
Exchanging Disks in the Tower of Hanoi

Paul K. Stockmeyer

Department of Computer Science

College of William and Mary

Williamsburg, Virginia 23187-8795

C. Douglass Bateman, James W. Clark

Cyrus R. Eyster, Matthew T. Harrison

Nicholas A. Loehr, Patrick J. Rodriguez

and Joseph R. Simmons III

1993 Virginia Governor’s School for the Gifted

in Science, Mathematics, and Technology ∗

September 1984

Abstract

We examine a variation of the famous Tower of Hanoi puzzle posed but not solved
in a 1944 paper by Scorer et al. [5]. In this variation, disks of adjacent sizes can be
exchanged, provided that they are at the top of their respective stacks. We present
an algorithm for solving this variation, analyze its performance, and prove that it is
optimal. Several exercises are listed at the end, ranging in difficulty from elementary
to research level.

1 Introduction

The Tower of Hanoi puzzle, invented in 1883 by Édouard Lucas and described by him in [4,
pp. 55–59], has been undergoing a dramatic revival in popularity during the past 10 years,

largely due to its use as a programming exercise in elementary computer courses. Many
variations on the original puzzle also have been proposed and solved. For an excellent

survey, with an extensive bibliography, see [3]. One variation posed in 1944 [5], however,
appears not to have been studied. In this paper we present an algorithm for solving this
variation, analyze the performance of our algorithm, and prove that our solution is optimal.

The traditional Tower of Hanoi consists of three posts called A, B, and C, and a set of n,
typically 8, pierced disks of differing diameters that can be stacked on the posts. The disks

are usually numbered from 1 to n in order of increasing size. The tower is formed initially
by stacking the disks onto post A in decreasing order from bottom to top. The challenge

is to transport the tower to post C by moving the disks one at a time from post to post,

∗Funded by the Commonwealth of Virginia

1



subject to the rule that no disk can ever be placed on top of a smaller disk. This game can

be solved by first recursively transporting the sub-tower consisting of disks 1 through n− 1
from post A to post B, next moving disk n from post A to post C, and then recursively

transporting the sub-tower from post B to post C.
The game proposed in [5] is similar, but the rules governing the moves are different.

They are:
Rule 1. The smallest disk (number 1) can be moved to any post, at any time;
Rule 2. For d satisfying 1 < d ≤ n, disks d− 1 and d can be exchanged, provided each

is at the top of its respective stack.
No other moves are allowed. Note that these rules ensure that the disks on each post

are always stacked in decreasing order of size, as with the original game. We encourage the
reader to explore this version for small values of n before continuing.

The presentation and discussion of our algorithm will be simplified by first establishing
some notation and terminology. We refer to any proper distribution of disks onto posts as a

state. Each state will be denoted by a sequence of length n from the set {A, B, C}, naming
the posts that the disks occupy, from the largest to the smallest. (Some authors have used

the opposite order, but we feel our order is in many ways more natural. The position of the
largest disk is the most significant aspect of a state, and most forms of information, including
numbers, are written with the most significant part first in the western world.) Each move

of the puzzle transforms it from one state to another. Thus for n = 8, the starting state is
AAAAAAAA, and the final state is CCCCCCCC. In the traditional version of the game,

the move of disk 8 at the half-way point transforms the puzzle from state ABBBBBBB to
state CBBBBBBB. For the variation we are considering, the middle move is an interchange

of disks 7 and 8, transforming the puzzle from state ACBBBBBB to state CABBBBBB.
These ideas can be made clearer by examining the state graph of this puzzle, another

concept first introduced in [5]. In this graph, the vertices are the 3n possible states, and
the edges are the (3n+1 −3)/2 allowable moves between states. It is claimed in [5] that this

graph can be drawn in the plane with all edges parallel to the sides of an equilateral triangle,
as can the state graph of the original Tower of Hanoi puzzle. In this new version, however,
the lines are not all of the same length. These claims are illustrated in Figure 1, which

displays the state graph for the case n = 5. We will make frequent use of standard graph
theory terminology in what follows, and will use the words vertex and state interchangeably,

as well as the words edge and move. Any definitions that we omit can be found in standard
works such as [2].

