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Abstract
We present an interactive method for mesh segmentation that is inspired by the classical live-wire interaction for
image segmentation. The core contribution of the work is the definition and computation of wires on surfaces that
are likely to lie at segment boundaries. We define wires as geodesics in a new tensor-based anisotropic metric,
which improves upon previous metrics in stability and feature-awareness. We further introduce a simple but effec-
tive mesh embedding approach that allows geodesic paths in an anisotropic path to be computed efficiently using
existing algorithms designed for Euclidean geodesics. Our tool is particularly suited for delineating segmenta-
tion boundaries that are aligned with features or curvature directions, and we demonstrate its use in creating
artist-guided segmentations.

1. Introduction

Mesh segmentation is a fundamental task that has nu-
merous graphics applications including shape matching,
parameterization, texturing, and remeshing. While exten-
sive research has been conducted on automatic algorithms
[APP∗07, Sha08], computing semantically meaningful seg-
mentations remains an unsolved problem. In addition, auto-
mated methods lack convenient controls by the users, which
makes them less suited in human-centered application do-
mains such as creative design. As a result, semi-automatic
tools have been developed that allow users to actively par-
ticipate in the segmentation process [ScH00,And00,CGF09,
HL09, LL02, LLS∗05, FKS∗04, TPSHSH13]. The ultimate
goal of interactive segmentation is to give users sufficient
control over the results while minimizing their effort.

1.1. Motivation

Our work is inspired by the live-wire metaphor for inter-
active image segmentation [MB95]. Given a seed location
provided by the user, the computer dynamically displays a
curve segment (the “wire”) connecting the seed and the cur-
rent cursor location as the user moves the cursor over the
image (hence “live”). The wire is computed to “snap” onto
nearby image features. Once the user is satisfied with the
wire, she fixes it by a mouse click, and the current cursor
location is used as the seed point for the next wire.

The live-wire interaction offers a good trade-off between
controllability and ease-of-use for segmentation. The user
has direct control over the segmentation boundaries - a wire
is fixed only when the user is happy with it. This is in
contrast to other approaches, such as snakes and level-sets,
where the user cannot directly control the exact shape of the
boundaries. On the other hand, compared with purely man-
ual drawing of boundaries, live-wires make it is much easier
and more accurate to trace boundaries that lie at strong im-
age features - they can be captured by long wires with few
clicks. More inputs (and shorter wires) are needed only on
more homogeneous parts of the image, where the user may
exercise their judgement or creativity.

1.2. Problem statement

To extend the live-wire interaction for mesh segmentation,
the key research problem is to define a wire between two
points on the surface that forms a natural segment bound-
ary. Applications and perceptual studies point to several line
types that are candidates of “good” segment boundaries:

• Features lines: Both perception literature [HR83] and
user studies [CGF09] suggest that humans partition ob-
jects into parts along strong concavities (i.e., valleys). On
the other hand, applications like texturing require each
textured patch to have low curvature variation, implying
that both concavities and convexities (i.e., ridges) should
be captured by the patch boundaries.
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Figure 1: Shortest paths, colored by their lengths (blue: short; red: long), in the Euclidean metric (a) and our anisotropic
metric (b) from a single vertex (red) in the Fertility model, and a live-wire network where each wire (black) is a geodesic in our
metric between two seeds (blue) (c).

• Curvature lines: In conceptual design, artists often con-
vey a 3D shape using lines that follow the principle curva-
ture directions [BWSS12]. Similar properties were found
on lines drawn by artists to depict an existing surface
[CGL∗08].

• Shortest paths (geodesics): The minimality rule from
perception [HR83] suggests that humans tend to decom-
pose a shape along locally-shortest boundaries.

Definitions and algorithms for these line types, while
available, are quite distinct from each other. Furthermore,
with the exception of geodesics, the other line types cannot
be defined between two arbitrary points on the surface. The
challenge we will address in this work is to define, and com-
pute, wires that capture the essence of these candidate lines
as much as possible while constrained at the ends.

1.3. Approach

To address the challenge, we define a wire as the shortest
path in a non-Euclidean, anisotropic metric over the sur-
face. The metric is designed so that paths that are closer to
salient features or aligning better with curvature directions
are shorter. At a vertex, the metric prefers paths that are bet-
ter aligned with the maximal (or minimal) curvature direc-
tion. This preference is more pronounced at vertices where
the maximal and minimal curvatures are more differentiated,
which tend to be near prominent ridges and valleys.

