
Stan’s Library, Volume V, Mathematics

 1

S. Sykora, On Neighbor Property Cycles, Stan’s Library V, DOI 10.3247/SL5Math14.002.

On Neighbor-Property Cycles
Stanislav Sykora, Extra Byte, www.ebyte.it

First published in May 2014

Cycles of various lengths composed of elements belonging to a set S can be used to define monocyclic
permutations (“round-table seatings”) of subsets of S. Those are interesting by themselves, but the whole
context becomes still more interesting when the elements possess specific properties or when pairs of
elements of S have a specific property (implying a partition of the product set SxS). In this case, for
example, one can construct cycles in which every pair of adjacent elements (neighbors) has, or has not, a
specific property. For cycle lengths greater than 2, this reduces to finding all distinct Hamiltonian cycles
(an NP-complete problem) in a simple graph in which the vertices correspond to the elements of the
cycle, and an edge between two vertices is present only if the pair possesses the property.

This essay uses many selected cases to illustrate some of the counting tasks and problems that arise in
these situations, using cycles of integer numbers. The pair-properties P(i, j) considered here are: i, j differ
by exactly one bit in their binary expansions (Gray property), or by some minimum amount, or by a
power of 2 or 3, or by a prime, or they are coprime, or their difference and/or sum are primes, etc.

This study is an extension of the earlier one [1] on canonical Gray cycles (CGC), since the CGCs are a
special case of NPC’s. In both studies, a rather brute-force algorithm was used to enumerate/list all the
NPC’s with any given property, while a more efficient algorithm is being developed. The included C++
code is easily adaptable to tackle all problems of this type but, alas, it has severe execution time limits for
large cycle lengths.

Keywords: math, sequence, integer, permutation, cycle, pair-property, NPC, Gray cycle, simple graph,
Hamiltonian cycle, algorithm, enumeration, counting

Introduction

In a previous study [1,2], of which the present one is a generalization, we have analyzed the canonical
Gray cycles (CGC) satisfying the following requirements:

1. An CGC of length n is a permutation {c0, c1, ..., cn-1} of the integers {0, 1, 2, ..., n-1}.
2. Binary expansions of any two neighbors of a CGC differ by exactly one bit (since the CGC is a cycle,

the rule must apply also to the pair composed of the last and the first element).
3. Each CGC starts with c0 = 0 and continues with an integer smaller than the last one (i.e. the

successor c1 of c0, is smaller than its cyclic precursor cm-1).

Rule (1) is a global condition that can be modified in various ways. For example, one can consider only
integers from some initial offset value  through +n-1, or restrict the cycle to only even (or only odd)
integers, or to finite sets of primes, or odd primes, etc. In this essay, we will consider only n-tuples of
consecutive integers starting at , where the most common values of the offset  will be 0 and 1.

Rule (2) is a particular instance of what in this essay will become a more generic pair-property P, to be
satisfied by every pair (ck, ck+1) for k = 0, 1, ..., n-1, with cn  c0. There are many pair-properties that can
replace the specific one that characterizes the CGC’s.

Finally, rule (3) simply ensures that cycles that differ from each other just by a rotation are not counted
as distinct cases. We will maintain this one without any modification.

In [1] we had found the counts of all CGC cycles of various lengths n and ascertained that, for example,
 there does not exist any CGC of length 1, because the pair (0,0) does not satisfy rule (2),
 there are no CGC’s of odd length,
 the first length n for which there is more than one CGC is n = 8, etc.

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL5Math14.002
http://www.ebyte.it/

Stan’s Library, Volume V, Mathematics

 2

S. Sykora, On Neighbor Property Cycles, Stan’s Library V, DOI 10.3247/SL5Math14.002.

Here we will analyze analogues of the CGC’s with different choices of pair-properties P, and see what
more we can learn. We will call these constructs Neighbor Property Cycles, or NPC’s. One can also think
about them as round table seating’s in which every person is assigned a distinct label sk and the pair-
property is a condition to be satisfied by the labels of persons sitting next to each other.

An NPC of length n on a subset S  {s0, s1, ..., sn-1} of distinct elements of a set S is a mono-cyclic permutation
C  {c0, c1, ..., cn-1} of s, such that every pair of neighbors in the cycle satisfies a given property P. To achieve
uniqueness, only “canonical” cycles will be admitted, which are those with c0  s0 and c1 < cn-1.

The above specifies what we will refer to as the NPC category NPC(S; P) and the number of NPC’s of length
n will be denoted1 as NPC(n; S; P).

The goals

The next Section contains a few generic notes on NPC’s. Beyond that, as anticipated, this essay focuses on
the enumeration of NPC’s based on sequences of integers of the type

 S,n  {, +1, +2, ..., +n-1},

with  being an offset and n a length.

One of the goals of this study is to provide support for the development of algorithms for finding and
enumerating Hamiltonian cycles [3, 4, 5] in simple graphs [6], which is a well-known and important NP-
complete algorithmic problem [7, 8]. In the cases studied here, the NPC’s were enumerated using a robust,
foolproof, but rather inefficient brute-force algorithm based on a slightly optimized backtracking
recursion. The presented examples can be useful in testing more sophisticated approaches to
Hamiltonian cycles enumeration. For sure, using the NPC’s is a very general, and very prolific, approach
to generating infinite families of equivalent non-trivial simple graphs.

General features of NPC’s

There are two somewhat special cases of NPC lengths:

For length n = 1, we have the degenerate cycle {s0, s0}, where s0 is a single element of S. Whether such a
primitive cycle is legitimate depends upon the definition of the currently scrutinized property for the pair
(s0, s0). In any case, the value of NPC(1) is always either 0 or 1.

For length n = 2 we have a pair of elements s0 and s1 and we need to investigate the scrutinized property
for the pairs (s0, s1) and (s1, s0). We will focus only on symmetric pair-properties P, such that if (s, s’)
satisfies P then so does (s’, s). Under this assumption, the value of NPC(2) is also always either 0 or 1.

For lengths n> 2, every NPC can be identified with a Hamiltonian cycle in a simple graph, hence called
the pair-property graph for the property P and the set S  {s0, s1, ..., sn-1}, defined as follows:

a. Every element of the set S  {s0, s1, ..., sn-1} is identified with a vertex, and
b. Two vertices sk and sk’ are connected by an edge iff the pair (sk, sk’) satisfies the property P.

The diagram on the next page shows a 6-vertex Gray-property graph drawn for the set S0,5, whose only
Hamiltonian cycle corresponds to the unique CGC of length 6, namely C = {0,2,3,1,5,4}.

The Hamiltonian cycle is shown in bold. Notice, however, the edge (0, 1) which, even though it satisfies
the Gray property, is superfluous (redundant) for the CGC “solution”.

1 When implicit in the context, the arguments S and P will be dropped. Likewise, since the cycle length n is implicitly
determined by the cardinality of S, either n or the definition of S will be generally simplified by dropping redundant
parts.

