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1. INTRODUCTION

Consider a sports tournament where all n players play each other and after all the
(72’) games are completed, one would like to rank the players with as few inconsis-
tencies as possible. By an inconsistency we mean a higher ranked player actually
lost to a lower ranked player. A natural way to generate such a ranking is to rank
according to the number of wins (with ties broken in some manner). We show that
this natural heuristic has a provably good performance guarantee.

A weighted tournament with probability constraints is a complete directed graph
T = (V, E,w) where w.y is the weight function on ordered pairs of vertices such that
for any u,v € V with u # v, Wy, +Wyy = 1 and Wy, Wy, > 0. We will use the term
tournament to refer to a weighted tournament with probability constraints. An
unweighted tournament is a special case of weighted tournaments with probability
constraints, where the weights of the edges are either 0 or 1. The minimum feedback
arc set in T is the smallest weight set E/ C E such that (V, E\ E') is acyclic.
Alternatively, a minimum feedback arc set can be described by an ordering o :
V —{0,1,--- ,n — 1} which minimizes the weight the of back edges induced by o
where a back edge (u,v) € E satisfies o(u) > o(v).

The feedback arc set problem in general directed graphs can be approximated to
within O(log nloglogn) [Even et al. 1998; Seymour 1995] and is APX-Hard [Karp
1972; Dinur and Safra 2002]. The complementary problem of the maximum acyclic
subgraph problem! can be approximated to within 2/(1 + Q(1/vA)) (where A is
the maximum degree) [Berger and Shor 1990; Hassin and Rubinstein 1977] and is
APX-Hard [Papadimitriou and Yannakakis 1991]. The feedback arc set problem
in tournaments (shortened to FAS-TOURNAMENT for the rest of the paper) was
conjectured to be NP-hard for a long time [Bang-Jensen and Thomassen 1992]. The
conjecture was recently proved in [Alon 2006]. Ailon, Charikar and Newman showed
that the problem is NP-hard under randomized reductions [Ailon et al. 2005]. Alon
derandomized their construction [Alon 2006]. The NP-hardness result was also
obtained independently by Contizer [Conitzer 2006]. The work of Ailon, Charikar
and Newman ([Ailon et al. 2005]) also analyzes the following simple randomized
3-approximation algorithm for unweighted FAS-TOURNAMENT. Their algorithm
first picks a random vertex p to be the “pivot” vertex. All the vertices which
are connected to p with an out-edge are placed to the “left” of p and the vertices
which are connected to p through an in-edge are placed to the “right”. Then, the
algorithm recurses on the two tournaments induced by the vertices placed on either
side of p.

Weighted FAS-TOURNAMENT is defined on a weighted tournament 7" where the
weights satisfy probability constraints. Ailon et al. show that running their algo-
rithm for FAS-TOURNAMENT on the unweighted tournament that is the weighted
majority? of T yields a 5 approximation for weighted FAS-TOURNAMENT when
the weights satisfy probability constraints.

IThe maximum acyclic subgraph of a directed graph G = (V, E) is the largest cardinality subset
E’ C E such that the graph (V, E’) is acyclic.

2The weighted majority of a weighted tournament T is defined as follows. For any pairs of vertices
u and v, orient the edge between u and v in the direction which has the larger weight (breaking
ties arbitrarily).
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There is a much simpler algorithm for both weighted and unweighted FAS-
TOURNAMENT than ones considered by Ailon et al. — order the vertices in in-
creasing order of their (weighted) indegrees where ties are broken arbitrarily. We
analyze this algorithm (which we call INCR-INDEG in this paper) and show that it
has an approximation guarantee of 5 for both unweighted FAS-TOURNAMENT and
weighted FAS-TOURNAMENT when weights satisfy probability constraints.

