Mathematics. — On MAHLER's partition problem. By N. G. DE BRUIJN.
(Communicated by Prof. W. VAN DER WOUDE.)

(Communicated at the meeting of April 24, 1948.)

1. Introduction.

KURT MAHLER 1) obtained a formula for the number p(h) of partitions
of the natural number h into powers of a given integer r = 2, i.e. the
number of solutions of

h:ho+h]f+h2r2+... e e e e e e (1.1)

in non-negative integers hg, hy, ho, ... 2). His result was

p(ch) = 00 3 (—intn=0pnin13) . . (1.2)

n=0

which leads to the explicit result

h \? 1 1 log log r _
log p (h) = 2109,(1ogl—ogh)+<2+ + )logh 2

logr log r

(1 +loglogr>1 oglogh+ O(1). S

In the present paper we give a more precise analysis of the O-term in
(1.3). It turns out to be of the form

w(]ogthoglogh>+o(1) Co . (L
ogr

(1.3)

where v is a certain periodic function with period 1; the o(1) term can
be further investigated.

The series on the right of (1.2) has a similar asymptotic behaviour,
with a different periodic function however. It is a solution of the functional
equation F’(h) = F(hr—1). We shall develop asymptotic formulae for the
solutions of that equation in a separate paper.

Our results on p(rh) are found in the following way. Since

ph)xt=IT 1—x™)'=f(x) (|x[<1) . . (1.5

[rss

h
we have

—h
p=2" [Fleeitetirdp.  (0<o<1). . . (1.6)

0

1)  On a special functional equation, Journ. London Math. Soc, 15, 115-—123 (1940).

2) Of course only a finite number of the h; are > 0.

3) Here rh = A’ must be an integer. In view of the generalisation to non-integral r we
express (1.2) in terms of h instead of h’. See also (1.12).
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The function f(x), regular for |x| <1, can be calculated with
great accuracy in the neighbourhood of the points x — exp (2avir—#)
(v, u=0,1,2,...) by a formula derived in section 2. After that, evaluation
of (1.6) leads to the announced results.

It must be noted that the most important contribution to (1.6) arises
from the neighbourhood of the point x = 1. Much smaller conributions
are given by the points exp (2avir-1) (v = 1, ...,r—1) and so on. These
contributions are even much smaller than the errors we cannot avoid to
make in the neighbourhood of x — 1. Therefore we restrict ourselves to a
precise investigation of the neighbourhood of x = 1 with a relatively rough
estimation of f(x) on the remaining part of the circle |x| = o.

In the sequel we shall use formula (1.16) instead of (1.6) because we
want to generalise our considerations to the case that r is not an integer.
First we develop the necessary formulae.

Henceforth r is an arbitrary number >1. Although not always stated
explicitly, most functions in the sequel depend on r. Numbers depending
on r only will be called constants.

Let P(u) denote the number of solutions of

ho+ hir+hyr+. .. =u. . . . . . (1.7)

in non-negative integers hg, hy, ho, .... The generating function is

F(s)=

o]
k=

(et 1_j es“dP(u), (Res>0). . (1.8

F(s) reduces to f(e-*) (see (1.5)) if r is an integer. The integral on
the right of (1.8) is a STIELTJES integral. We notice that P(u) = 0 for
u<<0, P(0) = 1. Furthermore we have

P(u)—P(u—1)=P(u/r) (oo <<u<o). . . (1.9
Namely, P(u) — P(u—1) denotes the number of solutions of
u—1<hy+he+h24... <y, . . . (1.10)

which equals the number of solutions of
h|r+h2r2+... =u. 0 o0 e (l.ll)

since for any solution hy, Ao, ... of (1.11) just one non-negative integer h,
satifying (1.10) can be found. Since (1.11) has P(ujr) solutions we
obtain (1.9).

