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The theory of energy-level widths in coupled nuclear systems is discussed, and a detailed study of the
intramolecular dipolar relaxations based on it is presented. The restrictions of the theory and all the ap-
proximations made are carefully discussed. The nuclear system coupling structure enters the formulas
through relatively simple functionals defined over the unperturbed eigenvectors of the system. On the
other hand, the spectral density functions, which appear as coefficients of these functionals, depend only
on molecular geometry and motions. Both groups of parameters are thus to a great extent separated. In
order to show the effectiveness as well as the limits of the method, the structure and the linewidths of
resonance transitions of several simple systems (4B, 4., ABX, 4,X, As, and 4;X) are studied in detail.

1f the high-resolution NMR spectrum of a molecular
system has to be calculated in detail, i.e., including the
line shapes as well as the frequencies and integral
intensities of the transitions, extreme difficulties arise.
In many cases, however, the properties of the system
enable one to determine the energy level widths and to
draw from them some semiquantitative conclusions
about the linewidths. The general theory of the energy
level widths is still quite complex, but as will be shown,
very general assumptions about the type of the relaxa-
tion mechanism and about the energy level structure of
the systems studied lead directly to extensive simplifi-
cation.

In this paper the influence of the dipolar relaxations
has been studied in more detail. The underlying theory,
however, is adequate to deal with any other of the
relaxation mechanisms.

I. BASIC THEORY

In this discussion the nuclear system is defined by
the set of eigenvectors | ) and corresponding energies »;
for each of its eigenstates ¢. Any perturbation H’(f)
which is a stationary random function of time will lead
to transitions from the eigenstate » to the eigenstate s,
the probability W,s of which is known to be

Wrsz-]rs (wrs) y

Here J,:(w) is the spectral density function of the
perturbation matrix element (r | H'() | s), i.e,,

Jrs(w) = LoAogrs(t, 7),
gun(t,r)={r |H'() | s)(s | H (t+7) |7},  (2)

with 4, denoting the statistical-averaging operator and
L, the Fourier transform operator:

Wrs = Vr— Vs, (1)

+o0
Lo f(r) = /_ (r) exp(—icr) dr. 3)

Because of the stationary nature of the perturbation
operator H' (1),

Aogrs(t, )= A,grs((], 7). (4)

In almost all the physically significant cases the per-
turbation H’(#) can be written in the form

H ()= S W), 5)

where W7 are time-independent operators and f;(¢) are
stationary random functions. Then

W= Z Z ]ik (wm) WrsiWsrk; (6)
t &k

where
Jie(wre) = Lodol fi(Dfe(t+1)},  Wiis= (| Wi]s).

The total probability I'(r) that the state » will be
changed by the influence of the perturbation H’(¢) now
becomes

F(f) = Z/ W= Z ; ZI Jik(""”) Wes'W o, (7)

The single prime in Eq. (7) denotes that the summation
extends over all the states s with the exception of the
state 7.

With respect to the uncertainty relations, the width
d- of the rth energy level is approximately given by
I'(r), ie., 8,=gT'(r), where g~1 depends upon the
particular shape of the density function g (v) of the
rth energy level. It is further supposed that the density
functions g.(v) are approximately of the same shape
for all levels on account of the statistical nature of the
relaxation processes. The linewidth A,, of the transition
r—s will then be approximately determined by the
relation

Ar=g{T* () +T%(s)},  g~1. (8)

To compare Eq. (8) with the experimental results
the natural linewidths must be measured; experimen-
tally these are seldom obtained. A short discussion of
this problem is given in the Appendix.

II. RESTRICTIONS OF THE THEORY

The relation (1) is in fact the result of a perturbation
expansion of the density matrix into the powers of H'.
As a consequence, it is necessary for its validity that
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the unperturbed Hamiltonian of the system is not
degenerate. More precisely, if w4 0£r:(0, 0) the eigen-
states 7 and s retain their authenticity, at least from the
point of view of the statistical average. On the other
hand, if ws<<A4,8:(0,0) the perturbation H' causes
time-dependent rotations of the base in the manifold
M., generated by the vectors | 7) and | s), the ampli-
tudes of which can be large enough to change completely
the statistical parameters of the resulting distribution
of the base.

For any base | 7'}, | s') of the manifold M,, it is still
true that

wmr"*‘Wms’ zwmr"i_wms'

Consequently, the relation (7) remains valid even in a
degenerate case for any T'(m) as long as m is not
identical with one of the degenerate states r and s.