We also study the problem of RANK-AGGREGATION. In this problem, given n
candidates and k permutations of the candidates {my,ma, -, 7}, we need to find
the Kemeny optimal ranking, that is, a ranking 7 such that x(mw, 71,7, -, 7) =
Zle K(m,m;) is minimized, where K(m;, ;) denotes the number of pairs of can-
didates that are ranked differently by m; and 7;. The problem is NP-hard even
when the number of lists is only four [Bartholdi et al. 1989; Dwork et al. 2001].
There is a simple deterministic 2-approximation for this problem — pick the best
of the input rankings. Ailon et al. reduce RANK-AGGREGATION to weighted FAS-
TOURNAMENT with probability constraints [Ailon et al. 2005]. This reduction
implies that INCR-INDEG is a 5-approximation for RANK-AGGREGATION. Inter-
estingly, INCR-INDEG in the RANK-AGGREGATION setting is exactly the same as
the Borda’s method [Borda 1781], which was proposed in the late 18th century.
Thus, our results show that the Borda’s method is a factor 5 approximation of the
Kemeny optimal ranking. Fagin et al. also show that the ranking produced by
Borda’s method is within a constant factor of the Kemeny optimal ranking [Fagin
et al. 2005].

To complement our upper bound result, for any € > 0, we exhibit an infinite
family of (unweighted) tournaments for which INCR-INDEG has an approximation
ratio of 5 — e irrespective of how ties are broken. This result shows that our analysis
is tight. This is somewhat surprising as it shows that the “dumbest” way of breaking
ties is as good as the best tie breaking mechanism at least from the viewpoint of
approximation guarantees.

Independent of our work, Van Zuylen [van Zuylen 2005] has designed a determin-
istic algorithm for weighted FAS-TOURNAMENT with an approximation guarantee
of 3 (when the weights satisfy probability constraints). Her algorithm derandom-
izes the algorithm of Ailon et al. mentioned earlier in this section (the pivot is
chosen based upon the solution to the relaxation of a well known LP for FAS-
TOURNAMENT).

We now review some work that has appeared subsequent to this work. Van
Zuylen, Hegde, Jain and Williamson [van Zuylen et al. 2007] present a combinato-
rial deterministic algorithm for weighted FAS-TOURNAMENT with an approxima-
tion factor of 4. Their algorithm first removes all directed triangles in the graph and
then uses a recursive algorithm due to Chudnovsky, Seymour and Sullivan [Chud-
novsky et al. 2007]. Recently, Kenyon-Mathieu and Schudy [Kenyon-Mathieu and
Schudy 2007] have designed a polynomial time approximation scheme (PTAS) for
the weighted FAS-TOURNAMENT. In fact, the algorithm works for more general
weighted tournaments than our setting: for any given b € (0, 1] and for any pair of
vertices ¢ # j, the weights of the edges between the vertices satisfy w;; +wj; € [b, 1]
(the running time is doubly exponential in 1/b). Note that in our setting b = 1.
The algorithm is an ingenious combination of some steps of local improvement along
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with applications of the PTAS of [Arora et al. 1996] for the maximum acyclic sub-
graph problem. Balcan et al. [Balcan et al. 2007] show that in a machine learning
setting, the “regret” of ranking is within a factor two of that of binary classifica-
tion. Their reduction uses the ranking-by-number-of-wins algorithm on a suitably
defined tournament.

While algorithms for (weighted) FAS-TOURNAMENT with better approximation
guarantees are known (and were known when we first presented our results), the
algorithm we analyze is arguably the simplest one. As a bonus, our analysis also
gives a provable guarantee for the classical Borda’s method for rank aggregation.

The rest of the paper is organized as follows. We introduce some notation and
some known facts in Section 2. We analyze the algorithm INCR-INDEG in Section
3. In Section 4, we present an infinite family of tournaments for which INCR-
INDEG has an approximation factor of 5 — €, for any ¢ > 0. Finally, we conclude
with some open questions in Section 5.