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL5Math14.002

Stan’s Library, Volume V, Mathematics

 3

S. Sykora, On Neighbor Property Cycles, Stan’s Library V, DOI 10.3247/SL5Math14.002.

In general, when an edge in a simple graph is not traversed by any of its
Hamiltonian cycles, we will say that it is HC redundant, or just redundant.
More generally, when, in a graph, all Hamiltonian cycles are enumerated and
found to be H, an edge e can be used in only in h(e)  H of them. The number
h(e) is a property of the particular edge, and can be called its Hamiltonian
cycles participation, or HC participation. In a given graph with n vertices, there
are edges with minimum HC participation (possibly 0), and those with a
maximum HC participation2.

The number of edges in any NPC cycle of length n equals n, while the total
number of edges compatible with the property P can be much higher. On the other hand, it is evident that
it may never be smaller than n. Hence:

 Lemma 1: Given n elements S  {s0, s1, ..., sn-1} of S, if the number of pairs (sk, sk’) which can be
formed from the elements of S and which satisfy the pair-property P is smaller than n, then there
is no corresponding NPC on S.

The representation of NPC’s as Hamiltonian cycles in simple graphs shows that

 Lemma 2: For n > 2, any pair-property P, and any subset S  {s0, s1, ..., sn-1}, NPC(n;s;P)  H(n),
where H(n) is the number of Hamiltonian cycles in a complete simple graph with n vertices.

Using present terminology, H(n) corresponds to void pair-property P0, i.e., one which is “satisfied” for any
pair of elements. Intended in this sense, H(n) extends to H(1) = H(2) = 1 and the numbers H(n) form an
integer sequence [9] whose starting elements are listed in Table I. For n ≥ 3, we have3

(1) H(n) = (n-1)!/2, and, for any edge e, h(e)  h(n) = (n-2)! = H(n)/(2n-2).

H(n) defines an upper bound on the numbers NPC(n; S; P), regardless of the choice of the pair-property
P and/or of the subset S.

A still another insight gained from the analogy with Hamiltonian cycles is the following:

 Lemma 3: Let P be a pair-property and S  {s0, s1, ..., sn-1} a sequence with n > 2 elements. If, for
some index K, P holds for fewer than two pairs (sK, si), iK, then NPC(n;S;P) = 0.

The reason is obvious: a simple graph containing a vertex with degree smaller than 2 does not admit any
Hamiltonian cycle.

Equally obvious is the fact that, in any simple graph, when one removes one or more edges, the number
of its Hamiltonian cycles cannot increase. In our context this means that if the property P is replaced by
a more restrictive property P’ (symbolically P’  P, but not vice versa) then NPC(n;S;P) cannot increase:

 Lemma 4: Let P and P’ be two properties of pairs of elements of S such that the validity of P’ implies
that of P, or P’  P. Then, for any n and any S  {s0, s1, ..., sn-1}, NPC(n;S;P’)  NPC(n;S;P).

There are many NPC features, other than NPC(n; S; P), which can be of interest once one defines the
property P and selects the elements of S. Here are a few suggestions, out of many possible:

2 Possibly equal to that in a complete graph with the same number of vertices.
3 The formula for H(m) is easily understood. Consider a complete graph G with m vertices and H(m) Hamiltonian
circuits. Add another vertex, with an edge to every of the vertices of G, to form a complete graph G’ with m+1
vertices. A Hamiltonian circuit in G’ can be formed from any of the H(m) Hamiltonian circuits in G by “opening” one
of its m edges are inserting therein the newly added vertex. Hence H(m+1) = m.H(m) which, together with the
obvious H(3)=1, gives the first equation in (1).
The formula for h(e) is easily obtained as follows: Each of the H(m) Hamiltonian circuits contains m edges. This
amounts to m.H(m) total edge traversals in all the circuits. Since a complete graph is fully symmetric, h(e) must be
the same for all of its m(m-1)/2 edges. Hence, each edge is traversed h(e) = m.H(m)/[m(m-1)/2] times which
evaluates to (m-2)!

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL5Math14.002

Stan’s Library, Volume V, Mathematics

 4

S. Sykora, On Neighbor Property Cycles, Stan’s Library V, DOI 10.3247/SL5Math14.002.

 The smallest n for which NPC(n; S; P) > 0 (existence of at least one NPC).
 The smallest n for which NPC(n; S; P) > 1 (existence of multiple NPC’s).
 Convergence of the ratios r(n) = NPC(n; S; P)/H(n), or R(n) = log(NPC(n; S; P))/log(H(n)).
 Existence of an n0 such that NPC(n; S; P) = 0 for any n ≥ n0 or, vice versa, any n < n0.
 Existence of edges with h(e) = h(n).
 Existence of redundant edges.

To specify both the NPC of a certain type and, for n > 2, the corresponding graph, we will use the same
script, NPC(n; S; P), adopted for their counts. In specifying the property P, we will often use simplified
descriptions like “Gray” or “coprimes” and, in some cases, employ generic symbols like  and  to denote
the difference and the sum, respectively, of any pair of neighboring elements.

Properties P depending only on the difference  between neighbors

Example 1: Neighbors differing by a power of 2: NPC(n; S;  = 2k , k≥0)

For the CGC’s every pair of neighbors had to differ by exactly one bit in their binary expansions (the Gray
property P’). There is a weaker property which includes the Gray’s, namely that the difference between
any two neighbors should be a power of 2 (property P). In fact, when the Gray condition is met (for
example, the pair 1 and 3), the difference is always a power of 2, but not the other way round (consider,
for example, the pair 3 and 5).

On the basis of Lemma 4 we therefore expect that, for any given cycle length n, the number of NPC’s on
the set S0,n for which the difference  between neighbors is a power of 2 exceeds the number of NPC’ in
which the neighbors satisfy the Gray condition. This is confirmed by the results of explicit enumerations
listed in columns 3 and 4 of Table I. It holds for any cycle with even length and there exist NPC’s with
property P also for odd cycle lengths, for which there are no CGC’s.

The illustration on the right shows the simple graph corresponding to the
current property P on a set of six vertices {0, 1, 2, 3, 4, 5}. The blue edges are
those matching only the Gray property P’, while all the edges, blue and red,
connect vertices differing by 1, 2, or 4. The graph admits eight Hamiltonian
cycles corresponding to eight possible NPC’s of length 6:

 C1 to C4: {0, 1, 2, 3, 5, 4}, {0, 1, 3, 5, 4, 2}, {0, 1, 5, 3, 2, 4}, {0, 1, 5, 3, 4, 2},
 C5 to C8: {0, 1, 5, 4, 3, 2}, {0, 2, 1, 3, 5, 4}, {0, 2, 1, 5, 3, 4}, {0, 2, 3, 1, 5, 4}.

Unlike in the CGC case discussed above, there is now no redundant edge, and
the edge HC-participations h(e) range from 3 (edges 1-2, 1-3, 2-3, 2-4, 3-4) to 6 (edges 0-2, 3-5).

Two notes are appropriate at this point:
a) The ratio r(n) appears to converge rapidly to zero for this pair-property, but R(n) appear to be

increasing and, being bounded from above by 1.0, it might converge to a constant.
b) When, like in this case, the property P depends only on differences between neighboring elements of

the cycle, shifting the element values by a constant offset does not affect the problem. Consequently
the values of all NPC(n; S; P) are independent of the offset .