The association of state names with vertices is relatively simple for this puzzle. The
first letter specifies the major triangular subgraph to which the state belongs, the second

letter specifies the triangular subgraph within this subgraph, and so forth. At each level,
A denotes the lower left triangle, B the upper triangle, and C the lower right triangle. We

encourage the reader to trace and name the vertices in Figure 1 along the unique minimal
path, of length 25, from vertex AAAAA at the lower left corner to vertex CCCCC at the
lower right. (The length of a path in a graph is the number of edges it contains, regardless

of how long these edges are drawn.)

2



Figure 1. State Graph of the 5-Disk Puzzle.

2 The Algorithm

We present our algorithm in the form of a Pascal procedure. When invoked by the statement
new hanoi(n), it displays instructions for transporting a tower of n disks from post A to

post C. The reader may wish to trace the action of each of the component sub-procedures
on the graph in Figure 1.

procedure new_hanoi(n: integer);

{ Moves a tower of n disks from post A to post C, }

{ following the rules of the interchange version. }

type post = ’A’ .. ’C’;

procedure move(d: integer; X, Y: post);

{ Moves disk d from post X to post Y. }

begin {move}

if d = 1 then

writeln(’Move disk 1 from post ’, X, ’ to post ’, Y)

else

writeln(’Swap disk ’, d-1, ’ on post ’, Y, ’ with disk ’,

d, ’ on post ’, X)

end; {move}

procedure initial(k: integer; X, Y, Z: post); forward;

procedure final(k: integer; X, Y, Z: post); forward;

procedure early_middle(k: integer; X, Y, Z: post); forward;

procedure late_middle(k: integer; X, Y, Z: post); forward;

3



procedure total(k: integer; X, Y, Z: post);

{ Converts state X^k to state Y^k. }

begin {total}

if k >= 1 then

begin

initial(k-1, X, Y, Z);

move(k, X, Y);

final(k-1, X, Y, Z)

end

end; {total}

procedure initial(k: integer; X, Y, Z: post);

{ Converts state X^k to state YZ^(k-1). }

begin {initial}

if k >= 1 then

begin

initial(k-1, X, Y, Z);

move(k, X, Y);

early_middle(k-1, X, Z, Y)

end

end; {initial}

procedure final(k: integer; X, Y, Z: post);

{ Converts state XZ^(k-1) to state Y^k. }

begin {final}

if k >= 1 then

begin

late_middle(k-1, Z, Y, X);

move(k, X, Y);

final(k-1, X, Y, Z)

end

end; {final}

procedure early_middle(k: integer; X, Y, Z: post);

{ Converts state XY^(k-1) to state Y^k. }

begin {early_middle}

if k >= 1 then

begin

total(k-2, Y, Z, X);

move(k, X, Y);

final(k-1, X, Y, Z)

end

end; {early_middle}

4



procedure late_middle(k: integer; X, Y, Z: post);

{ Converts state X^k to state YX^(k-1). }

begin {late_middle}

if k >= 1 then

begin

initial(k-1, X, Y, Z);

move(k, X, Y);

total(k-2, Z, X, Y)

end

end; {late_middle}

begin {new_hanoi}

total(n, ’A’, ’C’, ’B’);

end; {new_hanoi}

In this program, the procedure move(d, X, Y) writes out an instruction for transferring
disk d from post X to post Y . If d equals 1, then this is a simple move; otherwise it is an

exchange with disk d−1. Somewhat more formally, the Preconditions for this procedure
are: {X, Y } ⊂ {‘A’, ‘B’, ‘C’} with X 6= Y ; disk d is on post X ; disk d − 1 is on post Y (if

d > 1); and for i satisfying 1 ≤ i < d − 1, disk i is on the remaining post (if d > 2). The
Postconditions are: disk d is on post Y ; disk d− 1 is on post X (if d > 1); and all other

disks are unchanged. Clearly the action of this procedure is consistent with the rules of this
game.

Each of the remaining five procedures generates instructions for a sequence of moves
that performs some prescribed transformation of the puzzle. They are co-routines, calling
each other, and all have a similar format. The first formal parameter, k, is the number of

the largest disk moved by the procedure. The parameters X , Y , and Z are, respectively, the
post that disk k occupies before execution, the post that disk k occupies after execution,

and the remaining post. The code for each procedure consists of three statements, the
middle of which is the one that moves disk k to its desired location. The first statement is

a procedure call that transforms the first k − 1 disks to make this possible, while the third
is a procedure call that then transforms the first k − 1 disks to their specified positions.

