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Abstract:

In the case of very large frequency of periodic motion, the spectrum of a molecule is identical with
the spectrum of a fixed system described by the average Hamiltonian; theoretical proof of this well-
known fact is presented and the necessary conditions are defined.
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In the case of very large frequency of periodic motion, the spectrum of a
molecule is identical with the spectrum of a fixed system described by the
average Hamiltonian; theoretical proof of this well-known fact is presented
and the conditions necessary are defined.

The theory of N.M.R. spectra of molecules (systems) with exchanging nuclei
has been studied by Gutowsky and Holm [1] and later, in a much more general
form, by Alexander [2], who presented a complete solution of the shape of the
spectrum (including relaxation effects) for the special case where the exchange can
be described by the operator P (P2=1), transforming the Hamiltonian H, into H-
by a discontinuous process with a certain probability within unit time. This
includes especially all cases of exchange of equivalent nuclei. In the limit of very
rapid exchange there results a line spectrum given by the average Hamiltonian,
Y(Hy+ Hb).

Extensive experimental material [3] not only supports this result, but indicates
that in the limiting case of rapid internal motion a line spectrum described by an
effective Hamiltonian H,.yy is also obtained for molecules the motion of which
cannot be described by the operator P, or in cases where a continuous motion has
to be considered (see [4], pp. 381-384). The Hamiltonian Hey¢ is usually assumed
to be equal to the average Hamiltonian of the system; theoretically this case has
not been treated so far. 'The present communication is concerned with the theory
of N.M.R. spectra of molecules undergoing periodic internal motion, the period
of the motion being much smaller than the spin-spin relaxation time 7.

Under this condition, spin-spin relaxation may be neglected and the
Hamiltonian can be written in the form:

H=—(Seilt) Lt ksz”{:)Ij L, (1)

where the chemical shifts w;(¢) and coupling constants J;;(¢) are periodic functions
of time, and their frequency v fulfils the condition:

1/v< Ts. (2)
The Hamiltonian H can be expanded into a Fourier series:

T
H=H,+ H,, Hn=(1,I'T}f H . dt, ]
0

Hy= H; cos vt+ Hs sin vi + Hg cos 2vit + Hy sin 2vt +
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The spin eigenfunctions must obey the Schrédinger equation:

Hp=i ¢ )

ot

A system with a time dependent Hamiltonian is not conservative and leads to
a continuous spectrum. However, as stated above, systems with sufficiently high
frequencies of internal motion yield line spectra, as in the strictly conservative case
of fixed structures (i.e. the linewidth is given by spin-spin relaxation).

Conservative systems fulfil two conditions:

(a) Their eigenfunctions may be written in the form ¢=f (). ¢(s). With
the spin coordinates s and time coordinate ¢ separated, the discrete orthonormal
set of functions ¢(s) defines the set of discrete, mutually non-interacting, states of
the system with a constant total spin and a constant = component of total spin.

(b) The energy of the system {(¢|H¢) is independent of time.

Systems obeying only the first condition will in the following be designated as
pseudo-conservative; let us now define the properties of a Hamiltonian necessary
for fulfilling this condition.

Let us assume that:

¢=11) . ¢(s)- (5)

From equations (4) and (3):
_ _j[Hop, < (sinmt Honag 1-cosmt Hug)l|
f(f)——fo-ﬁxp[ l P t+:-'1-§1( o P N nv - ¥ )j] ©)

For f(#) to be independent of the spin coordinates, the following relations must
be valid:
Hk[pZ €rp, €p=const., =0,1,2,3.... (7}

The functions ¢ must therefore be simultaneously eigenfunctions of all operators
Hp, and this generally means that any pair of these operators must commute, i.e.

[H‘ia Hj]=0) 1.)_.?.=05 1:- 2: 3! S (8}
Energy will then be expressed as:
E=FEy+ €1 cos vi+ €o sin v+ ez cos 2vi+ egsin 2vi+ ... . (9)

In order to determine the real shape of the spectrum of a pseudo-conservative
system, transition probabilities have to be determined in the presence of a per-
turbation of the form:

hy=hy cos wt, hy= —h sin wt. (10)

After a conventional transformation of the preceding relations into rotating
coordinates we obtain:

d(t)=exp (il;wt) ¢,(1),
Hy=Hy+ H+ B, ,BIZijl1fg~j, (1])

where y;=gyromagnetic ratio. Equation (4) now yields (in operator form):

ér(t)=exp [i(y + B1)],

t
y=HQf+Jthf+wZIziv [12)
0 i
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The probability of a transition from statef m into state m’ is then given by the
relation:

Pmm’(f) = |<l}5‘mF

b 2= <o |exp (iLzcot) . exp [ily -+ BO)lpm)
= fexp [ty + Bl

The functions ¢, are eigenfunctions of y, so that:

fexp [ity + B mm = exp (iym)omom + P mI= P (ym) g
Y —Ym
+ terms of higher order in B
Consequently