If r and u = h are integers (1.10) and (1.1) are equivalent, and so

Ph)=p(ch).. . . . . . , . (1.12)
Moreover P(y) = P([y]) in that case, and

p(ch)y=p(th+1)=...=p(ch+r—1). . . . (1.13)



661

Again considering the general case we first notice that by a well-known

inversion formula we have
a+iA
Plu—=0+ Plut0) =0 lim Fs)es2S (a>0). (1.14)
2 2n LA> 4+ S
a—iA
Here the path of integration is the straight line
It will be convenient to operate with P, (u) instead of P(u), where
at+io
. ds
—J P f F(sjen(1—e) % (a>0). (1.15)
a—i®
The latter integral is absolutely convergent
By (1.8) we have (1—e-%) F(s) = F(rs). Consequently P,(u) can be
written in the form
aTim
CLZS (@>0). (1. 16)

From this formula we shall deduce the asymptotic behaviour of P, (u)

The way back from P, (u) to P(u) will be an easy one

An exact formula for F(s)
4)) for the function

2.
Woe shall derive a useful expression (formula (2.15)
(1.8), i.e.
T(1—es™ =1  (Res>0). 2. 1)

F(s)= Il (1

k=0
in the neighbourhood of s = 0. For a moment we restrict ourselves to real

and positive values of s. We have

log F(s)= 2007 zq'om

k=0 m=1

_srk
-1 g—=srm

From MELLIN’s formula
1 a+iow
e‘“’:zm_f I'(z) w—*dz (@>0,w>0)
a—ix

—7 dz, (2.2)

we now infer that
1 a+iw
log F (s =i J %

The present author who found this formula in 1944 was informed after the war
MAHLER that a similar formula was communicated to him about 1923 by

2R

I‘ Yym~! (sr¥m)

H

1)
by Mr. 4 i
C. L. SIEGEL, who never published it. Therefore we present a full proof here
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the operation carried out being allowed in virtue of the convergence of
a+io
@® 0
f 23| I'(z) m™ (sckm)—%| dz.
01
a—im

Finally (2.2) leads to

a+iow
logF(s):sz,f s’z%j—z)dz, (@>0,s>0 (2.3

where { denotes the RIEMANN (-function. Its functional equation gives

@) (1 +2)=— " -(2—”)’c<—z).. @4

zsingmz s
and it is easily derived that for 0 <s << 2ar we have

—n+i+ioo r
lim —— 52 _(Mi) dz—0
n—» o 27[1 l_r—z
—n+{—i

if n runs through the positive integers. It now follows from (2.3), (2.4)

and from the estimation ((o+it) =O(|¢t|]) (0=o¢=1) that, for

0 <s<2ar, log F(s) equals the sum of the residues of
sEtA+2)1—e23)"N . . . . . . (2.9

We have to consider the roots z = 2mnik/log r of 1—r—2 (k=0, %=1, =2, ...)
and the poles z =0,—1,—2, ... of I'(z). The point z =0 is the only
pole of (1 + z) and thus it is a triple pole of (2.5).
First we evaluate the residue at z = 0. We have
zl(z+ 1)=14ypz+4yp22+... .. . . (2.6)

where y = 0,5772157 ... is EULER’s constant, and y, — 0,0728158 ....
Furthermore

zI'2)=1—yz4+3I")224+..., . . . . (2.7)
where I’ (1) = y* + 1 a2,

ss?=1—zlogs+ s(logs)P?z?—... . . . . (2.8)
lziof_rzzl+‘7zlogr+1’g22(logr)2+.... .. (2.9

It follows from (2.6), (2.7), (2.8) and (2.9) that the residue of (2.5)
at z = 0 equals

(log s)?/2logr—4logs+ay . . . . . (2.10)



663

where
ap={y,— 7’ + s 2* + s logr)¥}/logr. . . . (2.11)
The residues at z = 2xaik/logr (k = =1, =2, ...) are easily found to be

ap s~¥ikllogr L L 0L (2.12)
where
2nik 2nik
“_Fﬁﬁﬂ <+ )ﬁgr....(lm
Finally we consider the poles n = —1, —2, ... of I'(z). The residue of
I'(z) at z = —nis (—1)"/n!; furthermore {(1—n) = (—1)"-1 n—-1 By,
where the B, are the BERNOULLI numbers defined by
yle¥—1)=3y"By/n! ; By=1,B,=— 14 B,={,B;=0,...
0
The residue of (2.5) at z = —n thus amounts to
mw:ii-s (n=1,23..) . . . (2.14)