For example, the procedure call total(k, X, Y, Z) will transform the puzzle from state
Xk to state Y k, as claimed by the comment in the listing of this procedure. To accomplish

this, the procedure first calls initial(k-1, X, Y, Z) to transform the puzzle from state
Xk to state XY Zk−2. This makes it possible to move(k, X, Y) next, which produces state
Y XZk−2. Then the call final(k-1, X, Y, Z) completes the action, yielding state Y k.

The two co-routines called by this procedure each behave in an analogous manner.
The transformation accomplished by each of the five co-routines should be clear from

its comment, but the reader who prefers more formal descriptions can easily convert the
comments into Pre- and Postconditions. For example, the Preconditions for the

procedure early middle are: {X, Y, Z} = {‘A’, ‘B’, ‘C’}; if k ≥ 1, then disk k is on post
X ; and if k ≥ 2, then for i satisfying 1 ≤ i < k, disk i is on post Y . The Postconditions

are: if k ≥ 1, then for all i satisfying 1 ≤ i ≤ k, disk i is on post Y ; and all disks numbered
greater than k remain where they were. It is then a routine exercise to prove simultaneously

by induction that all procedures do indeed perform as claimed. Thus the procedure call

5



total(n, ’A’, ’C’, ’B’) at the end of the listing will generate a written list of moves

that solve this version of the n-disk puzzle, tracing out a path from vertex An to vertex Cn

in the state graph.

3 Analysis

We now investigate the number of moves that are performed by our algorithm. First,
note that procedures initial and final are essentially mirror images of each other, and

hence generate equal numbers of moves. The same is true for procedures early middle

and late middle. We define f(n), g(n), and h(n) to be the number of moves generated

by calls to procedures total, initial (or final), and early middle (or late middle),
respectively, with first parameter n. We seek a closed form expression for f(n).

An examination of the code reveals that all three functions have value 0 if n ≤ 0, while
for n ≥ 1 we have

f(n) = 2g(n− 1) + 1, (1)

g(n) = g(n − 1) + h(n − 1) + 1, (2)

and h(n) = f(n − 2) + g(n− 1) + 1. (3)

Values of these functions for small positive values of n can be calculated easily from these
equations.

Replacing f(n − 2) in equation (3) with its equivalent from equation (1) yields

h(n) = [2g(n− 3) + 1] + g(n − 1) + 1

= g(n − 1) + 2g(n− 3) + 2,

for n ≥ 3. Now using this expression to remove h(n − 1) from equation (2) we get

g(n) = g(n− 1) + [g(n− 2) + 2g(n− 4) + 2] + 1

= g(n− 1) + g(n− 2) + 2g(n− 4) + 3,

for n ≥ 4. Finally, using this expression in equation (1) produces

f(n) = 2[g(n− 2) + g(n− 3) + 2g(n− 5) + 3] + 1

= [2g(n− 2) + 1] + [2g(n− 3) + 1] + [4g(n− 5) + 2] + 3

= f(n − 1) + f(n − 2) + 2f(n − 4) + 3,

(4)

for n ≥ 5. In fact, equation (4) is valid for n = 4 as well. Thus f(n) is completely determined
for all non-negative values of n by the recurrence relation

f(n)− f(n − 1)− f(n − 2) − 2f(n − 4) = 3, (5)

together with the boundary values f(0) = 0, f(1) = 1, f(2) = 3, and f(3) = 7.
This recurrence is easily solved by standard methods, as found, for example, in [1, pp.

65–72]. The characteristic equation for this relation is

x4 − x3 − x2 − 2 = 0,

6



with two real roots r1 = 1.85356 and r2 = −1.15673, and two complex roots r3 = ρ(cos(θ)+

i sin(θ)) and r4 = ρ(cos(θ)− i sin(θ)), where ρ = 0.96582 and θ = 1.41320 (in radians). It is
easy to see that fp(n) = −1 is a particular solution to our recurrence relation. This implies

that the general solution is of the form

fg(n) = c1r
n
1 + c2r

n
2 + c3ρ

n cos(nθ) + c4ρ
n sin(nθ) − 1,

for arbitrary constants c1, c2, c3, and c4. Using the boundary values to solve for these

constants in our case, we get c1 = 1.19188, c2 = −0.08028, c3 = −0.11160, and c4 =
−0.29896. Thus

f(n) =1.19188 (1.85356)n − 0.08028 (−1.15673)n

− 0.11160 (0.96582)n cos(1.41320 n)

− 0.29896 (0.96582)n sin(1.41320 n)− 1,

(6)

for n ≥ 0.
The first term is the dominant one. The second term makes even-numbered terms

somewhat smaller, and odd-numbered terms somewhat larger, than they otherwise would
be. The next two terms approach 0, and serve only to make f(n) always be an integer.