Example 2: Neighbors differing by a power of 3: NPC(n; S;  = 3k , k≥0)

In comparison with the preceding case, requesting that all neighboring elements in an NPC differ
exclusively by one of the numbers {1, 3, 9, 27, ...} we considerably restrict the average number of edges
per vertex. Hence, even though there is no implication relationship between the two properties, we
intuitively expect a drop in the number of compatible NPC’s. This heuristic expectation is indeed
confirmed by explicit enumeration (see column 5 of Table I).

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL5Math14.002

Stan’s Library, Volume V, Mathematics

 5

S. Sykora, On Neighbor Property Cycles, Stan’s Library V, DOI 10.3247/SL5Math14.002.

Table I. Numbers of NPC’s on S,n for selected pair-properties P.
Notes: First row contains references to the Online Encyclopedia of Integer Sequences, with links. Second row: Cycle
length is indicated by n. H(n) are the counts for the void pair-property P0, given by Eq.1. CGC(n) indicates that
neighbor pairs have the Gray property and the set is S0,n. For columns with  in their header, the  refers to the
difference between neighboring pairs, and the set S0,n can be replaced by the more generic S,n, with any offset .

OEIS: A001710(n-1) A236602 A242519 A242520 A242521
n H(n): no condition Gray  = 2k, k≥0  = 3k, k≥0  = proper power
1 1 0 0 0 0
2 1 1 1 1 0
3 1 0 1 0 0
4 3 1 1 1 0
5 12 0 4 0 0
6 60 1 8 2 0
7 360 0 14 0 0
8 2520 6 32 3 0
9 20160 0 142 0 0

10 181440 4 426 27 0
11 1814400 0 1204 0 0
12 19958400 22 3747 165 0
13 239500800 0 9374 0 2
14 3113510400 96 26306 676 4
15 43589145600 0 77700 0 6
16 653837184000 1344 219877 3584 9
17 10461394944000 0 1169656 0 42
18 177843714048000 672 4736264 19108 231
19 3201186852864000 0 17360564 0 1052
20 60822550204416000 3448 69631372 80754 3818

It also turns out that there are no odd-length NPC’s with the property  = 3k, a fact which is easy to
understand: since all powers of 3 are odd numbers, the neighboring elements of the cycle may not be
both even, nor both odd. Consequently, there must be a strict alternation of odd and even elements and
therefore the total length of the cycle must be even.

These are some instances of NPC’s satisfying the current pair-property:

 1 cycle of length 4: C1 = {0, 1, 2, 3},
 2 cycles of length 6: C1 = {0, 1, 2, 5, 4, 3}, C2 = {0, 1, 4, 5, 2, 3},
 3 cycles of length 8: C1 = {0, 1, 2, 5, 4, 7, 6, 3}, C2 = {0, 1, 2, 5, 6, 7, 4, 3}, C3 = {0, 1, 4, 7, 6, 5, 2, 3}
 etc.

The simplest cycle of length 10 is C1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} which, incidentally, indicates a generic
solution applicable to any cycle length of the form n = 3^k+1. However, there are 26 other solutions4 for
n=10, such as C27 = {0, 3, 6, 7, 4, 1, 2, 5, 8, 9}. The counts of even-length cycles increase quite rapidly, even
though not as fast as in the case of  = 2k.

One could proceed and investigate the sequences of NPC’s in which  = b^k, k ≥ 0, for b values of 4, 5, 6,
etc. All such NPC’s form non-trivial sequences. For odd b, they must have even lengths but otherwise,
apart from that, it is not easy to derive additional rules.

4 You can use the provided utility to list them all.

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL5Math14.002
http://oeis.org/
http://oeis.org/A001710
http://oeis.org/A236602
http://oeis.org/A242519
http://oeis.org/A242520
http://oeis.org/A242521

Stan’s Library, Volume V, Mathematics

 6

S. Sykora, On Neighbor Property Cycles, Stan’s Library V, DOI 10.3247/SL5Math14.002.

For curiosity, these are the only two NPC’s of length 23 for base b = 10:

 NPC(23; S0;  = 10k, k≥0): {0, 1, 2, 3, 13, 14, 4, 5, 15, 16, 6, 7, 17, 18, 8, 9, 19, 20, 21, 22, 12, 11, 10},
 {0, 1, 11, 21, 22, 12, 2, 3, 13, 14, 4, 5, 15, 16, 6, 7, 17, 18, 8, 9, 19, 20, 10}.

Example 3: Neighbors differing by a proper power: NPC(n; S,n;  = bk , b > 1, k > 1)

The reader might object that, since a property of the type  = b^k, with a k ≥ 0, and a given base b,
includes the “small” numbers 1 and b, it is relatively easy to construct NPC’s which satisfy it. This is no
doubt true. In fact, when the property is changed to  = b^k, k > 1, i.e., to proper powers of a given base
b, no NPC solutions seem to exist5 for any cycle length and any b > 1.

An interesting case, however, is represented by the condition  = b^k, with some b > 1 and some k > 1.
In other words, we will admit values of  matching any element of the set {4, 8, 9, 16, 25, 27, 32, ...},
coincident with OEIS A001597 (perfect powers), but excluding 1. The NPC counts for this property are
shown in the last column of Table I. It turns out that, somewhat surprisingly, there are growing numbers
of such solutions for all cycle lengths starting from 13 up.

For n = 13, the smallest compatible cycle length, there are two distinct solutions, namely
 C1 = {0, 4, 8, 12, 3, 7, 11, 2, 6, 10, 1, 5, 9} and
 C2 = {0, 8, 4, 12, 3, 7, 11, 2, 6, 10, 1, 5, 9},
with many redundant edges (for example 1-9, 2-10, 3-11, ...).

What emerges from these examples is that one can, in principle, define the difference-based property P
simply by requiring  to belong to any set (or sequence) A of natural numbers. In this way, the sequence
A de-facto defines the counts NPC(n; S; A). As a mapping between sequences, this is somewhat
complicated, but perfectly legitimate.

Example 4: Minimum difference  : NPC(n; S;  ≥ m)

Let us now investigate the NPC’s in which every two neighbors differ by at least 2, thus excluding pairs
such as (1, 2) or (9, 8) where the difference is only 1. Still more generally, we can fix the property by
choosing a minimum difference m and requiring  ≥ m. Evidently, the choice m = 1 amounts to imposing
no restrictive condition at all, and the resulting counts would be those of H(n). As m increases, the
property becomes more and more restrictive, and the NPC counts are rapidly dropping.

This general behavior is illustrated by the actual values listed in columns 2, 3, and 4 of Table II for the
choices m = 2, 3, and 4, respectively.

The smallest cycle solution for an NPC of this type is always a cycle of length n = 2m+1.
It is unique and has the form

 C = {0, m, 2m, m-1, 2m-1, m-2, 2m-2, ..., 1, m+1}

For larger cycle lengths, the solutions become multiple. Already for n = 2m+2 we have, for m = 1, 2, 3,...,,
the following NPC(2m+2; S;  ≥ m) values: 3, 5, 11, 24, 52, 112, ...