2. PRELIMINARIES

We first fix some notation. For any real x (note that x can be negative), |z] is
defined to be the largest integer n such that n < x. Similarly, [z] is defined to be
the smallest integer n such that < n. For any positive integer m we will use [m)]

to denote the set {0,1,--- ,m—1}. Also for any pairs of integers a < b, we will use
[a,b] to denote the set {a,a+1,---,b}. We will also use (a,b] to denote the set
{a+1,---,b}. The vertex set of the input tournament is assumed to be [n]. For

any edge (u,v) in T, its weight is given by w,, > 0. For the rest of the paper, the
weights are assumed to satisfy probability constraints, that is, wy, + Wy, = 1 for all
u,v € [n]. For any vertex v € [n], In(v) denotes the (weighted) indegree of v, that

is,
In(v) = Z Wy -
u€[n]\{v}
We will use o : [n] — [n] as a generic permutation. O will denote the permutation
returned by the optimal algorithm for FAS-TOURNAMENT on input 7" while A will
denote the permutation returned by INCR-INDEG. Given any permutation o, B,
denotes the sum of the weight of back edges induced by o on T', that is,

B(7 = Z Wy -
u,v€[n]:o(u)>o(v)
We now recall two well known notions of distances between permutations. Given

permutations o, p : [n] — [n]; the Spearman’s footrule distance between the two
permutations is given by

Flo,p) =Y lo(v) = p(v)|
vE[n]
and the Kendall-Tau distance is given by
1
K(o,p) = 5 Z Lo (w)—o(v))-(p(u)—p(v))<0

w,vE[n]
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where 1( is the indicator function. In other words, K(c,p) is the number of
(ordered) pairs which are ordered differently by o and p. The following relationship
was shown by Diaconis and Graham.

THEOREM 2.1 [DIACONIS AND GRAHAM 1977]. Let n > 1 be an integer and
a,p : [n] — [n] be permutations. Then the following is true:

K(o,p) < F(o,p) < 2K(0, p).

For RANK-AGGREGATION, we will need the notion of Kemeny distance. Given
the input lists {my, 72, -+, 7} and an aggregate permutation o, the Kemeny dis-
tance is defined as

k
K(O'a T, T2, aﬂ-k) = ZIC(U7 7T7)
=1

We now present the reduction of RANK-AGGREGATION to weighted FAS-TOURNAMENT
with probability constraints from [Ailon et al. 2005]. Let {m,--- , 7} be a RANK-
AGGREGATION instance on the set of candidates [n]. The equivalent weighted
FAS-TOURNAMENT instance is a weighted tournament on [n] such that for any
pair of vertices ¢ and j, w;; is the fraction of input permutations which rank :
before j. Note that by construction the weights satisfy probability constraints. Fi-
nally, sorting the vertices by their weighted indegrees (on the weighted tournament
constructed above), is the well known Borda’s method [Borda 1781].

3. THE ALGORITHM FOR FAS-TOURNAMENT

We will analyze INCR-INDEG in this section. Recall that INCR-INDEG orders the
vertices by their weighted indegrees with ties broken arbitrarily.
Our main result is the following theorem.

THEOREM 3.1. INCR-INDEG is a 5-approzimation for weighted FAS-TOURNAMENT,
that is, B4 < 5Bp.

The reduction from FAS-TOURNAMENT to RANK-AGGREGATION outlined in
Section 2 implies the following corollaries to Theorem 3.1.

COROLLARY 3.2. INCR-INDEG is a 5-approzimation for RANK-AGGREGATION.

COROLLARY 3.3. Ifo is the Kemeny optimal rank aggregation for input rankings
m.79, -+ , T and o’ is an output of the Borda’s method for the same input, then

k(o' mi, ma, - k) < Bk(0, Ty, T2, -+, Tk)-
We will prove Theorem 3.1 through the following sequence of lemmas.

LEMMA 3.4. For any permutation o : [n] — [n],

2B, > Y |o(v) — In(v)].
]

vE[n

Note that Lemma 3.4 generalizes the upper bound in Theorem 2.1 to a rela-
tionship between similar distance measures between a permutation and a weighted
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tournament with probability constraints. Indeed, if the input tournament is un-
weighted acyclic tournament (with vertices arranged in order of indegrees), then
In(-) is just the identity permutation ¢. Further, note that in this case, Lemma 3.4
states that 2K (o, 1) > F(o,1).?

LEMMA 3.5. For any permutation o : [n] — [n],

Z|a — In(v |>Z|,4 — In(v)|.