A special situation occurs if (r | H'(¢) | s)=0 iden-
tically. Then, despite the degeneracy of the states 7 and
s, the relations (1)—(7) remain valid.

The relation (8) can be used only under the condition
that there is no phase correlation between the states
r and s. This condition is not fulfilled, for example, if
the whole system is composed of two (or more) mutually
noninteracting parts. The allowed transitions inside one
of the subsystems then occur only between those eigen-
states of the whole system in which the states of the
second subsystem are identical. But the random proc-
esses acting in the second subsystem cause exactly the
same and, hence, in-phase changes in both levels.

As soon as the subsystems are in mutual interaction
the phase correlation between both levels disappears
and, if caused artificially, decays with a characteristic
time given by the magnitude of the energy change of
the second subsystem caused by the interaction. The
relation (8) can be used if the Interactions are con-
siderably stronger than the energy level widths.

III. APPLICATION TO THE NUCLEAR SYSTEM
UNDER HIGH-RESOLUTION CONDITIONS

The most important relaxation mechanisms in a sys-
tem of nuclear spins are (a) the dipolar interactions of
the nuclear magnetic moments, (b) the interactions of
the nuclear magnetic moments with the magnetic
moments of the unpaired electrons, (c) the interactions
of the nuclear electric quadrupole moments with the
electric multipoles of the molecule, and (d) the inter-
action of the nuclear system of the molecule with its
internal rotations through the chemical shifts and in-
direct coupling constants. In the first three cases it is
further possible to distinguish between intramolecular
and intermolecular interactions.

Under certain experimental conditions (diamagnetic
samples which do not contain any nuclei with nonzero
quadrupole moments and from which all paramagnetic
impurities are removed) the relaxations through the

4819

nuclear dipolar interactions remain dominant. With
respect to the strong dependence of the latter on inter-
nuclear distances, one expects intramolecular rather
than intermolecular interactions to be of major import-
ance. By a suitable choice of experimental conditions
(dilute solutions in solvents free of magnetic nuclei),
these intramolecular interactions will assume even more
importance.

Since there is hardly any correlation between intra-
and intermolecular interactions, their contributions to
the energy level widths may be studied independently
and summed in additive manner. This could break down
only if there were strong correlations between the posi-
tions and movements of the adjacent molecules in the
sample.

Such an additive independence of relaxation mech-
anisms will not hold for two different types of inter-
actions between two molecules or inside the same
molecule. In such a way there arises a whole series of
different crossterms in the relation (7).

Iv. THE PURE NUCLEAR DIPOLAR
INTERACTIONS

The dipolar interaction between the nuclei ¢ and j
contributes to the perturbation Hamiltonian H'(?)
through a term whose form is

Hif = oy (FiytFio P+ F 0 f2 O+ (T T+ it
X iU O+ (To 7+ T30 fi ™ (0)

+D.tfi (O +Difi, (O 1, (9)
where

Fiyj=— KK,

Fy =11,

Ti 5= Kil*,

DiE=1+1 % (10)
and

filt(8) = (3— cos¥y;) /7i,
fiiF(t) = sinby; cosi; exp(F o) /74,
[i22(1) = sin®y; exp(F2455) /7.7,

and K;=217, a;;=—(3/4)vy;, v: being the gyromag-
netic ratio of the nucleus ¢ (the convention %=1 is
adopted). The usual notation is used for the spin
operators 17 and I+ acting on the spin variables of the
nucleus 4 and for the spherical coordinates r;;, 8;;, and
¢s; of the vector (7;—7;).

The operators (10), which will be denoted generally
by W, change the value 77 of the z component of the
total spin by ¢(W). Here e(W) equals: 0 for the phase-
shift operators F and the flip-flop operators F°; 41 for
the transition operators 7*; and =2 for the double-
quantum transition operators D=. Because [ is invar-
iant, for any two operators WT and W™ and for any two
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eigenstates 7 and s it immediately follows that

WelW =0 if e(W1)4e(W)5<0
and
W.il=0 if

(W) 0. (11)

In a heteronuclear system (or in a system composed
of several very weakly interacting subsystems) the
linear space in which the W operate can be decomposed
into a direct product of subspaces, each one being the
configurational space for one nuclear species (or for one
of the weakly coupled subsystems). I* now has to be
invariant inside each of these subspaces; this can be
used to further extend the rules (11). For this sake it is
convenient to define the symbol ¢;; the value of which
is either O if the nuclei 7 and j belong to different nuclear
species or 1 if these two nuclei are of the same kind.
Thus, the additional rules are