To efficiently compute the wires, we embed the mesh in
the new metric so that the anisotropic geodesics on the orig-
inal mesh become Euclidean geodesics on the embedded
mesh. In this way, we leverage existing efficient implemen-
tations of exact geodesics over triangular meshes. Once the
user locates a seed vertex, geodesics are computed from the
seed to every other vertex. As the user moves the other end
vertex, the shortest path is visualized at interactive speed.

Figure 1 (a,b) compares the shortest paths in the standard
Euclidean metric and in our anisotropic metric. Note that
geodesics in our metric tend to follow features and curva-
ture directions. Figure 1 (c) shows a segmentation network
created using our live-wire tool.

Contributions The contribution of this work is three-fold:

1. A novel interface for interactively drawing segment
boundaries on meshes. The interface closely mimics the
classic live-wire metaphor for image segmentation.

2. A new tensor-based anisotropic metric on surfaces
for line drawing. Compared to existing metrics, the
geodesics under our metric better snap to salient features
(e.g., ridges and valleys) and is also more stable in homo-
geneous and feature-less regions.

3. An efficient method for embedding a triangular mesh
in a tensor-based anisotropic metric using local subdivi-
sion. While lacking theoretical support, we empirically
observed that the method is highly effective in reducing
the coverage of triangles that fail triangular inequality.

2. Background and previous work

We first discuss the mathematical background of surface
metrics, then we give a brief review on previous work on
defining surface metrics, computing anisotropic geodesics,
and interactive mesh segmentation.

2.1. Surface metrics: background

A metric is a way to measure distances on the surface. To
define a metric on a smooth surface S in R3, we first define a
scalar norm, gx(v), for each point x ∈ S and a tangent vector
v at x. Let τ : [0,1]→ S be a curve on the surface. The length
of τ using this norm is

lg(τ) =
∫ 1

0
gτ(t)(τ

′(t))dt
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The distance between two points x,y on S is the infimum of
lengths among all curves between x,y. The path that realizes
this distance, if exists, is a geodesic under the metric.

A norm (and the resulting metric) is isotropic if it is
direction-invariant, that is gx(v) = cx(‖v‖) for some func-
tion cx. As a special case, the Euclidean metric, which gives
rise to the standard geodesics, is defined by the Euclidean
norm gx(v) = ‖v‖.

An anisotropic norm is often defined by associating each
point x ∈ S with a 2D symmetric tensor Mx. Expressing v
as a 2D vector in a chosen coordinate frame on the tangent
plane at x, the norm can be defined as

gx(v) =
√

vT Mxv (1)

To understand the norm in a geometric way, let λ1,λ2 be
the eigenvalues of Mx such that λ1 ≥ λ2, and e1,e2 be the
corresponding eigenvectors. If θ is the angle formed between
v and e1, then we can re-write the norm as

gx(v) = ‖v‖
√

λ1 cos(θ)2 +λ2 sin(θ)2 (2)

From this formulation, it can be seen that gx(v) changes from√
λ1‖v‖ (greater) to

√
λ2‖v‖ (smaller) as the direction of v

sweeps from e1 to e2 (see Figure 2). The norm effectively
encourages geodesics to align with e2. The extent of this en-
couragement, relative to curves aligned with e1, can be cap-
tured by the ratio

√
λ1/λ2, which we call the anisotropy of

the norm at x. The maximum anisotropy of a metric is the
supremum of

√
λ1/λ2 over all points on S.

Figure 2: A tensor-based anisotropic norm.

In this work, we consider anisotropic norms that are
aligned with principle curvatures. In the following, we let
κ1,κ2 denote the maximum and minimum curvature at a sur-
face point, such that ‖κ1‖ ≥ ‖κ2‖, and u1,u2 be the corre-
sponding curvature directions.

2.2. Defining metrics

While Euclidean geodesics have been commonly used in in-
teractive drawing [ScH00, And00, CGF09], they usually do
not follow salient features, in particular ridges, or curvature

directions (see Figure 1 (a)). Several isotropic metrics were
proposed for terrain navigation [LMS96] and defining fea-
ture curves on surfaces [KMG98, HL09]. However, since an
isotropic norm does not consider the direction of the path, it
cannot explicitly enforce the geodesics to align with princi-
ple curvature directions.