For m = 2, the HC-ratios r(n) apparently form a non-decreasing sequence (0, 0, 0, 0, 0.083, 0.083, 0.0916,
0.0972, 0.1019, 0.1055, 0.1084, 0.1108, 0.1129, 0.1146, ...) converging6 to a constant of the order of ~0.12.
A similar behavior might be present also for higher values of m, with the constant of the order of ~0.012
for m = 3, and ~0.001 for m =4. However, these are presently just unproved conjectures and current
computational limitations make it impossible to say anything more precise.

5 This statement is to a mere conjecture, supported only by a number of numeric tests.
6 Since the ratios r(n) and R(n) have an upper bound of 1, confirming that the progressions are non-decreasing
would suffice to prove the convergence.

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL5Math14.002
http://oeis.org/A001597

Stan’s Library, Volume V, Mathematics

 7

S. Sykora, On Neighbor Property Cycles, Stan’s Library V, DOI 10.3247/SL5Math14.002.

Table II. Numbers of NPC’s on S,n for selected pair-properties P.

Notes:  refers to the absolute difference between neighboring NPC elements. Since only differences are involved,
the set S,n, may have any integer offset . In columns 2, 3, and 4, the  values have a lower limit, while in columns
5 and 6 they have an upper limit. The last column refers to the case when the differences are required to be prime.
A question mark in a cell indicates that the value could not be yet computed because of excessively long execution
time (usually days on a PC).

OEIS: A242522 A242523 A242524 A242525 A242526 A228626
n  ≥ 2  ≥ 3  ≥ 4   3   4 Prime 
1 0 0 0 1 1 0
2 0 0 0 1 1 0
3 0 0 0 1 1 0
4 0 0 0 3 3 0
5 1 0 0 6 12 1
6 5 0 0 10 36 2
7 33 1 0 17 90 4
8 245 11 0 31 214 16
9 2053 125 1 57 521 60

10 19137 1351 24 104 1335 186
11 196705 15330 504 188 3473 433
12 2212037 184846 8320 340 9016 2215
13 27029085 2382084 131384 616 23220 11788
14 356723177 32795170 2070087 1117 59428 76539
15 ? 481379278 33465414 2025 152052 414240
16 ? ? 561681192 3670 389636 2202215
17 ? ? ? 6651 999776 9655287
18 ? ? ? 12054 2566517 69748712
19 ? ? ? 21847 6586825 444195809

Example 5: Maximum difference : NPC(n; S;   m)

There is no reason why the difference between neighbors, rather than being bounded from below as in
the preceding Section, should not be bounded from above by choosing a maximum value M and imposing
  M. In principle, we could as well impose both a lower bound and an upper bound7, m    M.

For   M, the most restrictive cases are M = 1, admitting no NPC solution for any cycle length n > 2, and
M = 2 with exactly one NPC for every n, namely8 :

 for even n: {0, 1, 3, 5, ..., n-1, n-2, n-4, n-6, ..., 4, 2}
 for odd n: {0, 1, 3, 5, ..., n-2, n-1, n-3, n-5, ..., 4, 2}

For higher values of M, the counts start increasing, as illustrated on the two examples listed in Table II,
columns 5 and 6. For a given cycle length n, when M reaches n-1, the restriction becomes ineffective, and
the count becomes equal to H(n). Vice versa, keeping M fixed and increasing n, the restriction becomes
progressively heavier and the ratio r(n) drops, apparently converging to zero (though, again, no proof is
available).

7 If you want to try, the freeware NPC utility software permits it.
8 The extra spaces in the cycles script delimit its logical sections.

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL5Math14.002
http://oeis.org/
http://oeis.org/A242522
http://oeis.org/A242523
http://oeis.org/A242524
http://oeis.org/A242525
http://oeis.org/A242526
http://oeis.org/A228626

Stan’s Library, Volume V, Mathematics

 8

S. Sykora, On Neighbor Property Cycles, Stan’s Library V, DOI 10.3247/SL5Math14.002.

Example 6: Prime difference : NPC(n; S; prime )

As a last example based exclusively on differences between neighbors, let us require that each difference
between neighbors be a prime number [10]. This turns out to be possible for any cycle length exceeding
n = 5 with the NPC counts growing fast from 1 for n = 5, to as many as 414240 already for n = 15.

For n = 5, the unique solution can be easily found “visually” by inspecting the corresponding simple graph
shown below on the left. In this case, the only possible NPC cycle is, obviously, C = {0, 2, 4, 1, 3}, shown
below on the right as a round-table seating.

Selected NPC’s with more general pair-properties P

When the pair-property cannot be expressed in terms of a simple difference  of the element values, the
most important consequence is that all the pertinent results, such as the respective NPC counts, become
dependent on the offset  of the set S,n and care must be taken to specify the value of .

Example 7: Prime sum: NPC(n; S0; prime ) and NPC(n; S1; prime )

In Example 6, we have seen that there exist NPC(n; S; prime ) for any n ≥ 5. It is interesting to see
whether one can form also NPC’s in which the sum, rather than the difference, of all neighboring pairs is
prime. We of course expect the offset  to have an influence in this case and therefore the counts NPC(n;
S0; prime ) and NPC(n; S1; prime ) to be different.

The results are shown in columns 4 and 5 of Table III.

In the case of NPC(n; S0; prime ) there seems to exist at least one NPC solution for every n ≥ 5, with the
counts becoming prominently larger for even n, beyond n > 17. However, it is very hard to make any firm
prediction for large n values, especially considering the dropping density of primes. The two unique
cycles for n = 5 and n = 6, and the first of the 22 solutions for n= 10 are:

 NPC(5; S0; prime ): C = {0, 2, 1, 4, 3},
 NPC(6; S0; prime ): C = {0, 3, 4, 1, 2, 5},
 NPC(10; S0; prime ): C1 = {0, 3, 2, 1, 4, 9, 8, 5, 6, 7}.

The case of NPC(n; S1; prime ) has already studied by others [11]. It appears to be more complicated
than NPC(10; S0; prime ), even though it The odd length cycles of this type admit no solution (apart from
the trivial case n = 1). Most of the counts for even cycle length are smaller than those on S0,n, but there
again exist exceptions, for n = 10, and n = 16. It is far from clear how to tackle these problems
theoretically. As examples, these are the unique cycle for n = 6, and the first one of the 48 distinct
solutions for n = 10:

 NPC(6; S1; prime ): C = {1, 4, 3, 2, 5, 6},
 NPC(10; S1; prime ): C1 = {1, 2, 3, 4, 7, 6, 5, 8, 9, 10}.

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL5Math14.002

Stan’s Library, Volume V, Mathematics

 9

S. Sykora, On Neighbor Property Cycles, Stan’s Library V, DOI 10.3247/SL5Math14.002.

Example 8: Prime sum and difference: NPC(n; S0; prime ) and NPC(n; S1; prime )

We will now combine the conditions of Examples 6 and 7 into a single one, requiring that the sum as well
as the difference of any two neighbors must be prime.