(Fij)rs(Fp,0) 50 onlyif 6,70, (12a)

(Ti,ji)rs(Tk,l:F) sr#O Only 1f eik6j1¢0, (12b)

(Di®)rs( DT w20 onlyif  (eaesteanes— emeq) #0.
(12¢)

From the relations (11) and (12) it follows that the
coefficients of the nonzero terms W, 'W,1 in Eq. (7)
may always be expressed in the form J1, 11 (Qr 1r+pr!10).
Q1,11 is dependent only on the given pair of operators
W and WH while u,.'I! depends also on the eigenstates
r and s. The value of Q5,11 is determined by the type of
the nonzero terms (12a)-(12c¢) to which the product
W. W, belongs. Thus, denoting the fundamental
resonance frequency of the nuclear species to which the
nucleus # belongs by &, Q1,11 equals either 0 or =®; or
=+ (®;4-®;) for (12a)-(12c), respectively.

The values ' 1* do not exceed the range of the NMR
spectrum, and at the usual high intensities of magnetic
fields, the differences between the Q11 parameters are
greater than the u,'1' values by several orders of
magnitude. Under the relatively rapid reorientation of
the molecules, the spectral densities Jy1(w) are very
smooth functions of frequency. If the reorientation
frequencies are much greater than the ., !, then

Jro (@t =J1,11 Q). (13)

In this case the expression (7) is considerably simplified.
The contribution of the W, ! W,I! terms to T'(r) becomes

Tra(r) = 2 J1u(Qnm) Wl Wt
&

=Jru Q) (W)~ W IW, 1], (14)

This statement shows that the energy level is now given
by means of a functional; it depends only on the eigen-
vector of the given state and not on the properties of
the other states.

A rather more detailed notation for the required cor-
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relation functions and spectral densities is now given:
8" (1) = Ao fi™ (8) fer ™ (¢+7) 1;
i a1(@) = Log™ i ua(r), (15)

where M=0, £1, 2. Note that J¥;.;,(—w) is the
complex conjugate of J=¥;; (). From Eq. (14) the
cross term I'%;.(r) arising from the dipolar inter-

actions within each of the nuclear pairs (4,7) and
(k1) is

T?%5.00(7) fetsion=J%;11(0) Gij i (7) +J% 41 (Bi— B))
K G%11(r) +2 Re[ S i{ @2) Glijea (1) +T i 11 (B5)
XGYi(r) + %500 ( @i+ ) GPja(r) ], (16)
where the functionals G have the form
Gijpa(r) = (FijF it enF o;(Fo it Fu i)
F e (F0u 4 F5,0) Fi) e (F i) re (Fit) e— €01 (F i) o
X (F% 14 FOi) re— €3 (B2, F ) 1o ( Fit) ry
G%; (7Y = eqen (FO, i F%, 1+ F% F0 1) e
= (F% ) er(F%,1) o= (F%,0) e (FO ) ]
Feaenl (Fs, 0t FiF%,0) or
— (F% ) e (B0 e (F%,0) 1 (FO%,0)
Glijna(r) = eaein(Tt i T k) mteaein{ T T 1ic) rry
Gija(7) = (einejiteaeim— ewenr) (Di" D) ore (17)

The purely dipolar interaction contribution to the line-
widths Té(r) is thus

Ti(r)y= 2 2 T4 u(r).

@) &,0)

(18)

With respect to the simple structure of the operators
(10), the calculation of the values of the functionals G
is not complicated and, as will be shown below, can be
further simplified.

The fundamental importance of expression (16) does
not consist, however, in the special form of the func-
tionals but in the fact that the energy level widths can
be expressed as a sum of products of two terms, one of
which depends only on the molecular geometry and
motions while the other is given only by the parameters
of the spin system specifying the given energy level.

