to experimental errors
increase drastically with increasing order of the moment.
We feel that with reasonably good experimental data it
is possible to obtain at most reliable second and third
moments and semiquantitative information about the
fourth moment.

RESULTS AND DISCUSSION

In order to test the proposed method, we have per-
formed the numerical integration required in Eq.
(17a) for M,, using for G|"(!) analytically generated
sets of “data” as well as experimentally obtained
digitized data. Gaussian and more complicated decay
curves! were generated with durations corresponding
to second moments ranging from 1 to 16 G? for fluorine.
The G)7(¢) values were calculated with a spacing of
1 psec, which is experimentally feasible with a fast
digitizer. In Fig. 1 we give the results obtained for the
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ratio Q»(€) /M, as a function of e for several of the
generated decays.

The values obtained for the second and higher
moments are very sensitive to the shape of the induc-
tion signal* G(¢) at small values of f. The quantity
(0.(e) depends upon the full range of G(f), but the
weight given to G(f) for large values of | ¢ | decreases
rapidly with decreasing e. This does not present any
problem if the shape of G(f) is known for all values of
time, as in the case of echo experiments on solids—
either the regular echo® or the recently reported
“magic” echo.’ However, the situation is substantially
different for the free induction decay, for which data
are not obtainable during the dead time (0, #;) following
the rf pulse.

The latter point is shown in Fig. 2 which reproduces
the experimental, time-averaged FID of the fluorine
NMR in solid KAsF; powder at room temperature,
observed with a pulse spectrometer operating at
25 MHz. The data are digitized for every microsecond,
and the dead time is about 12 usec. This dead time
leads to the drastic divergence in the values obtained
for Q;(e) at small values of e, illustrated in Fig. 1 by
the numerical results corresponding to the experimental
FID in Fig. 2. If the divergence occurs before Qs(e)
has approached M, to a suitable degree of accuracy,
the data are inadequate for the determination. It may
be shown that the fault lies in the lack of data and not
in the mathematical procedure employed.

On physical grounds, one would expect the divergence
to occur when € $fz, which is verified by our numerical
results, those in Fig. 1 for KAsFs being typical. It is
seen that Q(e) diverges for e<6 usec, with #3 about
12 usec. Moreover, a smaller value of e is required for
Q:(€) to approach a larger value of M, This enables
limits to be placed upon {4, for establishing M, to a given
accuracy. Our results in Fig. 1 indicate that if an
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Fi1G. 2. The time-averaged YF free induction decay observed
at 25 MHz for KAsFs powder at room temperature. The data
are digitized at 1-usec intervals following a dead time of about
12 wsec. Only the in-phase component G|y’ (#) of the induction
signal was observed.
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accuracy of better than 59 is desired in M,, the dead
time must meet the condition

1 S2.5X 105/ (M,)12, (24)

where #; is in microseconds and M, is in square radians
per square second.

The dead-time problem can be approached or avoided
in several other ways. One can attempt to correct the
beginning of the decay curve for the distortion due to
slow recovery of the receiver from saturation. A method
has been described by Barnaal and Lowe® for this
purpose. Also, Jeener and Broekaert” have developed
an experimental technique which enables one in prin-
ciple to measure G(#) for small value of ¢, but the pro-
cedure is laborious. The best pulse method for deter-
mining the shape of G(f) seems to be the “magic”
echo,’® since it is practically free of the nonlinear attenua-
tion effects unavoidable? in the case of the regular echo.

The estimation of M, by the numerical procedure
outlines in connection with Eq. (17a) does appear to
have practical advantages over the fitting of an
induction decay with a series expansion and calculating
M, from the coefficient of the # term.? Data limited by
receiver recovery time may be fitted by a polynomial
which in turn gives what appears to be a mathematicaly
definite M,, but which may actually be erroneous. In
contrast, as shown by the curves in Fig. 1 for the FID
of Fig. 2, our method of calculation leads to visible
divergences when the values calculated for the moments
become physically unreliable.

A comparative study was made of the propagation of
errors in the two methods, with the results summarized
in Table I. A “set of data” was generated for G| "(¢)
by means of a Gaussian decay, corresponding to a
second moment of 8 G2 for fluorine, digitized at inter-
vals of 1 usec with an rms noise amplitude taken to be
19, of G(0). These “data” were then employed with
and without the noise to calculate M, by the two
methods. The percent difference A, between the actual
M and the apparent value determined from the “data”
without noise measures the error introduced by the
approximation method itself. In turn, the percent
spread =£A in the apparent M, produced by the noise
is a measure of how sensitive the method is to error
propagation.

In the polynomial method, the “data” were fitted by
polynomials ranging from the second to the eighth
degree, in order to assess the improvement in accuracy
of the calculated M with the improvement in fit of the
“data’” by using higher powers in the expansion. Inas-
much as the polynomial is usually fitted to the beginning
portion of the decay, we tried fitting the ‘‘data” over
three different regions, from {=0 to the #'s at which
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TasiE I. A comparison of the polynomial fitting method with
that proposed herein for determining M, from an induction decay.
Both methods were applied to a generated set of “data’ points
from a Gaussian decay at intervals of 1 usec with an rms noise
amplitude of 19, of G(0). The errors Ay and A are given in
percent, with A¢=(M,,actual—M,apparent)/(M,,actual) and
#+A describing the range in Ms,apparent produced by the noise.

Region A
G(0) to 3G(0)

Region B
G(0) to 3G(0)

Region C
G(0) to #5G(0)

Method> A, +A Ao +A Ao +A
n=2 12.5 12 24 6 54 4
n=4 1.5 33 2.5 14 19 7
n=6 0.2 51 0.6 32 5 11
n=8 0.04 90 0.1 50 1 22

Eq. (17a) not applicable not applicable 0 6

2 The values listed for n describe the degree of the polynomial employed
in fitting the induction decay ‘‘data.”

G(t) had fallen to 4, %, and 5 of its initial value, G(0).
The results in Table I exhibit several trends. For a
polynomial of given degree, using less of the decay
gives an apparent value of M, which is likely to be
closer to the theoretical value but which is more sensi-
tive to the experimental noise. A similar trend is found
as one increases the degree of the fitted polynomial for
a given portion of the induction decay. Also, it is clear
that even with very good experimental data, e.g., the
assumed rms noise level of 19, of G(0), the polynomial
method is not well suited for determining values of M,
because it does not minimize both systematic and
probable errors. In contrast, with the same data, our
method proves to be substantially more reliable.
Moreover, if the data do not contain sufficient informa-
tion to determine M, either because of the dead time
as mentioned above, or because of an inadequate
signal-to-noise ratio, the function Qs(e) either diverges
or oscillates for small € and its extrapolation for e—0 is
therefore impossible.
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