Since the sum is involved, the counts NPC(n; S0; prime ) and NPC(n; S1; prime ) are expected to be
different. Indeed, every choice of the offset  of S,n is bound to generate a different sequence.

From Lemma 4, we also know that, for any n and ,

 NPC(n; S; prime )  min(NPC(n; S; prime ), NPC(n; S; prime ))

The results, shown in columns 4 and 5 of Table III, are interesting but highly unpredictable.

In both cases, NPC(n; S0; prime ) and NPC(n; S1; prime ), the first cycle length admitting a solution
is n =12, and in both cases the solutions for n = 12 happen to be two. Explicitly:

 NPC(12; S0; prime ): C1 = {0, 5, 2, 9, 4, 1, 6, 11, 8, 3, 10, 7},
C2 = {0, 7, 10, 3, 8, 5, 2, 9, 4, 1, 6, 11},

 NPC(12; S1; prime ): C1 = {1, 4, 9, 2, 5, 12, 7, 10, 3, 8, 11, 6},
C2 = {1, 6, 11, 8, 3, 10, 7, 4, 9, 2, 5, 12}.

From column 5 of Table III it might appear that NPC(n; S1; prime ) is zero for any odd n, but there is
no proof of that, nor can such a statement be trusted on the basis of the limited evidence available so far.
The counts could be so far determined only up to n = 29, with non-zero values (beyond those shown in
Table III) of 22277 (n = 24), 22365 (n = 26) and 376002 (n = 28).

Rather puzzling is the absence of any solution for NPC(20; S1; prime ), especially considering that there
are NPC(18; S1; prime ) = 88 and NPC(22; S1; prime ) = 976.

Another striking case is the unique solution for NPC(14; S1; prime ), shown here as a round-table
seating:

Notice the strict alternation of even and odd numbers and the fact that none of the differences is 2 (i.e.,
all the prime numbers involved are odd).

NPC(14; S1; prime )
illustrated as a round-table

seating arrangement.

The difference  as well as
the sum  of any two
neighbors are prime.

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL5Math14.002

Stan’s Library, Volume V, Mathematics

 10

S. Sykora, On Neighbor Property Cycles, Stan’s Library V, DOI 10.3247/SL5Math14.002.

Table III. Numbers of NPC’s on S0,n and S1,n for selected pair-properties P.

Notes:

OEIS: A242527 A051252 A242528 A227050 A242529 A242530
S S0,n S1,n S0,n S1,n S1,n S1,n
n Prime  Prime  Prime  Prime  Coprimes Gray

1 0 1 0 0 0 0
2 0 1 0 0 1 0
3 0 0 0 0 1 0
4 0 1 0 0 1 0
5 1 0 0 0 6 0
6 1 1 0 0 2 1
7 2 0 0 0 36 0
8 6 2 0 0 36 0
9 6 0 0 0 360 0

10 22 48 0 0 288 2
11 80 0 0 0 11016 0
12 504 512 2 2 3888 8
13 840 0 4 0 238464 0
14 6048 1440 18 1 200448 0
15 3888 0 13 0 3176496 0
16 37524 40512 62 4 4257792 0
17 72976 0 8 0 402573312 0
18 961776 385072 133 88 139511808 224
19 661016 0 225 0 ? 0
20 11533030 3154650 209 0 ? 754
21 7544366 0 32 0 ? 0
22 133552142 106906168 2644 976 ? 0

Example 9: Coprime neighbors: NPC(n; S1; coprime)

An interesting property of any pair of natural numbers is their being coprime or not. Accepting the usual
convention that 1 is coprime to any non-negative integer, while 0 is coprime only to 1, it is evident, first
of all, that no NPC’s with coprime neighbors can exist on S0,n. On S1,n, however, an explicit evaluation gives
the counts in column 3 of Table III. Hence, there exist NPC’s with coprime neighbors on S1,n for any cycle
length n > 0 and they become multiple for lengths n ≥ 5. There is a marked difference between the
behavior of the NPC(n; S1; coprime) counts for even and odd cycle lengths.

It turns out that there are no NPC cycles with the property of all neighbors being non-coprime, i.e., having
a common divisor greater than 1. This is easy to understand, considering that the largest prime in S1,n
would need to have therein a neighbor at least twice as large as itself, which is a contradiction because if
so, it would not be the largest one (remember that, for any n>1, there is always at least one prime
between n and 2n).

For any n > 0, there exists one trivial solution of NPC(n; S1; coprime), namely C1 = {1, 2, 3, ..., n}. The first
non-trivial solution is the second one of NPC(6; S1; coprime), C2 = {1, 4, 3, 2 , 5, 6} while, as an example,
the last one of the 288 solutions for NPC(10; S1; coprime) is C288 = {1, 8, 9, 4, 7, 6, 5, 2, 3, 10}.

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL5Math14.002
http://oeis.org/
http://oeis.org/A242527
http://oeis.org/A051252
http://oeis.org/A242528
http://oeis.org/A227050
http://oeis.org/A242529
http://oeis.org/A242530

Stan’s Library, Volume V, Mathematics

 11

S. Sykora, On Neighbor Property Cycles, Stan’s Library V, DOI 10.3247/SL5Math14.002.

Example 10: Gray property on S1,n: NPC(n; S1; Gray)

The Gray condition, i.e., imposing that the binary expansions of the two elements must differ in exactly
one bit, is a good example of a pair-property which is not a simple function of . The CGC (canonical Gray
cycles) counts (OEIS A236602) are normally referred to the set S0,n = {0, 1, 2, ..., n-1} and the results for
this case are listed in column 3 of Table 1. When, instead, the same property is applied to the set S1,n = {1,
2, 3, ..., n}, the resulting counts are those of Table III, column 2. A completely different – and much more
irregular – set of values! There are many cycle lengths which allow many distinct cycles on S0,n, but which
do not allow a single cycle on S1,n. It is amazing how, on S1,n, there do not exist any cycles of lengths 14
and 16 but, suddenly, well 226 of them for length 18. The cycle lengths, up to 30, with non-zero NPC(n;
S1; Gray) are only the following ones:

 NPC(6; S1; Gray) = 1,
 NPC(10; S1; Gray) = 2,
 NPC(12; S1; Gray) = 8,
 NPC(18; S1; Gray) = 224,
 NPC(20; S1; Gray) = 754,
 NPC(24; S1; Gray) = 26256,
 NPC(30; S1; Gray) = 22472304.

The fact, mentioned already in [1], that Gray condition admits only cycles with even lengths is universal
and applicable to NPC(n; S; Gray) with any offset . The reason is that the single-bit “flips” between
neighbors must in the end lead to the starting element of the cycle and therefore an even number of
single-flip steps is necessary. Hence

 NPC(2k+1; S1; Gray) = 0 for any k.

Graph of NPC(14; S1,n; Gray) for which there exists no Hamiltonian cycle.

The reasons why NPC(4; S1,n; Gray) and NPC(8; S1,n; Gray) are both 0 are evident when one draws the
corresponding neighbor property graphs. For n = 4 there are just 2 edges and Lemma 1 is applicable.