V. HOMONUCLEAR SYSTEMS

For any two nuclei ¢ and j of an homonuclear system
it holds that e;;=1, a;;=a, and ®;=®, as follows from
the definition of these parameters. The following nota-
tion for the spectral densities is used:

Vijai(w) = Vii(w) = ReJyju(w),

Zijpr(w) =~ Zgif{w) = ImTs,0(w).  (19)
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Similarly, the simplified functionals are introduced:
Q% k1(r) = (FiiFx) rr— (Fi5) 12 (Ft) rry
Qg (r) = (3 B +3i7 %0 ) ory
¢ g1 (7) = (Bi 3 — 37 3t o,y
Q%iiwr(7) = (Di O +DiDpi™) ory
Gijar(r) = (Dij Dii™— Dif Oui*) oy (20)

where
ff,-] = I{"Ij—‘*—li—lﬁ'—' K,'Kj,

3= KK+
The expression (16) now reduces to

Dhialr) _ 22: M (MP)QMj0(r)

a* M=0

+ MZZ_ZI ZM (M ®) M im(r).  (21)

The terms (21) can be divided into three groups:
four-particle terms if 4, 7, &, and / are different; three-
particle terms if ¢=% but j#I; and two-particle terms
if i=Fk and j=/I. It is convenient to use a shortened
notation for the three-particle terms, defined by

VM, a=YMy 0; ZMa=2My.u;

QM= it; Miwi=q" i1, (22)
and a similar notation for the two-particle terms:
PMy=Y"h05; Q=0 (23)

As a result of (19), it may be noted that ZM;; ;;(w) =0
identically, which simplifies the two-particle terms.
Further, with respect to (19), the quantities

O™, 6y =0 1 +0Y; 1,

O™ (e =0M 5 1+ OMp1, 15,

in.(kl) = in.kl_ in.lk;
@ iy =g ;00— @Mr,ij
(24)

are quite convenient for the summation process (18)
and will be used in proceeding paragraphs.

VI. SPECTRAL DENSITY FUNCTIONS FOR THE
INTRAMOLECULAR DIPOLAR RELAXATION

As stated previously, in many cases the intramolec-
ular interactions represent the dominant relaxation
mechanism and, under suitable experimental condi-
tions, can determine the linewidth. In these cases it is
sufficient to take into account only one isolated mole-
cule; this approach to the problem will be called the
single-molecule approximation (SMA).

The intramolecular terms in (21) can be reduced and
many of their properties investigated without any
further assumptions about the detailed molecular
structure.
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First of all, from (10) and (15) it is clear that there
is a strong dependence of the dipolar relaxations on the
internuclear distances. In rigid molecules, where the
distances R;; between the nuclel are constant, the
spectral densities are

T k(@) = 0M50(w) /R Ry, (25)

where ©;;; depends only on the type of molecular
movements and on the mutual orientation of the
vectors 7;; and 7. In nonrigid molecules it is often
possible, at least as a first approximation, to consider
the vibrational and torsional movements as being inde-
pendent of the over-all rotations of the molecule. This
holds particularly for the vibrations and free internal
rotations, the frequencies of which are much greater
than the over-all rotation frequency. In these cases the
statistical averaging in (15) can be done separately for
both types of movements. If, moreover, the molecule
can exist in # different stable forms, then
o —OM,, g Cals

I (@) = OM; k1(e) %: %Ruﬁ(a)Rkls(ﬂ) )
where C, denotes the concentration of the form « and
R:j(a) is the distance between nuclei ¢ and 7 in the same
form .

In many molecules the minimum distance between
the nuclei is considerably smaller than any other inter-
nuclear distance. The relaxations in the nuclear system
of such a molecule will take place mainly through the
pair interactions connected with the minimum distance.
Neglecting all the other relaxation mechanisms, an
approximation results for these molecules which may
be called the one-pair approximation.

The one-pair approximation cannot be used, of course,
if there are more pairs of nuclei in the molecule with
internuclear distancesequal or near to the minimum one.
Especially, if R;;/=Ry; and the vectors 7; and 7 are
collinear then ¥ ;=Y ;M =J¥;,, i.e., the four-particle
term is equal to the corresponding two-particle terms
and can never be neglected.

The exact theory of the spectral densities is very
complicated and necessarily involves all the dynamical
parameters of the molecule. For practical purposes it is
found! that a crude approximation is sufficient which
substitutes all the reduced correlation functions
g"i3m(r),

¥ iia(7) = gM111(7) /g™i.00(0), (27)
by a unique function of the shape exp(—| 7 |/7.), where
7 is called the correlation time of the reorientation
process. In this approximation ©%;;;(w) in Eq. (25)
is real and, as shown by the direct calculation of
g%i;.:(0),

OMj.1(w) = (18CY/457) (3 cosPyiii—1)
X[re/ (14w 2], (28)

where (*=1, C'=3/2, C*=6, and v,,% is the angle
between the vectors 7;; and 7.