1)6 1)6
LEMMA 3.6. For any two permutations o, p : [n] — [n],
F(o,p) > |B, — Bs|.
We first show how the above lemmas prove our main result.

Proof of Theorem 3.1: Consider the following sequence of inequalities.

4Bo Z|O( ) — In(v |+Z|O ) — In(v)]
sz — In(v |+Z|A — In(v)|

v

- Z (|0(v) — In(v)| + |A(v) — In(v)])
v€E[n]

> F(0,A)

> B4 — Bo.

The first, second and last inequalities follow from Lemmas 3.4, 3.5 and 3.6 respec-
tively (with ¢ = O and p = A). The third inequality is the triangle inequality
while the equality just follows from rearrangement of the terms. Thus, we have
B4 < 5Bp which proves the theorem. O

In the rest of this section, we will prove Lemmas 3.4-3.6.

Proof of Lemma 3.4: Consider any arbitrary v € [n]. Let W, (v) be the sum
of weights of edges from vertices to the “left” of v (according to o) to v; W, (v)
be the sum of weights of edges from v to vertices which are to the left of v ; and
W (v) be the sum of weights of edges from vertices which are to the right of v to
v. More formally,

Wy (v) = Z Wy

u:o(u)<o(v)

WE_ (v) = Z Wy,

u:o(u)<o(v)

Wy (v) = Z T

u:o(u)>o(v)

3Theorem 2.1 is stated in terms for two general permutations ¢ and p. However, can one assume
w.l.o.g. that p = cas F(o,p) = F(oop~!,:) and K(o, p) = K(oop~1,1), where o is the composition
operator and pop~ =¢.
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By definition, we have
W (v) + Wg (v) = In(v). (1)

The following identity follows from definitions and the fact that weights satisfy
probability constraints.

Wi () + W, (v) =o(v). (2)

Now, 2B, = Zve[n](Wf(v) + Wy (v)) as each back edge is counted twice in the
sum. To complete the proof, we claim that for any v € [n], W; (v) + Wy (v) >

|o(v) = In(v)].
Indeed from (1) and (2),

Wi (v) + Wg (v) = o(v) + In(v) — 2W; (v)
= |o(v) — In(v)| + 2(min{o(v), In(v)} — W (v))
(v) — In(v)|.

V

> o

The last inequality again follows from (1) and (2) and the fact that W;" (v), Wy, (v) >
0. 0O

Lemma 3.5 is a restatement of the fact that for any real numbers a; < as - < ay,
the permutation o : [n] — [n] which minimizes the quantity Y., |a; — o(i)| is the
identity. For the sake of completeness, we present a proof.
Proof of Lemma 3.5 If o sorts the vertices in [n] according to their indegrees
then the statement of the lemma holds trivially.

So now consider the case when there exits ¢ € [n] such that In(u) > In(v) where
u = o"!(i) and v = 071(i + 1). Construct a new ordering o’ that is same as
o except u and v are swapped: o' (w) = o(w) if w & {u,v} and o'(u) = i + 1,
o'(v) = i. We next show that 3 1, |0(v) = In(v)| = 3 ¢ l07(v) — In(v)]: the
rest of the proof is a simple induction. By the construction of ¢’,

> (jo(v) = In(v)| — [0’ (v) — In(v)])
v€E[n]
=i —In(u)|+|i+1—In(v)| —|i — In(v)| — | + 1 — In(u)]
= 2(min{%, In(v)} — min{é, In(w)}) + 2(min{i + 1, In(u)} — min{i 4+ 1, In(v)}).