A number of tensor-based anisotropic metrics have been
proposed in the context of quad meshing and segmentation
[CBK12, PSH∗04, KMZ10]. However, when the eigenvec-
tors of these tensors (e1,e2) are aligned with the principle
curvature directions (u1,u2), the geodesics under these met-
rics either become unstable in feature-less regions or may
fail to snap to salient features. More specifically,

• Campen’s metric: Campen et al. [CBK12] used a norm
with a constant anisotropy by setting

λ1 = α, λ2 = 1 (3)

for some global constant α > 1. Note that Mx is discon-
tinuous at an umbilical or saddle point, where curvature
directions u1,u2 are not well defined. As a result, the met-
ric and the resulting geodesics become rather unstable in
flat, spherical or saddle-like surfaces (see Figure 3 left).

• Pottmann-Kovacs metric: Pottmann et al. [PSH∗04] and
Kovacs et al. [KMZ10] used a norm with a variable
anisotropy,

λ1 = κ2
1 +β, λ2 = κ2

2 +β (4)

for some choice of β. The norm is well-defined at an um-
bilical or saddle point, where gx(v) becomes an isotropic

norm ‖v‖
√

κ2
1 +β. On the other hand, since the norm

scales with the curvature magnitude, geodesics tend to
avoid highly-curved parts of the surface even if features
are present. This is demonstrated in the Rocker arm ex-
ample of Figure 4, where geodesics in this metric (green)
cannot follow the curved ridges and valleys due to the
presence of a nearby flat region.

Non-tensor based anisotropic metrics have also been
studied for anisotropic heat diffusion [WHSQ11, HLS∗13],
quad meshing [TPP∗11], and computing curvature-aware
geodesic maps [YSS∗12]. These metrics are either not di-
rectly related to principle curvature directions [WHSQ11,
HLS∗13] or have similar limitations as the tensor-based met-
rics discussed above. For example, the metric of Tarini et
al. [TPP∗11], like Campen’s metric, may become unstable
near the singularity of the curvature field. The geodesics
under the metrics of Yoo et al. [YSS∗12], like Pottmann-
Kovacs metric, tend to avoid directions of high curvature or
high curvature variation even if the direction is aligned with
a feature (e.g., a highly curved ridge).

2.3. Computing anisotropic geodesics

Methods that compute geodesics in an anisotropic metric
generally take one of the two approaches. We will briefly
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Figure 3: Comparing Campen’s metric (left) with our metric
(right) on a tessellated sphere, showing the norm at each
vertex as an ellipse with λ1,λ2 as its major and minor axes
(top) and single-source all-destination geodesics (bottom).
Note that Campen’s metric is unstable on this near-umbilical
surface. We use α = 20 in Campen’s metric and γ = 0.1 in
our metric.

review methods in each strategy, with an eye towards their
balance between efficiency and accuracy. Note that while
many of these methods return only a distance field, smooth
geodesic paths can be traced from the gradient of the field as
in [YSS∗12].

Direct computation: The simplest way to approximate the
anisotropic geodesics is computing the shortest path in the
edge graph of the mesh, where each edge is weighted by
its length in the new metric [HL09]. However, the restric-
tion to edges results in poor approximation to the geodesics.
While more accuracy can be gained by adding Steiner points
and edges [LMS99], the addition comes at the cost of sig-
nificantly increased computational overhead [CHK13]. Sim-
ilar performance issue can be found with the ordered up-
wind method (OUM) [SV03, YSS∗12], which extends the
Fast Marching method [KS98] to handle general anisotropy
but at much higher computational cost.

