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Abstract

By means of perturbation theory, expressions for transition frequencies and intensities have been
derived for many-spin systems which can be decomposed into several weakly interacting
subsystems. The way in which these expressions have to be modified in cases where the basic
system is symmetrical has also been shown.
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By means of perturbation theory, expressions for transition frequencies and intensities have been
derived for many-spin systems which can be decomposed into several weakly interacting sub-
systems. The way in which these expressions have to be modified in cases where the basic system
is symmetrical has also been shown.

NMR spectra of complicated spin systems are usually analysed by direct calculation of the spec-
trum from trial parameters (chemical shifts and coupling constants) with subsequent refinement
by an iteration procedure. The size of the computational work necessary for the direct spectrum
calculation itself increases very rapidly with the number of the nuclei considered, and the possi-
bilities of present computational techniques do not practically reach beyond the general nine
spin system. Systematic studies of possible approximate procedures are therefore of considerable
importance for the analysis of many-spin systems.

All the present approximate methods are either based on, or can be derived from the perturba-
tion theory. This is, first of all, the well known “first-order analysis”, in which all spin-spin inter-
actions are considered as a perturbation, with subsequent application of the first order perturba-
tion theoryl. This method is satisfactory only in those cases where all the coupling constants
are small compared with the corresponding chemical shifts. This limitation is partly removed
by the “effective frequency” method introduced by Pople and Schaefer? and later generalized
by Diehl and coworkers® (so called *“‘subspectral analysis”"); this can in principle be applied to
any system in which the coupling of several nuclei (or groups of equivalent nuclei) with the re-
maining (inner) part of the system is weak. If this coupling is considered as a perturbation, it can
be shown that the spectrum of the inner part of the system behaves approximately as the sum
of subspectra each of which corresponds to a certain spin state of the weakly coupled nuclei.
All the subspectra can be calculated from the Hamiltonian of the inner part of the system in which
the parameters (chemical shifts) have been modified following very simple rules. The number
of cases to which subspectral analysis can be applied is strongly limited by the requirement that
the inner part of the system should weakly interact only with individual, mutually noninteracting
nuclei or groups of equivalent nuclei.

Collection Czechoslov. Chem, Commun, [Vol, 33/ (1968)



3074 Sykora :

In this paper, a different approach to the application of perturbation theory in the
analysis of many-spin systems is used. In many cases the whole system can be divided
into two or more mutually weakly coupled subsystems G, (Fig. 1). We expect intuit-
ively that in these cases the spectrum will consist of a superposition of the spectra
of the individual subsystems. The spectrum of each subsystem in turn is expected to
consist of a series of subspectra corresponding to different spin states of the remaining
subsystems. Individual subspectra can be determined so that the dependence of the
frequency and intensity of each resonance transition on the spin state of the remaining
subsystems is determined. '

—_— Fic. 1

Schematic Decomposition of a System into Subsystems
Couplings between subsystems are indicated by dashed lines.

Perturbation Treatment

The Hamiltonian of the above system can be written in the form
N .
H=H,+ H, Hg=)H, (1
e=1

H = HZJs:i,.i“ seGy, teG,, G, + G,,

5,

where N is the number of subsystems, H, is the Hamiltonian of the isolated sub-
system G, and H’is the perturbation part involving only interactions between different
subsystems. _

Let the number of nuclei in subsystem G, be n,. If the eigenvalues &,(k) of the
Hamiltonian H, are arranged in a diagonal matrix &, (of order 2") and the corre-
sponding eigenfunctions ¢ (k) in a vector @,, we can write

Hu@u = £3QPy - (‘?)
The energies &,(k) and functions ¢,(k) can be obtained for each subsystem by con-
ventional methods and in the following they will be cosidered as known.

The eigenfunctions ‘of the unperturbed Hamiltonian H, are represented by the 2°
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(n is the total number of nuclei) functions of type

N
di(Ir.i = 1_.{ (Pa(ka) s kn =1,2,...,2%. (3)
a=1

The corresponding eigenvalues of H, are given by the additive relation

N

E 0j =g21 Ect(ku) ‘ (4)

£

The functions @,; can be again arranged in a vector ¢, and schematically be written as
N -
$o =M ¢,, Hodo = Eody, (5}
a=1

with the symbol ﬁ designating the cartesian product and E, the diagonal matrix
of the energies E,;.

The matrices H' and € can now be formed according to the relations
H’ = (ol H'G5) (6)

TN fork =m.