The last equality follows from the identity | —y| = 2 + y — 2min{z, y}. Finally we
verify that the last sum is always non-negative. There are three cases. If i > In(u)
then the first term is 2(In(v) — In(u)) while the second term is 2(In(u) — In(v)).
If In(v) > i then the first term is 0 while the second term is 2max(i + 1 — In(v), 0).
Finally if In(u) > ¢ > In(v) then the first term is 2(In(v) — ¢) while the second
term is 2(i + 1 — In(v)). O

Proof of Lemma 3.6: Consider the set of edges which are back edges in o but
are not back edges in p. Denote this set by B\ ,. Also consider the set of edges

which are back edges in p but are not back edges in 0. Denote this set by B,\,-.
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Note that

Z Wy + Z Wyy = |Bp - B<7|- (3)

(u,v)€B,\ (u,v)EB\ &

The crucial observation is that if an edge (u,v) € B,\, then (v,u) € B,,. This
along with the fact that the weights satisfy probability constraints imply that
IC(U7 p) = E(u,v)eb’d\p Wyy + Z:(u,v)eb’p\(7 Wy which by (3) anheb ’C(Ua p) > |B/’ -
B,|. Theorem 2.1 completes the proof. O

4. A LOWER BOUND FOR INCR-INDEG

We will prove the following theorem in this section.

THEOREM 4.1. For every constant € > 0, there exists an infinite family of (un-
weighted) tournaments 7. such that arranging the vertices of any tournament in 7.
according to their indegrees, irrespective of how ties are broken, results in at least
5 — e times as many back edges as the optimal ordering.

Note that the above result implies the analysis in Section 3 is tight, even if one
modified INCR-INDEG to break ties in some “intelligent” way.

For any tournament 7', we will use Z(T') to denote the ordering according to
indegrees which induces the least number of back edges (that is, ties are broken
“optimally”). Also let O(T') denote the optimal ordering. For the rest of this
section we use tournaments to refer to unweighted tournaments.

We will use two parameters,  and n, in this section. For any n > 5 and = > 4
such that x is a perfect square, we will construct a tournament 77, such that

lim LI(T”‘")

=5, 4
T,m—00 BO(Tz,n) ( )

which will prove Theorem 4.1.

In the rest of this section, we will describe the construction of 77, and show
that (4) holds. Fix n > 5 and = > 4 such that z is a perfect square. Ty, will have
n(2x + 1) vertices. We will partition the vertices into n blocks of 2z + 1 vertices
each. The i*" block for any i = 1,2,...,n, will be denoted by b*. Further, for every
j=0,1,...,2x; the j*" node in b’ will be denoted by b; The node b, is the mid-

dle node of b and the sets of nodes {b{,bi, -+ ,b%_;} and {b% 0L o, b5, }
are the left half and right half of b’ respectively. Let ¢ denote the ordering
bgy - ,bém,bé,--- b2 N SRR

b%.. Finally, unless mentioned otherwise, an edge will be called backward or forward
in T ,, with respect to ¢.

The basic idea behind the construction is as follows. In T ,,, the sub-tournaments
spanned by each b® would have no back edges if nodes in b’ are arranged according
to ¢. However, back edges from b**! and b**+2 will force (Te,n) to order the vertices
in b’ (more or less) in the reverse order of ¢. This will result in Z(7}, ) inducing
many more back edges than the optimal.

We will describe the construction of T}, ,, by starting with a tournament on the
vertex set U, b® such that all the edges are forward edges according to ¢. Then
we will reverse the direction of some edges between b® and b**! (which we call Type
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NP A I BN

H‘ H‘+l

Fig. 1. The Type I edges between b and b**! (1 <i < n) when z = 4.

I edges) and some edges between b’ and b2 (which we call Type II edges) to get
our final T} ;,. We now formally define these edges.

Assume we start with a set of edges E on V = U, b’ such that for any u,v € V,
(u,v) € E if and only if ¢(u) < ¢(v). We first describe the Type I edges. For
every i (1 <i < n), the last vertex of b**t! has a Type I edge to every vertex in the
left half of b’. The second last vertex of b*T! has a Type I edge to all but the last
vertex in the left half of b* and so on. More formally, for every i =1,2,--- ,n — 1,

for (j=z+1l,z+2,---,22)
for (k=0,1,---,j—xz—1)
E — (E\{(b}, 05"} U {6571, 0)}

See Figure 1 for an example when x = 4.