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL5Math14.002
http://oeis.org/A236602

Stan’s Library, Volume V, Mathematics

 12

S. Sykora, On Neighbor Property Cycles, Stan’s Library V, DOI 10.3247/SL5Math14.002.

while for n = 8, the vertex “8” is isolated (degree 0) and Lemma 3 applies. It is easy to see that the latter
argument applies to any cycle length of the type 2k, so that

 NPC(2k; S1; Gray) = 0 for any k.

With these two rules, the truly surprising case becomes n = 14. Its property graph shows nothing that
might immediately pinpoint it as having no Hamiltonian cycle, and yet it does not have one. All its vertices
have a degree of at least 3. Excluding disconnected graphs and edge- or vertex-separable graphs, I have
not yet encountered a smaller simple graph with such properties. I therefore think that it might be of
some interest by itself and include here its graphical representation and its adjacency matrix. The next
such puzzling graphs might be those for n = 22, 26 and 28.

The adjacency matrix of NPC(14; S1; Gray)
Note: for better readability, zeroes were omitted

n\n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
 1 1 1 1
 2 1 1 1
 3 1 1 1 1
 4 1 1 1
 5 1 1 1 1
 6 1 1 1 1
 7 1 1 1
 8 1 1 1
 9 1 1 1 1
10 1 1 1 1
11 1 1 1
12 1 1 1 1
13 1 1 1
14 1 1 1

More examples

There are infinitely many pair properties and therefore an infinity of integer sequences for their counts
as functions of the cycle length n. Apart from those discussed above, a few more such sequences were
submitted to OEIS because they looked interesting and enumerating them took some effort.
These are:

OEIS A242531: NPC(n; S1;  is divisor of ) : 0, 1, 1, 1, 1, 4, 3, 9, 26, 82, 46, 397, 283, 1675, 9938, ...
 Example for n = 10: {1, 2, 4, 5, 6, 7, 8, 10, 9, 3}

OEIS A242532: NPC(n; S2; >1 is divisor of ) : 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 20, 39, 0, 0, 0, 0,319, ...
 Example for n = 14: {2, 4, 8, 10, 5, 7, 14, 12, 15, 13, 11, 9, 3, 6}

OEIS A242533: NPC(n; S1; ,  are coprime) : 0, 1, 0, 1, 0, 2, 0, 36, 0, 288, 0, 3888, 0, 200448, 0, ...
 Example for n = 10: {1, 8, 9, 4, 7, 6, 5, 2, 3, 10}

OEIS A242533: NPC(n; S1; ,  are not coprime) : 1, 0, 0, 0, 0, 0, 0, 0, 0, 72, 288, 3600, 17856, 174528, ...
 Example for n = 10: {1, 3, 5, 10, 2, 4, 8, 6, 9, 7}

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL5Math14.002
http://oeis.org/A242531
http://oeis.org/A242532
http://oeis.org/A242533
http://oeis.org/A242533

Stan’s Library, Volume V, Mathematics

 13

S. Sykora, On Neighbor Property Cycles, Stan’s Library V, DOI 10.3247/SL5Math14.002.

Conclusions

In this essay, we have introduced the concept of neighbor-property cycles (NPC), delimited its confines,
and attempted a symbolic notation for its infinity of categories.

Each NPC category defines, at least in principle9, an integer sequence of NPC counts for increasing cycle
lengths n. Many examples of such categories were provided and briefly described. It is possible that some
of the categories give rise to nontrivial finite sequences, i.e., ones that evaluate to zero for every cycle
length exceeding a nontrivial maximum nmax > 3, though no actual example was encountered yet. Many
of the discussed sequences of NPC counts were registered in OEIS and references to them are provided
in the three Tables and elsewhere in the text.

At present there do not exist any explicit equations for the NPC counts in any non-trivial case, except that
of the void property (coincident with Hamiltonian cycles in complete simple graphs). Problems of this
type still represent a considerable mathematical challenge. For this reason, and for the appeal of NPC’s
as “round-table seating arrangements”, some of the discussed examples, such as NPC(n; S1; Gray) and
NPC(n; S1; prime ) have a potential for recreational mathematics.

What interested us most here was the close connection between the NPC’s and the Hamiltonian cycles of
simple graphs, conveniently defined by means of the same pair-property P and the same subset S of
elements used to define each NPC category (the pair-property graphs). When it comes to finding an NPC
of a given cycle length (or enumerating all of them) the problem is equivalent to finding (or enumerating)
Hamiltonian cycles in a corresponding pair-property graph.

A potentially interesting aspect that has not been discussed yet is whether one might kind of reverse the
relationship between the NPC’s and the pair-property graphs. If, given a simple graph, one could redefine
it in terms of an NPC for some manageable property P, there might be a chance to exploit the
isomorphism. We have seen, in fact, that in several cases the property P enabled us to determine, for
example, that no odd-length cycles could exist, even though this was not immediately evident from the
corresponding graph. Studying the graphs jointly with the NPC’s might therefore prove to be fruitful.
Already the fact that the NPC’s permit to define infinite categories of graphs, many of which non-trivially
indexed by the offset  and other parameters, is interesting.

Studying the case NPC(n; S1; Gray) we have hit on highly interconnected simple graphs having no
Hamiltonian cycle. The heavily “restricted” NPC’s, like NPC(n; S1; Gray) and NPC(n; S1; prime ), look
like handy “generators” of such graphs, a feature which might be useful to study and test Hamiltonian
cycles enumeration algorithms.

The software used to carry out the enumerations is described in the Appendices. It includes also an
executable utility, running under Windows XP or higher, which can be downloaded from the author’s
website [12]. All this, however, while useful for small cycle lengths, is severely limited by execution times
for cycle lengths of the order of 20 or more (depending upon the pair-property). Some of the largest data
items tabulated in the Tables I, II, and III required days of a PC time.

Enumeration of all Hamiltonian cycles in a simple graph is one of the most demanding NP-complete
problems, and so is the enumeration of all NPC’s for many pair-properties. That, however, does not mean
that, by applying suitable algorithms, it cannot be accelerated beyond the current state-of-the art,
something that will be tackled in a next article.

9 Of course, the sequence can contain all zeroes, or all ones. Which does not make it illegitimate, just rather boring.

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL5Math14.002

Stan’s Library, Volume V, Mathematics

 14

S. Sykora, On Neighbor Property Cycles, Stan’s Library V, DOI 10.3247/SL5Math14.002.

Appendix A: The freeware NPC utility

This essay relies on a relatively brute force algorithm to be described in Appendix B. Since the problem
of finding/enumerating NPC’s is in large part equivalent to finding/enumerating Hamiltonian cycles in
corresponding simple graphs, one might question why a graph-theoretical algorithm was not used,
considering that many are available [13-18]. The author has several answers to this objection:

a) It is fun to try an independent way, to be used as a check and, at the same time, checking on others.
b) The more independent algorithms to tackle this task there are, the better. In particular, comparing

them with each other facilitates debugging and helps to avoid mistakes.
c) Some of the referenced algorithms look only for one Hamiltonian cycle, or for a specified number

of them, which is insufficient for the needs of this study.
d) Unlike the software presented here, those algorithms that find multiple, or all, Hamiltonian cycles,

such as [13] often do not list them in any specific order, which complicates comparisons.
e) Since the NPC’s correspond to just a subset of simple graphs, NPC handling algorithms might be

more efficient than those handling similar tasks in completely general simple graphs.
f) The author intends to tackle Hamiltonian cycles enumeration tasks independently in another study,

using the present results as references, checks, and benchmarks.