By taking the sum of the residues (2.10), (2.12), (2.14) we find

log F (s) = (zl%igs)———logs—l—k z_mak s—2wikllogr Zﬂ s (2.15)

The range of validity of (2.15), for which we took thus far 0 <<s << 2ar,
can be continued over the semi-circle Re s >0, |s| < 2ar. For, the last
series on the right of (2.15) converges for | s | << 2ar, and the first one for
Re s > 0. We have namely, for k — =+,

ag =0 (e~ Iklloar |k|=tlog k). . . . . (2.16)

1

since |I'(if)| «» Y2 e 4=t |¢]~} and ¢ (1 + i) = O (log | t]) for t—> =+ oo,

3. Preliminary estimations.

In orther to deal with (1.16) we first derive some rough estimations for
F(o + it)/F(o). Here ¢ and ¢ are real, 6 >0, and F is defined by (1.8) =
= (2.1).

Lemma. We have 5)

|F(o+it)/F(o)| =1 (6>0,—<t<o0) . . . . (31
wa+nm@LJa m<ﬁgu<aw.... . (3.2)
[Flo+ig/F@)| <o  (0<|t|<o<lLo>0y=to). (3.3)
5) The numbers cy, cs, ... denote positive constants. If such a ¢ occurs for the first time

in a formula or statement we mean that it can be given a positive value such that the
formula or statement is correct. At a second occurrence it keeps the value given to it
the first time. The same applies to positive functions c(4) etc.
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Proof. (3.1) immediately follows from
1 _e—-urk) <1 — e—lotityrk B

More generally we have (—oo <t<<®, 6>0,K=0,1,2,...)

Fo+if K |1-—e-t+itirk|—1
‘ Flo | =& e .
It is easily seen that
1 —e—t+itirk -1 b4 4 e-crk sin? (& ¢ )
] — ot - "”‘

Assuming that
[t K1, oK1 . . . . . . (3.5
we have for 0=k =K
[sin (} ¢ek)| = a1 [¢] £k,
k\2 —crk —1\ 2
(a_r)__ —= Min (logx )'x>e“‘.

(1—e ™2™ iy \ 1 —x

So if (3.5) holds, the right-hand-side of (3.4) is less than

k _
g 1+4 (%)2 ‘(o rk)—-2 e—lg HHED < ; 14 (410)2%—%(1“1).

For K we may take
K =[Min (log 67!, log | t|7")/log r]
so that for 0 <<o<<1,—1 <<¢t<<1 we obtain

logMax(s, | t])

F (o +it) ( £\2] oeur
< —
t o \?lgr(“)g .. (3.6)

We can now prove (3.2) and (3.3). First suppose 0 <o =|[¢t| =e-1.
Putting |¢|o-1 =y = 1 we have, as 1 + 2-4 y2> (ey)s,

log|t|

log | F (o + i8] F (0)] < 3.

‘log(1 +24y) <<

< cylog|t|-logey =c, (log o + log y) (1 + log y).

The latter expression is a concave function of log y, whose maximum in
the interval 1 = y = e—1 o1 is attained either at y =1 or at y — e-1 o-1.
Both points give the value c4 log o. This proves (3.2).

Second suppose 0 = [t| =06 =1, 6 > 0. Since

1+27'y e (O<y<])
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we infer from (3.6)
| F (o 4 it)/F (0)| << ecs¥*log®
which proves (3.3).

4. The asymptotic behaviour of P(u).

According to (2.15), a first approximation to F(s) for s in the neigh-
bourhood of the origin is exp {(log s)2/2logr}. If we had to evaluate the
integral (cf. (1.16))

a+l;on
J e(loq s)¥f2log r euslr ds (a > 0)
a—i®
for large positive values of u we would choose an integration path passing
through the saddle-point near the origin, i.e. the point s = ¢, where o
satisfies
log o
ologr

+ur'=0, ¢>0. . . . . . 41

For u > 0 the number ¢ is uniquely determined by (4.1). Henceforth o
denotes this special function of u. We now take a — ¢ in (1.16) also:

pam:iabffmnwdg.... L. (42)

s
With the abbreviations
s=o +it, t=yo
x(u,y)=F(s)|F(o)-e'®yeIr (i +igy)"2 . . . . (4.3)