Several recent methods trade off accuracy of the distance
field for efficiency. Campen et al. [CHK13] proposed the
Short-Term Vector Dijkstra (STVD) method that approx-
imates the geodesics by a combination of triangle edges
and Euclidean shortest paths. It was shown that a good bal-
ance between the accuracy and efficiency can be achieved
by a suitable choice of the parameter (k). More recently,
de Goes et al. [dGLB∗14] proposed to compute anisotropic
geodesic distances by adapting the efficient heat diffusion

Figure 4: Comparing geodesics in the Euclidean (red),
Campen’s (magenta), Pottmann-Kovacs (green) and our
(blue) metrics when endpoints lie on a curved ridge (top)
and a curved valley (bottom). Note that Pottmann-Kovacs
geodesics tend to avoid the features when flat regions are
nearby.

method [CWW13] using an generalized Laplacian opera-
tor. While no evaluation of the accuracy was provided in
the paper, experiments using a similar diffusion approach
[CHK13] suggested possible accuracy issues when the met-
ric has moderate-to-high anisotropy. In addition, parameter
tuning is required in both STVD and the diffusion method.

Mesh embedding: Alternatively, one may first find an
embedding S′ of the input surface S, so that anisotropic
geodesics on the S map to Euclidean geodesics on S′. A dis-
crete embedding can be found by replacing each edge length
in S by the distance evaluated in the new metric.

The advantage of mesh embedding is that it transforms
the anisotropic geodesic problem on S into the standard Eu-
clidean geodesic problem on S′, for which accurate and ef-
ficient solutions exist. The main challenge here is that the
new edge lengths may not preserve triangle inequality, a re-
quirement by all Euclidean geodesic algorithms. Previous
works have found that invalid triangles, which fail triangle
inequality, are common when the metric has large anisotropy
[KMZ10,CHK13]. Campen et al. [CHK13] restores triangle
inequality by solving a least-square optimization problem
with inequality constraints. However, the optimization pro-
cess can be time-consuming; embedding a mesh with 200K
faces could take almost a minute (see Figure 8). Also, fixing
the invalid triangles would involve changing the edge lengths
in other triangles.

We introduce a much more efficient strategy for ensur-
ing triangle inequality based on local subdivision, which re-
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duces the running time to a fraction of a second (Section
4). Even when used with the exact Euclidean geodesic algo-
rithm [SSK∗05], our method achieves sufficient interactivity
for live-wire segmentation. Compared with direct computa-
tion methods with comparable efficiency (e.g., STVD and
the diffusion method), our algorithm is parameter-free and
simple to implement.

2.4. Interactive surface segmentation

Various types of interaction modes have been proposed for
segmentation or line-drawing on surfaces, each striking a
trade-off between controllability and ease-of-use. At one end
of the spectrum, the user can draw the entire boundary net-
work by sketching [TPSHSH13]. Although the user has full
control over the segmentation, tracing features is tedious
and error-prone. Some methods allow users to give impre-
cise input, such as an initial segment boundary [LL02] and
a cutting plane [LLS∗05], or partial input, such as a stroke
[FKS∗04]. This input is then optimized or completed by the
system, for example using shortest paths [FKS∗04] or geo-
metric snake [LL02,LLS∗05]. The user has even less control
over the shape of the lines in these modes.

The live-wire interaction is most similar to the click-and-
connect paradigm [ScH00,And00,CGF09,HL09], where the
user clicks on points (seeds) sequentially and lines are filled
in automatically between successive seeds. While the user
still has complete control over the line shape, this is done
in trial-and-error: if the filled line does not have the desired
shape, the user would need to click on different seeds or add
more seeds. Live-wire interaction reduces this exploration
time by dynamically updating the wire as the user moves the
cursor without any clicking.

3. An anisotropic metric

Our goal is to design a metric g on the surface such that
geodesics in this metric are likely to be segment boundaries.
As discussed before, this means that the geodesics should
snap to nearby ridge or valley features, if present, and strive
to follow principal curvature directions. Our norm uses a ten-
sor Mx that is aligned with the local curvature directions.The
eigenvalues of Mx are specifically designed to avoid the
drawbacks of previous metrics [PSH∗04, KMZ10, CBK12].

To avoid instability near umbilical or saddle points, our
tensors have a variable anisotropy

√
λ1/λ2 that reduces to

1 when ‖κ1‖ = ‖κ2‖. To remove dependency of the norm
on the magnitude of curvature, we instead scale the norm by
the difference in curvature values sx = ‖κ1‖−‖κ2‖. We have
found that sx is a good indicator of feature strength. It is zero
at an umbilical, planar or saddle point. Higher values of sx
imply a more significant curvature variation in one principal
curvature direction over the other. In our experiments we ob-
served that local maxima of sx tend to co-locate with ridges
and valleys, while the magnitude of sx captures the visual
importance of the features (see Figure 5).