(7)

According to the Rayleigh-Schrédinger perturbation theory, the diagonal matrix E
of the eigenvalues of the Hamiltonian H and the corresponding vector of eigen-
functions i can be expanded '

E=E, +E +E, +... (8)
T=Fo+ & +... ©)
with the first order corrections with respect to H’ being
(E,);; = Hi:6;; (diagonal part of matrix H'), (10)
$, = Co, (11)

and the second order corrections

(EZ),-]- = (-I-I"’E)“éij (diagonal part of matrix H’ ). (12)
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From relations (6)—(I1) it can be seen that the first order corrections are linear
and the second order corrections quadratic with respect to the coupling constants J,
between nuclei of different subsystems.

In the application of the preceding relations we have to consider the symmetry
of the basic system G, arising from the complete system by removal of the couplings
between the individual subsystems G,.

A. Unsymmetrical Basic System

In this case no new degenerations are formed by the connection of the Hamiltonians
H,. If the interactions between subsystems are sufficiently weak, then

Cn <1 (13)

and only first order corrections may be considered.
For the elements of the matrix H’, the relation

H,=—-YJ,.e{km), seG,, teG,, G,  G,, (14)
3,1

is obtained from equation (6) by a simple rearrangement, with the coefficients
¢,.(k, m) given only by the eigenfunctions of the Hamiltonians H,, H.:

eg. ks m) = Vg.u(k, m) . {@o(Kk)@.(K) | 1. i@,{m)qa,{m)} (15)

ok, m) = /l if @,(k) = @, (m)foralla # 0,7
o "0 in all other cases.

Let us now consider how the transitions of a given subsystem G, are affected by the
perturbation. A transition from state ¥, to state ¥, (abbreviated as k — /) can be
classified as a transition inside subsystem G,, if

0u(k) + 0a(l) ,
0 (k) = @, (1) = @k, 1) forall @ + o . - (16)

According to (10), (14) and (15), for such a transition the frequency change given
by mutual interactions of subsystems, is equal to

A'*'u(ks I) = _—il - ﬁ;k =
Y Jo - @K1 [ 1o0 (KDY {{0o(K) | la@a(K)> — {@o(]) | Lz0a(1)>}
seG,, teG,, Tt 0. (17)
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This relation can be expressed as rule I:

Each interaction between the nuclei s € G, and f € G, affects the frequency of the
transition k — [ in the subsystem G, by a value which in the first approximation is
equal to the product of the coupling constant J,,, the density of the operator 1,
on nucleus ¢ and the change of the density of operator I, on nucleus s resulting from
the transition k — 1.

If the structure and eigenfunctions of all subsystems are known, the frequency
of any transition in subsystem G, can be calculated by means of relation (17) for any
spin state of the other subsystems. But even in those cases where the structure of some
subsystems is not known, or is too complicated for an explicit solution, useful
informations about the sensitivity limits of various transitions in G, to the state
of the other subsystems can be obtained. From relation (17)

v (kD < 4. 3 Wal - K@o(l) la@o(k)) = <@oll) bl )] - (18)

The so determined upper limit for 4v,(kl) is given only by the properties of the isolat-
ed subsystem G,. This can be used e.g. for the estimation of the maximum error
caused by substituting a smaller fragment for a large system in the analysis of the
transitions on a certain nucleus or gréup of nuclei.

Relation (17) can be supplemented by an analogous relation for the change of
transition intensities. The intensity Py, of the transition k — [ is given by

Py = [0 I Ly DI2. (19)

Using equations (9) and (I11), and taking into account only first order members with
respect to H’, we obtain

APy, = Py, — Pyyy = 2py - Z(Ckmpm} - mecml)a (20)
where pun = (Pom | LPon> @ Poxi = |pul? is the intensity of transition k — I in
unperturbed state. The quantities p,,, can be represented as elements of a matrix E
and equation (20) transformed into the interesting form

APy, = 2Pk;[€s E:Iki . (ZI)

If Py, = 0, then also py, = 0 and according to (19) also Py, = 0. From this, rule II
can be derived: '

Selection rules operating in the isolated subsystem G, remain valid (to first order
with respect to J,,) also after the consideration of the interactions with other sub-
systems.
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B. Symmetrical Basic System

Let us assume that the decomposition of the system into subsystems is symmetrical,
i.e. that the symmetry group of the whole system is an invariant subgroup of the
symmetry group .7 of the basic system G,. In the opposite case there arise approxi-
mate degenerations of the Hamiltonian H, and the conditions (13) can be severely
violated for some C,,,.