K(u):fx(u,y)dy. e (49
we have
P(w)=5-F)e K@ . . . . . . (4.5)

First we prove that for any number 2> 0 we have
i

’KM—[W@M#Q@WW @>c) . . . (4.6)

For u — c we have ¢ — 0, and so cg can be chosen such that u> cg
implies 0 <<e-1. Now by (3.2), (3.3) and (4.3) we have for u> cq

|% (w, y)| S0P (14270 (A< |yl <Kelo))
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with ¢9(4) = Min (cy, cp 42) if 1 <1, ¢y9(4) = ¢y if 1= 1. It follows,
that, if 1 <e-1¢-1,
e~1s-1

fx(u.y)dyl<§no‘wm B A4

i

Furthermore we have, by (3.1), |#(u, y)| = (1 + y2)-1 for any u and
y, and it follows that

-] -] d
)fx(u,y)dy’gfl_{_yyzgeo. e . . (4.8
e~1g-1 e 11

and also

jn(u,y)dy}geo ifiz=elol. . . .. (49

From (4.7), (4.8), (4.9) and the analogous inequalities for y <0, (4.6)
follows immediately (c; = 2e, cg (4) = Min {1, ¢y (2)}).

For a closer investigation of #(u,y) for small values of |y| we use
(2.15). Introducing the abbreviations (s = o+ ioy)

g'ak sT2rikllogr — g (), 27,8,, s"—w(s), . . . (4.10)

—

¢ (u, y)=-exp[{log?(1 4 iy) 4+ 2logo-log (1 +iy)}/2logr— (4.11)
—4§log (1 +iy) +iuyolr + g(s)]
we have
%(u, y)=op (g, y)eg@+t20-260 | (4.12)
If6<e-1,|y| =1 we have
lo@s)|<epo o o o o . . . . (4.13)
and by (2.16) and (4.10)

lglo+ioy)|<ca v « . . . . . (414
In virtue of (3.1) and (4.3) we have

|%(w,y)| < 2@ 0)| =1 (—oo<ly<e) . . . (4.15)
and it follows from (4.12), (4.13) and (4.14) that

1 A
lfx(u, y)dy—e‘g")fg(u.y)dy’ <30 for 0 <A< 1, u>ce (4.16)
iyt By
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2
We transform / o(u, y) dy by introducing a new variable z by
-2

t22=log(14+iy)—iy. . . . . . . (4.17)
y=z+ w2zt usz22+ ... (lz]<ecy) « . (4.18)

On expressing u in terms of ¢ by (4.1) we obtain from (4.11)

. (log? (1+iy) + z%log o
elug)=exp ST

—4log(l +iy)+glotioy);(4.19)

If we put, for a moment,
loga/logr=v

the function e#(%) becomes an analytical function of the variables v and y
in the range |Imv|<<Z}a/log r, |y|<cos (Imv logr), since g(s) is
analytical for Re s > 0 (cf. (2.16)). Moreover it is a periodic function of v
with period 1. It follows that e¢(*) can be written in the form

eg(7+i7y) — 57 Xn (U) y" % ‘ B . . . (4' 20)

n=0

where the functions yn(v) are analytical in the strip [Imv|<%a/logr,
periodical mod 1, and satisfy

[z (@) <! (oo <v<oo,n=0,1,2,...).
If v is real (4.20) converges for |y | <<1.
We now easily deduce from (4.19) and (4.20) that o(u, ) gg can be
written in the form (o real)

d R ® | \
o (. y)&iz’:ez-'wmownz_‘own (i—g—i)z” (Iz] < c) . (4.21)

Again, yn (v) is analytical for |Imv| <<{a/logr and
[wn (v)]| < ! (—ooe<<v<<oo,n=0,1,2,...).
It is easily verified that
yo(logo/logr)=e®. . . . . . . (4.22)

Now take cyg<<1 such that —c;q =y =cg implies |z|<<3cyqy,
c17|2z| <% and either |arg z| < {a or | arg —z | <<}7. Let ¢y and ¢, denote

the values of z for y = -—c,¢ and y = -+c,g, respectively, and put
Re 12 = Re {,2 = c;9. Now the integral