Figure 5: Heat color plot of curvature difference sx on Elk
(a) and ridge and valleys computed by [YBS05] (b). Note
that local maxima of sx are aligned with features, and the
magnitude of sx corresponds well to visual prominence of
these features.

Specifically, the eigenvalues of both of our tensors have
the following form,

λ1 = 1+ γ sx, λ2 =
1

1+ γ sx
, (5)

where γ ≥ 0 is a user-given global parameter. A smaller γ re-
sults in a norm closer to the Euclidean norm. The anisotropy
of the norm reduces to 1 when sx = 0. Note that since sx
is not scale-invariant, the metric changes when the model is
scaled even with the same γ. In practice, we scale the input
model to fit within a unit cube before computing the metric.
We used γ = 0.1 in all our tests unless otherwise stated.

To be able to trace curves that are aligned with either min-
imal or maximal curvature directions, we define two tensors,
Mmin

x ,Mmax
x , both sharing the same set of eigenvalues as de-

fined above. The minor eigenvector of Mmin
x (resp. Mmax

x )
is aligned with the minimal (resp. maximal) curvature direc-
tion at x. In our segmentation interface, the geodesics in both
metrics are displayed for the user to select (see Section 5).

We compare our Mmin
x metric with the Euclidean metric

and previous anisotropic metrics in Figure 6. The discrete
curvature is computed using [Rus04], and the computation
of the geodesics will be described in the next section. Ob-
serve that our metric is more stable than Campen’s metric.
Also, our norms are shaped in a way that paths aligned with
the minimal curvature direction at strong features are shorter
than paths over a flat region (see the inserts). As a result,
geodesics in our metric can better follow the features than
those in Pottmann-Kovacs metric. More comparisons can be
found in Figures 3 and 4.

4. Computing anisotropic geodesics

Following the mesh embedding approach for computing
anisotropic geodesics [CHK13], we propose an alternative
method for removing invalid triangles (those that fail trian-
gle inequality) on the discretely embedded mesh. We end the

submitted to Pacific Graphics (2014)



6 Y. Zhuang & M. Zou & N. Carr & T. Ju / Anisotropic Geodesics

Figure 6: Comparing the Euclidean metric (left), Campen’s metric (mid-right), Pottmann-Kovac metric (mid-left) and our
metric (right) on the rocker arm model, showing per-vertex norms (top) and single-source all-destination geodesics (bottom).
Note that our metric results in more stable and better feature-following geodesics. To make a fair comparison, the parameter in
each anisotropic metric is chosen to achieve the same maximum anisotropy of 20.

section with a discussion on computing the geodesics after
embedding.

4.1. Local subdivision

To motivate our approach, consider the ideal scenario where
the three vertices i, j,k of a triangle share the same tangent
plane as well as the tensor that defines the norms gi,g j,gk.
That is, the lengths of the three edges are modified by the
same norm. On the other hand, observe from Equation 2 that
any tensor-based norm gx(v) corresponds to a linear trans-
formation (scaling in the direction of ei by the amount λi
for i = 1,2), which preserves triangle inequality. While such
ideal case rarely happens, we can argue that the triangle in-
equality is more likely to hold when the normal directions
and norms at the triangle vertices are similar.

Our approach is to subdivide triangles so that the normal
directions and norms at the vertices in a subdivided triangle
become more similar. While many subdivision schemes can
be considered, we find the simple scheme of bisecting an in-
valid triangle along its longest edge works well. Specifically,
we pick an invalid triangle, create a new vertex at the mid-
point of its longest edge (in the new metric), and bisects both
triangles that share this edge. To obtain the norm tensor at a
new vertex p on an edge with end vertices i, j, we first com-
pute p’s normal vector by linear interpolation of the normals
at vertices i, j, then linearly interpolate the norm tensors of
i, j after they are rotated onto the tangent plane of p. The
norm at p is then used to evaluate the lengths of its incident

edges. The process is repeated until there is no more invalid
triangles.