(26)
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TaBLE I. The values of Q functionals in the 4B system.»

r [7) Qup(r)  Qup(r)  Qua(r)  G¥(r) in FRLP
1 | @ar) 0 2 1 9

2 cos | afd )+sing | Ba ) g 2p 0 B+

3 cose | Bar ) —sing | aB) ¢ 2q 0 (3+p)¢

4 [88) 0 2 1 9

2 p=1-+4sin2¢p; g=1—sin2¢; tan2¢=J/8; G*(r) =T (r)/ a2V 45°(0)].

Equations (25) and (28) now determine uniquely all
the J¥;; ri{w) by means of the molecular geometry and
of only one additional parameter ..

In the approximation (27) Z™,i(w)=0 and the
expressions (16) and (21) are further simplified. In
particular, the dipolar relaxation terms for homonuclear
systems become (with Y, =7, 1) :

Tml(r)

a2

2

2 Y7 (M®) QM m(r),  (29)
M=0
which, together with the relations (25) and (28), are
already quite practical expressions.

In the following paragraphs, two extreme cases will
be distinguished. In the first case ®r-3>1, and con-
sequently, the values of JM;; 1i(®) and JY;; 11(2¢) will
be negligible in comparison with J*;;;;(0). Such a
situation is usually referred to as the slow-reorientation
limit (SRL). In the other case, called the fast-reorienta-
tion limit (FRL), ®r<K1 which leads to the equalities

I 0 (2®) =J¥ ;5 1 (®) =T M5 11(0) .

In order to give a qualitative description of the line-
widths in both of these limits, the explicit calculation
of the spectral densities is not necessary. Instead, the
J%; 12(0) may be used as parameters, taking into account
that Jlij,kl(O) Z%Joij,kl(()) and Jzij_kl(()) =6J0,'j'kl(0),
as follows from (28).

VII. ¢ FUNCTIONALS FOR THE SYSTEMS OF
SPIN { NUCLEI

The operators A;;, £, and x,; are defined giving their
influence on the fundamental product vectors | ¢):

If the nuclei ¢ and 7 are in the same spin states in | ¢),
then

Ay | 9)=0, Eiler=|d), xule)=|o¢)

If, on the other hand, the spin states of the nuclei 7 and 5
are opposite,

(30a)

Ei]' I ¢>= —I ¢>7 Xij [ ¢>=07 (30b)

where the vectors |¢) and | @) differ only by the
permutation of the spin states of the nuclei ¢ and j.

It is now easy to show that the Q functionals defined
previously can be expressed by means of these extremely

b FRL means fast-reorientation limit.

simple operators as follows:

Qi (r)=242(Aij)r;  Qi(r) = (Xij)rr;

Qi (r) =Qu* (r) = Q:(r) — (Ayj—&i)»’,  (3la)
Qo () =2(Axrtbe) s Qo (7) = (Akt)rr;
Quaen (r) =Q%a0 (1) = 2(Ais— i) w(Air— i)y (31b)
Q'aijny () =2(EaAjtEad it EphatEnhi) mr;
Q%ian (1) = 2(xasxrihirAji) r;
Qi (1) = 2{[(Aij— £ij) (Awr—E2) 1r
—(Aii— &) (A~ &) ). (31c)

SOME APPLICATIONS WITHIN THE
SINGLE-MOLECULE APPROXIMATION

VIIIL.

A. AB System

Defining the AB system by the chemical shift § and
the coupling constant J, its eigenstates and eigenvectors
may be written down and the corresponding relaxa-
tional parameters calculated. The results, summed in
Table I, provide the following qualitative picture.

In SRL the levels with spin 41 are considerably
narrower than the levels with spin 0. With increasing
influence of the T and D processes [ see expression {10) ]
at shorter correlation times the situation is reversed and
in FRL the spin 4-1 levels are much broader.

If the interaction is weak (J/8<<1), both levels with
spin 0 have the same widths, and consequently, all the
four lines of the AB quartet have the same linewidths.
At stronger interactions the widths of the levels 2 and
3 become different in such a way that the more in-
tensive central transitions of the AB quartet become
broader than the weaker ones. The ratio of the line-
widths of both types of transitions can assume distinct
values only for strongly interacting systems in the SRL.
In FRL this effect is not very pronounced.