Cix

} o(u, y)dy

—Cis

43



668

can be expanded in a familiar way by means of (4.21): for any positive
integer N we have (u > cg, 6 <e-1)

Cig ©
. IN+1 log 6>‘J. e 1;;;7'—1
— ogr n
l J 0 (u,y)dy nélo ¥ <log r € 2 ds

—Ci —»

<
(4. 23)

1
ologs

t -z
‘J e 2log r 2zn dZ

B

— ®
<C20 (N) e—cmlogf 1/2]0(37‘ + Z" C:l7+l

2N+2

.

On taking for our integration path the broken line consisting of the
segments (£, 0) and (0, ), we find because of

leir Lip | <3 |arg —(y | <da, |arg £o| <ia
(put |z | = ¢ on both parts of the path) if n = 2N + 2:

|
jfe—z'zlogf_l/ﬂogrzndz
%

| >
[ 22| 0
.

<J (2¢y,)1+2N+2 g tilogs~/alog r | ¢ [2N+2 dt<f.
— @

<

It now follows from (4.23) that (u > cgy, 6 <<e-1)

{fﬂe(u.y)dy—

e (4. 24)
— (Zdouryt £ (e =Bl flogs ¢z (N)
logo™ | m=o\logo™'/ 2mm! oo log r (log o~ Y)N+i"

On taking 1 = c;gin (4.6) and (4.16) we find (cf. (4.5), (4.1), (2.15),
(4.13) and (4.14))

(logz)* (3 1 . =1
P1 (u):r]/l(;g reZIogr (2+log r)log' tloglog= X
. T

g N o (1090) 2 .. (4.25)
Y log r 1
Xz Togoy T© ((log r*)NH)S'
where the functions
(2 m)!

2mm!

@m (v) = (log r)™ YvomWw) . . . . . (4.26)

are periodic functions of v with period 1, analytical in |Im v | <4n/log r.
Especially

Po (123 i) —efl) = expg Za‘b ap e~ iklogeflogrl . (4,27)
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Formula (4.25) is our final result for the asymptotic behaviour of Py (u);
o is related to u by (4.1) and cannot be expressed explicitly in terms of u
in a simple way.

5. Final results concerning P(u).
The difference P(u)—P{(u) is relatively small. We have, by (1.15)

Pu—1)<P w<P@, . . . . . . (6.1)
and on the other hand, by (1.9),

Pu)—Pu—1)=Pu/r)XPur*+1). . . . (5.2
It follows that
0ZPw—P @<P@er'+4+1. . . . . (5.3
In order to show that P, (ur—1 + 1) /P, (u) is small we first give a first-
order asymptotic expression for P, (u) explicitly in terms of u. It is readily
derived from (4.1),
oc'=ur'logr-logo!,
that, if u —» oo,
log 67! =log u —log log u + log log r —logr 4 O (log log u/log u),
log log 6=! =log log u + O (log log u/log u),
log? 0 = (log u —log log u)> — 2 log (r/log r) - (logu—log log u) +
+ 2 log log u + log? (r/log r) -+ 2 log (r/log r) + O {(log log u)?/log u},
and we obtain from (4.25)

= 2
log P, (1) = 1992 ,,1991203) ; 359@1@ n

—{—2% é;;log u—loglog u + log log r — 4 log 27 4

+_2°;(1k exp s2.‘tik (109 oJop log e log logr) g'{‘

{ log r
+ O {(log log u)?/log u{.

The an are defined by (2.11) and (2.13).

From (5.4) it is easily deduced that

Py(ur'+1)/P, (u) = O {exp (—log u + log log u)} = O (u~}).

Now (5.3) shows that (4.25) and (5.4) remain valid if P, (u) is replaced
by P(u).

If r and rh are integers we have P(h) = p(rh); thus (5.4) proves (1.4).

The more precise expansion (4.25) however cannot easily be expressed
explicitly in terms of u (or rh).

March 1948.

(5. 4)

Mathematisch Instituut der Technische
Hogeschool, Delft.