When using our anisotropic metric (Equation 5), trian-
gle subdivision was able to eliminate all invalid triangles
on all our test models. As shown in Figure 7, geodesics on
the embedded surface created by our subdivision method are
qualitatively similar to those created by the global optimiza-
tion method of [CHK13]. On the other hand, subdivision
achieves a significant speed-up over global optimization, as
reported in Figure 8. Note that while the time used by opti-
mization only scales with the model size, the time used by
triangle subdivision scales with both the model size and the
maximum anisotropy.

When the anisotropic metric is highly variant, our method
may run for excessive number of iterations and sometimes
even fail to terminate. Nevertheless, we observe that the re-
maining invalid triangles always become smaller in size and
more isolated as subdivision goes on. An example using
Campen’s metric is shown in Figure 9. While a theoretical
analysis is lacking, we hypothesize that subdivision has the
effect of diminishing invalid triangles to isolated points. The
number and locations of these points may depend on both
the smoothness of the metric and the triangle shape of the
mesh.

Since the remaining invalid triangles tend to be very
small and isolated, they have a negligible contribution to
the geodesics between the original mesh vertices. Hence one
may adopt the following approach to handle an arbitrary
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Figure 7: The Buddha model with invalid triangles in blue (a), inserts showing triangles before (b) and after (c) subdivision.
No invalid triangles exist on the subdivided model. Shortest path computed on the surface embedded using global optimization
[CHK13] (d) and our triangle subdivision (e) are compared, as well as the geodesic distances (plotted in heat color).

Figure 8: Running time (in seconds) for computing
per-vertex norms, for embedding by global optimization
[CHK13] (Opt) and by our triangle subdivision (Sub), and
for computing wires on three models with varying sizes us-
ing our anisotropic metric where γ is chosen to achieve dif-
ferent maximum anisotropy. The timings were obtained on a
3.5GHz PC with 4GB of memory.

metric in practice. The invalid triangles can be prioritized by
their perimeter (larger triangles are subdivided first) and the
subdivision is stopped once all remaining invalid triangles
have perimeters smaller than a user-given threshold σ. The
remaining invalid triangles will be simply treated as “holes”
when computing the geodesics. All examples in this paper
using Campen’s and Pottmann-Kovacs metrics were gener-
ated using σ = 0.001 (assuming the model has been scaled
to fit in a unit cube, as discussed in Section 3). We always let
subdivision run to completion when using our own metric in
the segmentation tool.

4.2. Computing geodesics

Given a mesh S and a metric, embedding only needs to be
computed once, resulting in a refined mesh S′ (for which
only edge lengths are known). During live-wire interaction,

Figure 9: Invalid triangles under Campen’s metric with
maximum anisotropy 20 on the original mesh (left) and after
subdivision (right).

given two end vertices of S, Euclidean geodesics between the
corresponding vertices on S′ need to be computed in real-
time and mapped back to the original mesh S.

We distinguish two types of actions in live-wire interac-
tion, the seeding action where the user clicks to fix one end
of the wire, and the exploring action where the user moves
the other end of the wire with the cursor. It is most important
that the user can explore the wires with as little delay as pos-
sible, whereas a small delay may be tolerable after seeding.
As a result, we do more computation after seeding to gather
enough information so that geodesics to individual vertices
can be traced quickly.

With these requirements in mind, we adopted the classi-
cal MMP algorithm [MMP87] as implemented in [SSK∗05],
modified to rely only on edge length information rather than
vertex coordinates. We observed in our tests that the seed-
ing time usually takes at most one or two seconds, while
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tracing is done instantly (see Figure 8). While this is suf-
ficiently fast for the size of models in our test, additional
improvement in speed would be desirable for larger models,
and could be achieved using approximate algorithms such
as [YWH13, KS98, CWW13].

5. Interface

To start a drawing session, the user selects a seed vertex by a
mouse click with Ctrl key down. As she moves the mouse
cursor over the mesh, our tool displays two wires corre-
sponding to the two metrics defined by tensors Mmin

x ,Mmax
x ,

both connecting the seed to the vertex under the cursor loca-
tion. The wire with a shorter length in the respective metric
is active (shown in solid line), but she can freely toggle be-
tween the two wires using the mouse scroll wheel. A mouse
click places a new seed at the cursor location, which adds
the active wire to the curve network. She can terminate the
current sequence of curves with a right-mouse-button click.