Two possibilities can now arise:

a) Any of the subsystems G, is invariant with respect to all the elements of group
. In this case new degenerations do not arise from the connection of the Hamilto-
nians H,, so that the results of the previous paragraph for unsymmetrical systems
can be directly applied.

b) Some of the subsystems G, are transformed by some elements R of group
into different subsystems. Then by the operation of element R on the eigenfunction
@y, of Hamiltonian H, a different eigenfunction @,

Dy, = R(Dyy) (22)

is in general obtained. The functions @,, and ¥, correspond to equal energy, so
that the Hamiltonian H, is degenerate and th corresponding coefficient C,, is not
defined. In this case it is therefore necessary to symmetrize the system of basic func-
tions 9,, according to the irreducible representations of group & and to apply the
relations (6)—(11) after the symmetrization.

As the simplest example let us consider a system composed of two subsystems,
mutually symmetric with respect to the plane o with a single interaction J,. between
the nuclei s and s'. For a given arrangement of the eigenfunctions ¢, (k = 1, 2, ...,
2") of the isolated subsystem G,, the arrangement of the eigenfunctions of sub-
system Gy is determined by symmetry:

QPpy = J((sz) . (23)

In this case we can designate the functions @, by means of a pair of indices k, I so
that

Do, = OxPs1s Pork = 0(Pox,) - (34)
The symmetrized basis consists of a symmetrical and antisymmetrical set:

/‘pg{kk) = d}[}kfk

Symmetrical set — ¢
N@g (kD) = (ot + Pork)/(2)'?

Antisymmetrical set @ (kl) = (Poy.; — Do, .)/(2)"? (25)
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A conventional evaluation of the matrix elements H’ in the basis (25) leads to the
relation

(@5 (mn) | Hog(mn)) = — T {(1)mm - (h)an = H(b)mal®} » (26)

where 4;; = {¢; | Ag;> for any operator A.

Let us designate the matrix element p,,, = (I,)n, as the amplitude of the transition
m — n (see also equation (20)). Therefore the quantity (I,,)n, in equation (26) is to
be understood as the contribution of nucleus s to the amplitude of the transition
m — n,

The transition k — m in the isolated subsystem G, corresponds to the transitions
®5(kl) - &5 (ml) (I =1,2,...,2"™). The frequency change of such a transition
caused by interaction between the systems is according to (26) equal to

Av(km) =
== Joo (1) — (i) - L)y £ H(L)mtl? = 10 )al®} - (27)

The upper sign in this equation corresponds to symmetrical and the lower to anti-
symmetrical transitions. In cases where both systems are coupled through more
pairs of nuclei s, s’, a summation over all these pairs has to be introduced into
relation (27). _

Without loss of generality we can further assume that (1), — (1) = 1. We
can then obtain rule III from relation (27).

A coupling J,, between two equal subsystems G,, G, leads to a splitting of the
transition kK — m of subsystem G, into a symmetrical and antisymmetrical component.
The center of transition shifts as a function of the spin state [ of the subsystem Gy
similarly as in unsymmetrical case (rule I'). The magnitude of the splitting between
the symmetrical and antisymmetrical line is equal to:

a) 0 fOl' (lz)ll - (Iz)mm = 1 or (Iz)kk - (lz)ll > 1 *
b) Jss - 1(st)k1|2 for (Iz)l:k - (lz)ll = lor (Iz)tl = (Iz)mm’

c) = Jy- . 1(]sx)mllz for (Iz)ﬂ - (lz)mm =lor (Iz)n = (Iz)kk‘

CONCLUSION

The method described makes it possible to express explicitly the effect of weak
coupling between several spin subsystems upon transitions inside these subsystems
(rules I and IT). The modifications necessary in cases where the basic system is sym-
metrical have also been indicated. As an example, transition frequencies have been
derived for a system composed of two mutually coupled equal subsystems (rule III).

Collection Czechoslov. Chem. Commun. [Vol. 33/ (1968)



3080 Sykora

If neither of the subsystems contains more than two spin '/, nuclei, the above
theory leads to explicit expressions for transition frequencies and intensities. More
important, however, is the fact that a) this method makes possible analysis in cases
where the whole system is too extensive for direct treatment, and b) it yields an upper
limit of error in analysis by means of fragments.

In the preceding text only spin 1/2 nuclei have been considered. However, the
relations derived remain valid (but for a trivial modification of the inequality (18))
also for systems with. higher spin values (only the numbers of basic functions have
to be changed).
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