Asymptotically, we have
f(n) ∼ 1.19188× 1.85356n.

4 Proof of Optimality

Consider the shortest sequence of moves that would transform the puzzle from one given
state to another. It is tempting to believe that if the largest disk is already on its correct

post it would not move at all; and if it is on the wrong post, it would move exactly once,
from its initial position to its desired location. In terms of the graph, these beliefs are: the

shortest path between two vertices in the same major subtriangle is contained within that
subtriangle; and the shortest path between vertices in different major subtriangles never

enters the third subtriangle. If these beliefs were true, then it would be relatively easy to
prove that our algorithm solves the game in a minimum number of moves. As we shall see,

the first belief is in fact true, but the second is not. An analogous belief for the standard
Tower of Hanoi puzzle is also false, and several careless mathematicians have been tripped

up by such a mistaken belief. It is not obvious that our algorithm is a minimal solution; a
proof must be given.

Earlier we defined functions f(n), g(n), and h(n) as the number of moves made by our

procedures total, initial, and early middle, respectively. We now define F (n), G(n),
and H(n) as the minimum number of moves to accomplish the corresponding tasks. That

is, F (n) is the length of the shortest path from state Xn to state Y n, G(n) is the distance
between states Xn and Y Zn−1, and H(n) gives the minimum number of moves between

XY n−1 and Y n. We will prove that all of our procedures are optimal: that F (n) = f(n),
G(n) = g(n), and H(n) = h(n). For purposes of this section only, we also need to consider

transforming state XY n−1 to state Y Xn−1. Such a transformation is always possible —
the code total(n-2, Y, Z, X); move(n, X, Y); total(n-2, Z. X. Y) will do the job

quite nicely. We define K(n) to be the minimum number of moves needed for this task.

7



Lemma 1. In a shortest path between any given pair of states, the largest disk moves

a) not at all if it is already on the desired post, or
b) either once or twice otherwise.

Proof: We first observe that the shortest route from one state to another will never visit
any state more than once. In particular, a path will not cross over from one of the three
major triangular subgraphs to another and then later cross back again. Equivalently, the

largest disk will never move from one post to another and then move back again.
For part a), we assume without loss of generality that both the start state S1 and the

goal state S2 have the largest disk on post X . The only possible way in which the largest
disk could move at all in a minimal length path from S1 to S2 would be to move from post

X to another post, say Y , then later to the remaining post Z, and then still later back to
post X again. Such a path would look like S1, . . . , XY Zn−2, Y XZn−2, . . . , Y ZXn−2,

ZY Xn−2, . . . , ZXY n−2, XZY n−2, . . . , S2. Now the part of this path from state XY Zn−2

to state XZY n−2 has length at least 1 + K(n − 1) + 1 + K(n − 1) + 1, or 2K(n − 1) + 3.

But comments made just prior to the statement of this lemma imply that we can get from
XY Zn−2 to XZY n−2 directly in only K(n − 1) moves by ignoring the largest disk and
leaving it where it is, on post X . By patching in this shortcut, we get a strictly shorter

route from S1 to S2. Thus no shortest path can include a move of the largest disk if it is
already on its desired post.

For part b), we merely observe that for any sequence of moves in which the largest disk
moves more than twice and ends up on a different post from the one on which it started,

some state must be visited more that once. We recall that such a sequence can not be
minimal.

Corollary. For any two states S1 and S2, let k be the number of the largest disk for which
S1 and S2 differ. Then in a shortest path from S1 to S2, disk k moves either once or twice,
and for all i satisfying k < i ≤ n, disk i does not move.

This corollary follows from Lemma 1 by an easy induction argument. Among other
helpful things, it tells us that a minimal length path from Xn to, say, Xn−kY Zk−1 is

essentially the same as a minimal length path from Xk to Y Zk−1. We can safely ignore
disks numbered greater than k in all of our procedures when proving optimality.