Occasionally the wire does not have the shape that the
user desires. The surface may be missing features or distinct
curvature directions, or she may wish to exercise creativity.
In such a case, we allow the user to draw a (possibly incom-
plete) scribble on the surface indicating the shape of the de-
sired line. She does this by clicking-and-dragging the mouse
cursor over the mesh while holding the Shift key down. The
scribble is recorded as a polygonal path on the mesh. We
then change the metric so that future wires in the vicinity
will follow the scribbled path.

To achieve this effect, we alter the norms at the vertices
along the scribbled path so that 1) the minor eigenvector e2
of the tensor in the active metric are aligned with the scrib-
ble direction, and 2) the two eigenvalues of the tensor are
set to be λ1 = η,λ2 = 1/η for some constant anisotropy η
(we use 20). These norms are then propagated to vertices
further away from the scribbled path and blended with ex-
isting norms there in a weighted manner, so that the contri-
bution from the propagated norms drops to zero outside the
k-ring neighborhood of the scribble path (we use k = 10). As
the metric is modified, the mesh needs to be re-embedded.
Thanks to our efficient embedding method using triangle
subdivision (Section 4.2), each scribble can be performed
with only one or two seconds of delay.

An example is shown in Figure 10, where the user creates
a rounded wire on the flat surface of the Elk’s head using a
scribble. Note that the scribble does not need to be a com-
plete curve, and hence it is easier to create than in a purely
manual drawing tool.

6. Results

Figure 11 illustrates the importance of humans in the seg-
mentation process. The first two columns show results of
automatic algorithms for computing feature lines [YBS05]

Figure 10: Initial metric on the Elk (a), a user scribble (b),
modified metric based on the scribble(c), and wires in the
new metric (d).

and segmentations (VSA of [CSAD04] and Exoskeleton of
[dGGDV11]). The third column shows a curve network cre-
ated by an artist using a free-hand drawing interface, where
he draws on the screen and the drawing is projected onto the
surface. Note that the human-created curves can be quite dif-
ferent from automatic solutions, particularly in regions miss-
ing strong features.

We used our live-wire tool to create curve networks that
mimic the artist’s sketches, shown in the last column of Fig-
ure 11. We found that the majority of the artist’s curves can
be well captured by the wires, and a small number of seeds
(blue dots) are needed. Scribbles are used only in a few
places (marked by arrows) where the artist’s intention dif-
fers from local curvature directions. Our tool makes it par-
ticularly easy to trace sharp features (e.g., outer rim of the
Rocker arm and the rim of the Feline’s wings), which is dif-
ficult and tedious with free-hand drawing.

Additional results of our tool are shown in Figure 12. The
interaction time in a typical segmentation session is between
5 and 10 minutes. Please refer to the accompanying video
for a demonstration of our tool.

7. Conclusion

We present an interactive tool for mesh segmentation that
mimics the live-wire interaction in image segmentation. The
wire is defined as the geodesics in a novel feature-aware and
curvature-following anisotropic metric. To efficiently com-
pute the wires, we propose a fast local subdivision method
for embedding the mesh in the metric so that anisotropic
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Figure 11: Ridges and valleys [YBS05] (a), automatic segmentations (b), curves sketched manually by an artist (c), and a
segmentation created using our live-wire tool guided by the artist’s sketch (d). Arrows in (d) point to wires defined by scribbles.
Note the difference between algorithmic curves and human-drawn curves, and the sparsity of nodes in our curve network.

geodesics can be computed using existing algorithms for Eu-
clidean geodesics.

This work opens the door to several interesting venue of
research. On the theoretical side, our simple subdivision al-
gorithm for mesh embedding begs more thorough investi-
gation and analysis. Although the experimental results are
promising, a more elaborate subdivision scheme (e.g., one
that considers both the triangle shape and local metric vari-
ation) might have been more effective in eliminating in-
valid triangles and/or equipped with better theoretical guar-
antees such as termination and bounded approximation er-
ror. On the practical side, it would be interesting to ex-
plore anisotropic metrics whose geodesics capture other line
types, such as planar curves and view-dependent lines (e.g.,
silhouettes), which are useful for line drawing and shape rep-
resentation. One could also explore other applications of our
geodesics such as feature detection [HLS∗13, YSS∗12] and
quad meshing [TPP∗11, CBK12].
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