Accompanying this article is a freeware utility [12], NPC.exe, executable on Windows-based PC’s with
NTFS file system (any OS from XP up). It makes it easy to play with the NPC’s for a number of pair-
properties, pre-defined in a user menu10. For each pair-property choice, the User can specify the offset 
and, in some cases, one or more additional parameters. The User can also select one of three “modes”,
addressing three somewhat different tasks:

 Mode 1: find the first NPC of a given length.
 Mode 2: enumerate all NPC’s of a given length and list them in alphanumeric order.
 Mode 3: count the number of NPC’s for all lengths between user-defined Lmin and Lmax.

In all cases, the User can also specify an optional output plain-text file with the compulsory extension
“.txt” where the results are “dumped”, in addition to being displayed in the console application window.

As already mentioned, the limit of this software, at the time of this writing in its build #13, is that of
excessive execution time typical of all Hamiltonian cycles enumeration problems. Depending upon the
pair-property, modes 2 and 3 start being tediously slow for cycle lengths between 15 and 30, while mode
1, from this point of view, is quite unpredictable: sometimes it finds the first solution even for cycle length
100, while in other cases it can be as slow as the other modes.

In any case, enjoy the utility!

10 Note that the NPC utility includes NPC categories that were NOT discussed in the article, nor were the resulting
sequences registered in OEIS. It can be used also to compute the counts for any value of the offset  and/or any
additional parameters. In principle, therefore, though limited to a fixed list of pair properties, the Utility could be
used to generate an infinity of sequences. Among those, one can only select suitable examples, considered
interesting and/or representative.

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL5Math14.002
http://www.ebyte.it/library/downloads/NpcUtility.zip

Stan’s Library, Volume V, Mathematics

 15

S. Sykora, On Neighbor Property Cycles, Stan’s Library V, DOI 10.3247/SL5Math14.002.

Appendix B: The C++ code

The following is a commented listing of the number-crunching core of the C++ program actually used to
compute the discussed data (plus more). For those who wish to play with it, it is part of the downloadable
zipped file NpcUtilitySources.zip (the NPC function is at the end of the file ConsoleAppNPC.cpp). The
zipped package contains all the source files and libraries needed to compile the Utility.

As for the algorithm, the principle of backtracking has been described in many places [13-16] and is quite
intuitive. Therefore, its abstract description is omitted here in favor of a very heavily commented, fully
operative and fully tested C++ implementation. The only aspect which may need a few words of
explanation is the mild effort at optimization which in some cases reduces execution times by a factor of
about 2. But let us do that after the code presentation:

REAL NPC(DWORD cyclen,DWORD mode,LONG offset,

 BOOL pairproperty(LONG i,LONG j,LONG offset))

//--

// This is the arithmetic core of all NPC functions.

// mode can be 1, 2, or 3 and determines the following behavior:

// mode = 1: As soon as a NPC is found, it is dumped and

// the function exits, returning 1.

// mode = 2: All found NPC's ar dumped, and

// the function returns their count.

// mode = 3: All NPC's are computed, but not dumped.

// The function returns the NPC's count.

// If no NPC is found, nothing is dumped the returned value is 0.

// The argument BOOL pairproperty(LONG i,LONG j,LONG offset) points

// to the pair-property testing function for two neighbors with

// values i+offset and j+offset. It must return "true" when the pair

// satisfies the property.

// For the prototype of the "dumping" function DumpNPC,

// and an example of its implementation, see below.

// If modes 1 or 2 are used, DumpNPC must be supplied by the user,

// while in mode 3 DumpNPC is not used at all.

//--

{

 REAL count; // DWORD count would be conceptually better,

 // but REAL can accomodate integers up to 52 bits without overflow

 DWORD k,bktidx; // Backtracking variables

 DWORD i,j,used,npc1max; // Element search variables

 count = 0; // Default result

 if (!cyclen) return count; // Zero cycle length

 DWORD* npc = new DWORD[cyclen]; // Allocate a new array for the npc

 // The stored npc values range from 0 through cyclen-1:

 // The "offset" is added only to carry out the tests

 npc[0] = 0; // First element in any npc must be 0

 if (cyclen > 2) { // When cyclen > 2:

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL5Math14.002
http://www.ebyte.it/library/downloads/NpcUtilitySources.zip

Stan’s Library, Volume V, Mathematics

 16

S. Sykora, On Neighbor Property Cycles, Stan’s Library V, DOI 10.3247/SL5Math14.002.

 // Prepare optimization: start

 npc1max = cyclen; // Find largest value compatible with 0+offset

 while (--npc1max) {

 if (npc1max && pairproperty(0,npc1max,offset)) break;

 }

 if (npc1max) { // And now the second largest

 while (--npc1max) {

 if (npc1max && pairproperty(0,npc1max,offset)) break;

 }

 } // Prepare optimization: end

 // Initializations:

 bktidx = 0; // Start backtrack index at 0

 k = 0; // Dummy backtrack

 j = npc[k]; // Note: 0 will never be used again for j

 while (++k < cyclen) { // npc[0] through npc[k] were done, go on

 // Now k was increased, and we are looking for a good npc[k]

 while (++j < cyclen) { // Use j to scan all npc[k] candidates

 // starting just beyond where we left it in last backtrack

 // Optimization: start

 if ((k == 1) && (j > npc1max)) {j = cyclen; break;}

 // Optimization: end

 used = 0; // Make sure it was not yet used in the npc

 for (i=1;i<k;i++){if (npc[i]==j) {used=1;break;}}

 if (!used) { // If not yet used:

 // Test pair property between j and the last valid npc term:

 if (pairproperty(npc[k-1],j,offset)) { // If ok:

 npc[k] = j; // We have a good npc[k] candidate ...

 if ((k+1)<cyclen) { // If this k is not the last one ...

 bktidx = k; // ... just remember it for backtracking

 } else { // But if this is the last k-term, then:

 if (j >= npc[1]) { // test if the npc is canonical ...

 //...and do an extra pair-property test for cyclicity:

 if (pairproperty(npc[0],j,offset)) {

 count = count+1; // Found a good npc! Dump it?

 if (mode<3) DumpNPC(cyclen,npc,count,mode,offset);

 }

 }

 j = cyclen; // Last term forces j-scan termination!