B. 45 Group

Although this system is degenerate (the symmetric
state 2 and the antisymmetric state 3 have the same
energy), the values in Table I remain valid because the
dipolar interaction between the nuclei preserves the
symmetry of the group. As a result, the energy level
width of the antisymmetric state 3 will be zero in the
single-molecule approximation.
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TasLr II. The eigenfunctions and the values of Q functionals for the 4 BX system.s

Subsystem I 1I
State 1 2 3 4 5 6 7 8

| X) a 8

| AB) oo Vap+WBa VBa—Wap 88 aa VaB~+Wpe VBo—Wap BB

QPan 0 g ?q 0 Pg Dg 0
QUp 1 0 0 0 0 1
QLux 0 r4t s+ 1 1 54+1 T 0
Qux 2 2 2 2 2 2 2 2
ax 1 s r 0 0 7 3 1
%, 4m) 0 2(u—q) 2(u—p) 0 0 2(a—q) 2(u—p) Y
O'x,4B) 2 —2q —2p 2 2 -2 —2p 2
Q% up 0 1—g 1—p 0 0 1—g 1—p 0
Qa.ax) 0 -2 —2g 0 0 —2j —2p 0
Q4. 1) 2 2(r—s) 2(s—r) -2 —2 2(3—7) 2(F~8) 2
Qa3 0 0 0 0 0 0 0 0

2V =cos¢p, W =sing, p=1-+sin2¢, ¢=1—sin2¢, r =sin¢, s =cos?¢p, t =
sin?2¢p, u =cos22¢p; the barred quantities result from this formulas if ¢ is
substituted by ¢’. If the couples of quantities (r, s) and (¥, §) are simul-

C. ABX System

An ABX system can be specified by means of four
parameters J, §, b, and d defined by the relations

J=Jas,
b= (Jax—Jrx)/2,

(32)
(32)

é=v4—vp,
d= (Jax+Jx)/2.

It is also convenient to involve the angles ¢, ¢’ which
satisfy the conditions

tan2¢=J/(8+5b);

The eigenvectors, calculated by the method of effective
chemical shifts,? are given in Table IT together with the
accepted numbering of the eigenstates.

The X part of the spectrum involves two pairs of
transitions, each centered symmetrically with respect
to the center of the band. The first pair involves the
transitions 1—35 and 4—8, the splitting between them
being equal to 2| d |, while the second pair, composed
of the transitions 2—6 and 3—7, is characterized by the
splitting 2 | #{cos2¢— cos2¢’) |.

In the A B part of the spectrum there are two quartets
corresponding to the effective chemical shifts & =§+5,
8;=0-b and the common coupling constant J. The
frequency difference between the centers of these quar-
tetsis | 4 |. The quartet with the greater absolute value
of the effective chemical shift is located at higher field
if the sign of (8bd) is positive; this is the only informa-
tion about the signs of the parameters (32) which can
be obtained from the resonance frequency values. As
indicated in Table II, the energy level diagram may be

tan2¢’=J/(6—b). (33)

taneously permuted, the QMpx and QMB,(AX) values result instead of the
0¥ 4x and OM 4, (px), respectively.

decomposed into two subsystems with respect to the
state of the nucleus X.

The values of the Q functionals for the individual
energy levels are explicitly given in Table I1. On the
basis of these many qualitative features of the system
can be discussed.

(a) If the AB relaxation is dominant, the line-
widths of the A B-part transitions are the same as they
would be in two independent A B quartets with chemical
shifts 81, . and coupling constant J. Consequently, this
part of the spectrum is not very interesting. The situa-
tion in the X part of the spectrum is quite different. In
the first pair of transitions, both components have
always the same width; they are infinitely sharp in SRL
but with decreasing values of 7, rapidly become the
broadest lines of the group. The components of the
second pair, broadened even in SRL by the influence of
the I processes, have at shorter correlation times dii-
ferent linewidths due to the T processes. If | 5] is
known, the order of the lines in the field determines the
sign of (36J).