We turn to the Type II edges. First, partition the left and the right half of every
b® into \/z consecutive minigroups of \/z vertices each. A minigroup is connected
to another if for every 0 < £ < VX — 1 there is an edge from the ¢th vertex in the
first minigroup to the ¢th vertex in the second minigroup. For any i (1 < i <n—1),
Type II edges are introduced to connect the last minigroup in the right half of b*+2
to all the minigroups in the left half of b°. The second last minigroup in the right
half of b"*? is connected to all but the last minigroup in the left half of b* and so
on. More formally, for every i =1,2,--- ,n — 2,

for (k=0,1,---,y/x—1)
for (r=0,1,--- k)
for ({=0,1---,y/z—1)

i i+2 i+2
E — (E \ {(brﬁ-i-é ’bw+k\/5+f+l)}) U {(ba:+k\/5+€+17 b

See Figure 2 for an example of Type II edges for the case when x = 4.

The tournament defined by the vertices V' and edges F is the required tournament
Ty n. We will now estimate the indegrees of the vertices in T ,,. Consider an ¢ such
that 2 < ¢ < n — 1. Before Type I and Type II edges were introduced, T, , was
an acyclic graph. Thus, the indegree of the vertex b: (where 0 < j < 22) was the
number of vertices connected to it which is (i —1)(2z+ 1)+ j. When Type I edges
were introduced, the indegree of the last vertex in b* decreased by z (as there was
now an edge from it to every vertex in the left half of 5*~1) while the indegree of

rvmre)}

ACM Journal Name, Vol. V, No. N, May 2008.
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Fig. 2. Type I edges between b® and b*t1 and Type II edges between b® and b*+2 (1 <i<n—1)
when z = 4. Type II edges are the ones which are not present in Figure 1.

the first vertex in b’ increased by x (as there was now an edge from every vertex
in the right half of b**! to b)). Similarly, the indegree of the second last vertex
decreased by x — 1 while the indegree of the second vertex increased by  — 1 and so
on. Thus, after all Type I edges were introduced, the degree of b; (0 <j <2zx) was
(1—1)(2z4+1)42. When Type II edges were introduced, the indegree of every vertex
in the last minigroup in the right half of b’ decreased by / (as the last minigroup
is now connected to every minigroup in the left half of *~2) while the indegree of
every vertex in the first minigroup in the left half of b® increased by /z (as every
minigroup in the right half of 572 is now connected to the first minigroup in the left
half of ). Similarly, the indegree of every vertex in the second last minigroup in the
right half of b’ decreased by /x — 1 while the indegree of every vertex in the second
minigroup in the left half of b° increased by v/ — 1 and so on. In particular, the

indegree of b}, did not change. Thus, for 0 < j <z, by = (i—1)(2z+1)+x + {%-‘
and for z < j < 2x, by = (1 = 1)(2x +1) + = — [%-‘ =@-1D2z+1)+z+ {%J

Taking care of the boundary cases we have the following expressions for the
indegrees.

In(bl) =4 °F 2] i (5)
’ gy j € (x,2a]
g2y | 31 [2] e )
’ 3z 41, j € (x,2z]

Fori=3,---,n—2and for j =0,1,--- ,2x;

(i—1)Q2z+1)+a+ [’"—}ﬂ je0,q]

n(bt) = z | 7

() (i-DEz+1)+a+ |ZE], )€ (@ 2] @
i (n—2)2z+1) +z, jelo,x]

i) = { (n—2)2z+1)+ 2+ L%J , j € (z,2a] (8)

ACM Journal Name, Vol. V, No. N, May 2008.
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=D+ j € [0a]
In(bj)z{(n_l)(2x+1)+x+r\;ﬂ,je(x,2x] 9)

We first upper bound the number of back edges in the optimal ordering.

LEMMA 4.2. The number of back edges in the optimal ordering of T, , is at most
IQT" + o(z2n).

PrOOF. To prove the lemma, we show that By < x?n/2 + o(z?n). Note that
the only back edges in Ty, ,, according to ¢ are the Type I and Type II edges. By
definition, the number of Type I edges is
z(x +1) ?n  zn  2n 9

5 n—1)< +—=—+o0(z"n)

1 1) = rn
(n—1)(z+x +--41) 5 5 5

and the number of Type II edges is

(n—2)(\/a?+\/a‘:—1+---+1):M(nwk%+$=o(x2n).