» 1—cos —
PrmAt) =2 B2 . £2 . "“(';';;m.'(z?;m); m)

and on account of relation (12) and the selection rule By, =0 for m'#m+1:

-

5 1—cos [(w—wo)t+#v]

Ponm(t)=2|Brin-  (w—wo+#y vt)?

w0=Eﬂm_Eﬂm', ? (13)
21 ' . '
Hy= z B {(Ezﬂ_.lm — Eg.n_lm) sin nvt+ (€2, — eznm) . (1 — €08 nvt)}_
n=1M

A

Spin-spin relaxation will be manifested, in the simplest case, by an additional
member in the denominator of relation (13), equal to (1/7%)? (see [4], p. 37).
If the perturbation is present for a sufficiently long time (slow passage condi-
tions), the member #//vt in the denominator can be neglected in comparison with
(1/T3)? regardless of the value of the frequency w. 'The signal sweep time Texp
must of course fulfil the condition:

Tl,m>T72 . maxg|#y|. (14)

As long as this condition is fulfilled, resonance frequencies and half-band widths
will be identical with the corresponding values of the system with the Hamiltonian
Hy. As the average value of the expression cos [(w — wo)t+#/v] is equal to zero
for almost all w (i.e. but for an enumerable set of points), as for cos (w— wo)f,
relation (14) leads simultaneously to equal transition intensities for the
Hamiltonians H and Hy. Violation of relation (14) will lead to a change of the
halfband width and intensity of transitions, whereas the frequencies will remain
unchanged as long as condition (2) remains valid.

f(t) will be independent of the spin coordinates (see equation (6)) even in
systems which are not pseudo-conservative in cases where the frequency v increases
above all limits and where the functions ¢ are eigenfunctions of Hy. The
pseudo-conservative system may therefore be regarded as a good approximation of
a general system for large frequencies v. In the preceding relations the values
€™ must be substituted by the expectation values {@u|Hrpm>. This approxima-

T The state of the system is described by the value of the = component of the total
spin.
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tion 1s valid, according to expression (6), when:
o1 .
v>maxs| > ” {{p|Han 1) sin nvt + {p| Hapg>(1 — cos nvt)}|. (15)
n=1

The spectrum of a general molecule with periodic motion will therefore be reduced
to the spectrum of a fixed system with an average Hamiltonian Hy, when the
following conditions are fulfilled:

(1) The period of internal motion is much smaller than the spin-spin relaxation
time (condition 2).
(2) The signal sweep time is large enough to fulfil condition (14).

(3) In systems which are not pseudo-conservative, the frequency of internal
motion of the molecule must be large enough to fulfil the inequality (15). When
this condition is not fulfilled, the eigenfunctions of the system cannot be approxi-
mated by relation (5).

Example

In order to illustrate the requirements imposed upon the frequency of internal
motion by the various conditions stated above, a simple AB system with the
following parameters (rotating ~CH32R group) will be analysed:

wA=woa+q . cos vi, 8=wps —wop=20 c.p.s.,
wp=wop+q . cos (vi+2m/3), g=20c.p.s.,
Jap=15 c.p.s.=const., To=4 sec.

Let the signal sweep time be 0-5sec (for a half-band width of 0-5c.p.s.), i.e.
practically the upper limit of Texp. According to condition (2) we obtain
v>0-25 c.p.s.  For the Hamiltonian of this system:

Hy= —(woal:a+ wolzn+J apla . Ip),
Hy=q(1,8/2—1,4),

H2=-‘ —%3 t}sz.

Hy and Hs do not commute with Hj, so that the system is not pseudo-conservative
and the conditions (14) and (15) have to be fulfilled.

Number
of Eigenfunctions ¢ vE
state
1 e 18-7
2 & (@B + 1Ba) 207
3 % (1aB—Ba) 207
4 BB 187

Table 1. Eigenfunctions and the corresponding values of the right-hand side
of inequality (15) in c.p.s.
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The eigenfunctions of Hamiltonian Hy and the corresponding values of the
right side of the inequality (15) are given in table 1; from the table it can be seen
that the system will be approximated by eigenfunctions of the form (5), as long as
v>» 20 c.p.s. The requirements of condition (15) are therefore about two orders

Frequency in c.p.s.
Transition relative to band Relative max; ||
centre intensity
1-2 -5 16 33
ke —20 0-4 33
1-3 +20 0-4 19
24 +5 1-6 19

Table 2. Parameters of allowed transitions of the svstem investigated.

of magnitude more stringent than those of condition (2). In table 2, the transition
energies and intensities are given for the Hamiltonian Hjy, as well as the cor-
responding values of max;|#;|. As Ts/Teyp=38, condition (14) vields approxi-
mately v3> 250 c.p.s., and this requirement is again about one order of magnitude
more stringent compared with condition (15). A decrease of the frequency v will
therefore first be manifested by an increase of the half-band width (in the range
v~ 200-2000 c.p.s.) and only later by frequency changes.
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