(b) If, on the other hand, the AX relaxation is
dominant, then all the energy levels are equally broad-
ened by the influence of T processes, and the differences
between them arise only from the F and D processes.
In the X part both lines of the first pair are of identical
width while the transitions of the second pair may differ.
This difference may become particularly distinct only
if ¢ and ¢’ are considerably different; this will occur in
the region | b |~ | § |. The most interesting effects can
now be expected in the 4B part. In general, all the lines
of both AB quartets have different linewidths. The

Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



4824

STANISLAV SYKORA

TasLE III. The eigenvectors and the values of Q functionals for the 43 group.®

Symmetry r |7) Energy o0 ot (0 G3in FRL
A 1 aaa 3543 0 3 3 45
2 (eaB+ofatPBac) /312 s+3i 6 9 1 51
3 (aBB+Baf+-BBa) /31 —s+3¢ 6 9 1 51
4 868 —3s+3i 0 3 3 45
E 5 (aaf—afo—Paca) /6V2 s—57 1 1 1 17
6 (aBa—Boc) /212 s—5i 3 3 1 27
7 (2088 —BaB —BBa) /612 —s—5; 1 i 1 17
3 (BoB—BBa) /21 —s—5¢ 3 3 1 27
ds=3b; i=17; OM=0Mu@)+OMu()+0Mu(r); GI=2T4¢)/[a?¥1"(0)].

order of the lines in the field, determined according to
the increasing linewidth, reverses during the transition
from SRL to FRL. In the more common case of FRL
the D processes are the most important [see Eq. (29)7].
The order of the lines is then completely determined
by the J, 8, and b and may be used as additional infor-
mation about the signs of these parameters (although
this is not sufficient to remove the ambiguity com-
pletely).

(c) It can be deduced from the values in Table IT
that the simultaneous influence of the AB, AX (and/or
BX) relaxations will tend to smear out the above-
mentioned differences between the various linewidths,
Furthermore, the influence of the three-particle terms
has the same effect as soon as they become important.

D. 4,X System

The transition from the ABX to the A:X system
leads to degeneracies of the levels 2, 3 and 6, 7; in this
situation the validity of Eq. (1) becomes doubtful.

Providing the dominant relaxation mechanism arises
from the As-nuclei interaction, the perturbation element
preserves the symmetry of the system (compare with
the 4, system) and does not mix the levels with different
symmetries. Consequently, Eq. (1) can still be used,
and the values given in Table IT are valid. Inspecting
them, it follows that both of the A,-part lines are com-
posed of two completely equivalent transitions, while
in the X-part triplet there are two broad outer lines
and a central line which is composed of the infinitely
sharp antisymmetrical component overlapped by the
broader symmetrical component.

When the 4X interactions dominate, the situation is
considerably different. H’(#) is no longer symmetrical
and the problems connected with degeneracy can not
be avoided. But, as can easily be proved, the Qax(r)
values are the same for all vectors from the sub-
spaces generated by eigenvectors | 2), | 3) or | 6), | 7).
If the three-particle terms are negligible [e.g., if
3 cos?(4XA)1], then the widths of the degenerate
energy levels will be the same and equal to the values
given in Table II regardless of how the interactions

redistribute the bases of both subspaces. From this it
follows that in such a case all the X-triplet transitions
are of almost the same linewidth (both coinciding cen-
tral lines being slightly broader than the side lines as a
consequence of F processes). But each of the A. transi-
tions will now be composed of two lines with different
linewidths.

Ti the three-particle terms become important or if the
AA and AX two-particle terms become comparable,
the degeneracy can not be avoided and the theory
based on Eq. (1) is not applicable.

E. 4; Group

Because of the symmetry of this system, the form of
its eigenvectors does not depend on the coupling con-
stant. The eigenvectors, their symmetry, and the corre-
sponding energies are given in Table III.

There are two pairs of degenerate states, numbered
5, 6 and 7, 8, respectively. Instead of the eigenvectors
|'5) and | 6) given in Table IIT it is possible to choose,
without any change of the results, any other orthonor-
malized pair of vectors which generates the same mani-
fold as | 5) and | 6); the same applies to the vectors
| 7) and | 8).

This was true if relaxations did not take place. In the
presence of relaxations the symmetry of the system is
perturbed by the terms (9). As long as the coupling
constant J is much greater than the linewidth, the
relaxation interaction between the different symmetry
states is negligible. But there still remain the inter-
actions between the degenerate states, which cannot be
neglected @ priori. The bases of the subspaces Mss and
M (i.e., the manifolds generated by the eigenvectors
| 5), | 6) and | 7), | 8), respectively) will no longer be
arbitrary and the solution of this problem could be quite
difficult. Fortunately, in this case such bases can be
found which remain the eigenbases of the random per-
turbation H’(f) independently of time. As is easily
proved, the interaction terms (5|H’(f) |6) and
(7| H'(¢) | 8) for H' given by (9) are identically zero.
Thus, the vectors | 5}, | 6) and | 7}, | 8) given in Table
III are already those stable vector which are invariant
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under the perturbation and, consequently, allow the
perturbation theory to be used.