The proof is complete. O
We now lower bound the number of back edges induced by Z(Ty »).

LEMMA 4.3. The number of back edges induced by I(Ty) on Ty is at least

—5””22” —o(z%n).

Note that Lemmas 4.2 and 4.3 prove equation (4) and thus, Theorem 4.1. We
end this section by proving Lemma 4.3.
Proof of Lemma 4.3: We first claim that for any i < i/, every node in b’ is placed
before every node of b by T (Ty,n). In other words, all Type I and Type II edges
are back edges (between vertices in the different blocks) according to Z(7} ,). The
proof of lemma 4.2 shows that this number is at least 2%n/2 — o(x?n). For any 1,
let maz; and min; be the maximum and minimum indegrees of all vertices in b’
To prove the claim, we will show that

foralli=1,2,--- ,n—1; max; < min;1. (10)

Indeed from Equations (5)-(9), we have the following values for max; and min;:

2z, i=1

maz; =< (2i—Dz+Vx+(GE—-1),i=2,---,n—2
(2n —3)x + (n — 2), t=n-—1
3z +1, i =2

min; =< 2i— Dz —r+({G—-1),i=3,---,n—1
(2n —2)x+n —1, i=n

An inspection of the values shows that (10) holds.

Thus, we have counted all the back edges between vertices of b* and b" for
1 # 1. We now need to count the number of back edges between vertices in the
same b’. Counting conservatively, we assume that there are no such back edges for
i €{1,2,n—1,n}. Fix an ¢ such that 2 <i < n — 1. We claim that the number of
back edges between vertices in b’ is at least

r(2x +1) —z(Vo —1). (11)
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To see this divide the left half of b into y/z minigroups— lo, l1, - - - lz—1- In par-
ticular, I consists of the vertices bzﬁ, bz\/z_uv e ’b7(:k+1)\/5—1' Similarly the right
half of b* is divided into /z minigroups— (for left to right) ro,71,---,7 z_;. Ob-
serve from (7) that for any k = 0,1,--- ,\/z — 1; the degree of a vertex in I, and ry,
is(i—1)2z+1)+z++x—kand (i —1)(2z+ 1) + 2 — k — 1 respectively. Thus,
Z(Ty,») will have to arrange vertices in the order T z—1:Tyz—2:""" 70, followed by
the middle node b, followed by vertices in the order lyz—1:lyz—2, " lo. Again
counting conservatively, we assume that there are no back edges in induced tourna-
ments over any minigroup Iy, or ry (where k =0,1,--- ,y/r—1). However, note that
every remaining edge in T ., the induced tournament over b?, is a back edge. There

z,m’

are a total of (2‘”2‘“) = 2(2x + 1) edges in T

any ly or ri has (‘f) many edges and there are 21/ such minigroups. This implies
that the number of back edges in T , is at least x(2x 4+ 1) — 2/z - Z(yz — 1)/2
as claimed in (11).

Recalling that there are n — 4 choices for 7, the number of back edges within some

block totaled over all the n — 4 blocks is
(z(22 4+ 1) —z(vz — 1)) (n — 4) > 22°n — o(z’n).

while the induced tournaments over

n

Adding the estimates of the number of back edges between different b's and number
of back edges within the same b* completes the proof. O

5. CONCLUSIONS AND OPEN PROBLEMS

In this paper, we analyzed a very simple heuristic for the FASS-TOURNAMENT
problem (and a weighted generalization) and showed that it has an approximation
factor of 5. Recently Kenyon-Mathieu and Schudy have designed a PTAS for the
problem. One of the key ingredients of their algorithm is a sequence of local im-
provements steps. It is an open question whether such local improvements when
applied to our algorithm can give an approximation factor better than 5.

Another interesting problem is to get a tighter bound on how good Borda’s
method is for approximating the optimal ranking for rank aggregation. Note that
the example in Section 4 is not a valid example for rank aggregation (the weights
do not satisfy triangle inequality).
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