 }

 break;

 }

 }

 }

 // We are done with this k. There are three possible situations:

 // k< cyclen-1 (an intermediate term) and j<cyclen (success)

 // k< cyclen-1 but no good j exists as indicated by j==cyclen

 // k==cyclen-1 (last term) and j was forcibly set to cyclen.

 if ((mode==1) && count) break; // mode 1; first npc found

 // Test whether we are done with this k?

 if (j < cyclen) { // No, just reset the j-cycle for next k

 j = 0;

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL5Math14.002

Stan’s Library, Volume V, Mathematics

 17

S. Sykora, On Neighbor Property Cycles, Stan’s Library V, DOI 10.3247/SL5Math14.002.

 } else { // Yes:

 if (!bktidx) break; // Do we have pending backtracks?

 k = bktidx-1; // If yes, backtrack k, ...

 j = npc[bktidx]; // ... initialize j, ...

 bktidx--; // ... and decrement backtrack depth index

 }

 }

 } else if (cyclen==2) { // Special case: cycle length 2

 npc[1] = 1;

 // Do the single test of the pair property for (npc[0],npc[1])

 if (pairproperty(0,1,offset)) { // If satisfied, it counts as npc

 count = count+1; // and can be dumped, if so specified

 if (mode < 3) DumpNPC(cyclen,npc,count,mode,offset);

 }

 } else if (cyclen==1) { // Special case: cycle length 1

 // Do the single test of the pair property for (npc[0],npc[0])

 if (pairproperty(0,0,offset)) { // If satisfied, it counts as npc

 count = count+1; // and can be dumped, if so specified

 if (mode < 3) DumpNPC(cyclen,npc,count,mode,offset);

 }

 }

 delete [] npc; // Disallocate the temporary array

 return count; // and return the result

}

Regarding the two optimization sections, they were added only after extensive tests of the non-optimized
software and compared and the results of the separate runs were compared for an exact match.

The principle of the optimization is the following:

Remember the canonical condition by which the last element of an NPC cycle, npc[n-1] may not exceed
the second one, npc[1]. This is intended to prevent doubling all NPC counts by “reading” the cycles both
clockwise and counter-clockwise, and it is tested in the line reading

 if (j >= npc[1]) { // test if the npc is canonical ...

at the end (!) of the whole k-cycle. But one can do much better by

a) finding first the second larges value compatible with npc[0], and
b) testing that npc[1] does not exceed it already at the beginning of the k-cycle.

The effect of this simple modification is a speed-up by a factor of about 2 (on the average).

The two optimization sections are enclosed between the comments

1) // Prepare optimization: start, and // Prepare optimization: end
2) // Optimization: start, and // Optimization: end.

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL5Math14.002

Stan’s Library, Volume V, Mathematics

 18

S. Sykora, On Neighbor Property Cycles, Stan’s Library V, DOI 10.3247/SL5Math14.002.

References

[1] Sykora S., Canonical Gray Cycles, Stan’s Library V, 2014, DOI 10.3247/SL5Math14.001.
[2] Sykora S., Number of canonical Gray cycles of length 2n. OEIS A236602.
[3] Wikipedia, Hamiltonian path.
[4] Wikipedia, Hamiltonian path problem.
[5] Weisstein E. W., Hamiltonian Cycle, on MathWorld.
[6] Narsingh D., Graph Theory with Applications to Engineering and Computer Science,
 Prentice Hall, Englewood Cliffs, 1974, ISBN 978-0133634730.
[7] Karp R. M., Reducibility Among Combinatorial Problems, in Complexity of Computer Computations,
 (Editor R. E. Miller and J. W. Thatcher), Plenum Press, pp. 85-103, 1972. ISBN 978-1468420036.
[8] Garey M. R., Johnson D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness.
 W. H. Freeman, 1983. ISBN 978-0716710448.
[9] Sloane N.J.A, Order of alternating group An, or number of even permutations of n letters.
 OEIS A001710. The numbers H(n) as defined in this article equal A001710(n-1).
 See also an interesting insight by Berry P., in OEIS A105752.
[10] Zhi-Wei Sun, Number of Hamilton cycles in the undirected simple graph G_n with vertices
 1,...,n which has an edge connecting vertices i and j if and only if |i-j| is prime. OEIS A228626.
[11] McCranie Jud, Number of essentially different ways of arranging numbers 1 through 2n
 around a circle so that sum of each pair of adjacent numbers is prime. OEIS A051252.
[12] Sykora S., NPC Utility, an executable freeware utility. Also available is the zipped file
 NPC Utility Sources, containing also the NPC function of Appendix B.
[13] Mathematica function FindHamiltonianCycle, with its options
 "Backtrack", "Heuristic", "AngluinValiant", "Martello", and "MultiPath".
[14] Hamiltonian Cycle on the Stony Brook Algorithm Repository.
[15] Skiena S. S., The Algorithm Design Manual, Springer, 2nd Ed. 2008, ISBN 978-1848000698.
[16] Patel Dipak et al, Hamiltonian cycle and TSP: A backtracking approach,
 International Journal on Computer Science and Engineering (IJCSE), 2, p.1413, 2011.
[17] Chalaturnyk A., A Fast Algorithm For Finding Hamiltonian cycles,
 Thesis, University of Manitoba, 2008, available online.
[18] Ashay Dharwadker, The Hamiltonian Circuit Algorithm,
 Amazon CreateSpace 2011, ISBN 978-1466381377, also available online.

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL5Math14.002
http://dx.doi.org/10.3247/SL5Math14.001
http://oeis.org/A236602
http://en.wikipedia.org/wiki/Hamiltonian_path
http://en.wikipedia.org/wiki/Hamiltonian_path_problem
http://mathworld.wolfram.com/HamiltonianCycle.html
http://mathworld.wolfram.com/HamiltonianCycle.html
http://www.amazon.com/dp/0133634736/ref=nosim/?tag=stanshub-20&link_code=as3&creative=373489&camp=211189
http://www.amazon.com/dp/1468420038/ref=nosim/?tag=stanshub-20&link_code=as3&creative=373489&camp=211189
http://www.amazon.com/dp/0716710447/ref=nosim/?tag=stanshub-20&link_code=as3&creative=373489&camp=211189
http://oeis.org/A001710
http://oeis.org/A105752
http://oeis.org/A228626
http://oeis.org/A051252
http://www.ebyte.it/library/downloads/NpcUtility.zip
http://www.ebyte.it/library/downloads/NpcUtilitySources.zip
http://reference.wolfram.com/mathematica/
http://reference.wolfram.com/mathematica/ref/FindHamiltonianCycle.html
http://www.cs.sunysb.edu/~algorith/files/hamiltonian-cycle.shtml
http://www.cs.sunysb.edu/~algorith/files/hamiltonian-cycle.shtml
http://www.amazon.com/dp/1848000693/ref=nosim/?tag=stanshub-20&link_code=as3&creative=373489&camp=211189
ftp://www.combinatorialmath.ca/g&g/chalaturnykthesis.pdf
https://www.createspace.com/3697427
http://www.dharwadker.org/hamilton/

Stan’s Library, Volume V, Mathematics

 19

S. Sykora, On Neighbor Property Cycles, Stan’s Library V, DOI 10.3247/SL5Math14.002.

History of this document

25 May 2014: Assigned a DOI (10.3247/SL5Math14.001) and uploaded online.

09 Apr 2016: The title registered in the ‘properties’ of the PDF file did not match the actual title of the
document. Since it is ‘hidden’, showing exclusively in the browser tab header when the browser displays
the PDF, it escaped attention. At the occasion, five very minor typos were also corrected (no math).

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL5Math14.002