The angle between any two sides of the 4; triangle
equals 60° and, following Eqs. (25) and (28), the
coefficients of the three-particle terms will be almost
one order of magnitude smaller than the two-particle
coefficients. For a qualitative description of the results
these three-particle terms can thus be neglected.

The resulting values of the Q functionals are given
in Table III. It appears that the As-group resonance
line consists of four transitions with different linewidths.
Although the quantitative relations between the line-
widths change on passing from the SRL to the FRL,
the qualitative picture remains unchanged. The narrow-
est component is the E(—3%, 41) transition 5—7,
followed by the E’(—3%, -+3%) transition 6—8. The
relative intensity of each of these transitions is 7.
Within the generally broader A-symmetry transitions
there are two distinct components: the narrower which
has a relative intensity 3 is formed by the transitions
A(—%, —3) and A(3, &) (i.e.,, 34 and 12, respec-
tively), the broader with a relative intensity of % corre-
sponds to the A(—3, +3) transition 2—3. The ratio
of the linewidths of the narrowest and the broadest
components ranges from 6 in SRL to 3 in FRL.

F. 45X System with Relaxations in the 4; Group Only

Like in the cases of the ABX and A4,X systems, a
weak interaction of the 4; group with a nucleus X (but
still sufficient to produce a clearly resolved X quartet)
allows the possibility of measuring the 4s-group energy
level widths directly as the linewidths of the X transi-
tions,

While each of the sideband components of the X
quartet is composed of only one transition (transitions
corresponding to the Aj-group energy levels 1 and 4,
respectively), the central components are each com-
posed of three transitions with different linewidths,
which correspond to the 4s-group levels 2, 5, 6 in one
case and 3, 7, 8 in the other case. Quantitative values
of the linewidths follow straightforwardly from the
parameters given in Table IIT.

IX. CONCLUSIONS

The proposed theory leaves a broad field open to
further investigations. Intramolecular interactions other
than the dipolar ones may be studied without any
change in the basic scheme. There are good reasons for
hoping that the intermolecular interactions could also
be involved without drastic changes to the structure of
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the theory. The difficulties arising from the degenerate
systems can sometimes be avoided as was shown above
in several examples. This does not solve the problem of
the degenerate and roughly degenerate systems in
general, of course, and new theoretical ways must be
found to deal with these cases.

This study, at least for the case of dipolar intra-
molecular relaxation, leads to two basic conclusions:

(a) The different spectral lines of the coupled nuclear
systems should have different natural linewidths; this
difference can remain even if the transitions coincide in
frequency as long as some other of their parameters
(symmetry type, spin values, etc.) are different.

(b) The differences in the linewidths, as well as their
absolute values, depend not only on the type of the
nuclei involved and on the molecular reorientation
processes but also on the geometry of the molecule and
on the coupling constant and chemical shifts character-
izing the nuclear system.

APPENDIX

The measurement of the natural linewidths is, at the
present state of development, highly complicated by
such factors as the field inhomogenity, the insufficiently
slow sweep, the saturation effects, the over-all time
constant of the low-frequency part of the signal path
(recorder system), the nonlinearity of the high-fre-
quency path of the signal, and, occasionally, some other
effects (e.g., the instability of the axis of the rotating
sample tube).

Because of all these difficulties, new experimental
techniques are being developed from which the transi-
tion probabilities W,; can be more directly obtained.
High selectivity is the basic condition for the applica-
tion of these methods to the studies of the behavior of
individual lines. The most important of these methods
are the progressive saturation technique,* the satura-
tion-recovery technique,® and the selective pulse-
recovery technique.t”’

* Supported by the “Consiglio Nazionale delle Ricerche.”

L A. Abragam, The Principles of Nuclear Magnetism (Clarendon
Press, Oxford, England, 1961).

2P. Diehl, R. G. Jones, and H., J. Bernstein, Can. J. Chem. 43,
81 (1965).

8 E. G. Finer and R. K. Harris, Chem. Commun. 1969, 42.

¢R. Freeman and B. Gestblom, J. Chem. Phys. 48, 5008 (1968).

§ J. H. Noggle, J. Chem. Phys. 43, 3304 (1965).
(169?9.) Freeman and S. Wittekoek, J. Magn. Resonance 1, 238

71 am grateful to Dr. R. Freeman for sending me a preprint
concerning recent encouraging studies of some AB systems by
this technique.

Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