It is not always obvious whether the base disk should move once or twice in a minimal
path. But in case anyone at this point is under the mistaken belief that the one-move

alternative is always best, we consider paths from XY Zn−2 to ZY Xn−2. The shortest path
with one move of disk n has length 2K(n − 1) + 1, while the best two-move path takes
K(n − 1) + 2 moves. These lengths are equal for n = 3, but for n ≥ 4 the path with two

moves of disk n is strictly shorter.
We need to know two more facts before proving our main theorem.

Lemma 2. For all n ≥ 1 we have
a). H(n) ≤ K(n) + F (n − 1), and

b). F (n − 1) ≤ K(n) + H(n).

Proof: a). By definition, H(n) is the minimum number of moves needed to get from state
XY n−1 to state Y n. One not necessarily optimal way of carrying out this task is to go

8



from XY n−1 to Y Xn−1 in K(n) moves, and then from Y Xn−1 to Y Y n−1 = Y n in F (n−1)

additional moves. The conclusion follows.
b). We have that F (n − 1) is the minimum number of moves from state Xn−1 to state

Y n−1, or equivalently, from Y Xn−1 to Y n. A not necessarily optimal way of accomplishing
this is to transform Y Xn−1 to XY n−1 in K(n) moves, and then transform XY n−1 to Y n

in an additional H(n) moves.

We are now able to prove our main result of this section.

Theorem 1. For all n ≥ 0 we have
a). F (n) = f(n),

b). G(n) = g(n), and
c). H(n) = h(n).

Proof: We prove all three claims simultaneously, by induction. When n = 0, all six functions
take the value 0, while for n = 1 the six function values are clearly all 1. Now suppose that
the claims are true for all values of the variable less than some integer n ≥ 2.

a). A minimal sequence of F (n) moves from state Xn to state Y n must move disk
n either once, from X to Y , or twice, from X to Z to Y . Also, subsequences before,

after, and perhaps between such moves must be minimal. The first alternative makes
G(n−1)+1+G(n−1) moves, while the second makes G(n−1)+1+K(n−1)+1+G(n−1).

Clearly the first alternative is the optimal one. Moreover, by our inductive hypothesis, we
have G(n − 1) = g(n− 1). The result then follows from equation (1). To summarize:

F (n) = min

{

G(n − 1) + 1 + G(n − 1)

G(n − 1) + 1 + K(n − 1) + 1 + G(n− 1)

= 2G(n− 1) + 1

= 2g(n− 1) + 1

= f(n).

b). In finding a minimal sequence of G(n) moves that transforms the puzzle from state

Xn to state Y Zn−1, we must again consider two alternatives: whether disk n makes 1 or 2
moves. Here Lemma 2.a tells us that the one-move alternative is the optimal one. We have

G(n) = min

{

G(n− 1) + 1 + H(n − 1)

G(n− 1) + 1 + K(n − 1) + 1 + F (n − 2)

= G(n − 1) + H(n− 1) + 1

= g(n− 1) + h(n − 1) + 1

= g(n).

c). In finding a minimal sequence of H(n) moves from state XY n−1 to state Y n, we
face the same two alternatives. This time Lemma 2.b tells us that the one-move alternative

9



is optimal, and we have

H(n) = min

{

F (n − 2) + 1 + G(n − 1)

H(n− 1) + 1 + K(n − 1) + 1 + G(n − 1)

= F (n − 2) + G(n− 1) + 1

= f(n − 2) + g(n − 1) + 1

= h(n).

In fact, this proof shows more than was claimed. In each case, the alternative with only
1 move of disk n made strictly fewer moves than the alternative that moved disk n twice.

Thus by induction, the minimal move sequences are unique.

Corollary The sequence of f(n) moves generated by the procedure new hanoi(n) is the

unique minimal solution to this puzzle.

5 Coda

We close with a few exercises that the reader may enjoy, in approximate order of difficulty.

The last two should be considered research problems.
1. Prove that the state graph of this puzzle is connected — that it is possible to get

from any state to any other state.
2. Prove that of the f(n) moves needed to solve the n-disk puzzle, f(n−1) are exchanges

and f(n) − f(n − 1) are simple moves of disk 1. Which is larger?
3. Prove that states An and Cn are at maximal distance apart. That is, show that the

distance between any two states is at most f(n). Are there any other pairs this far apart,
aside from obvious symmetries?

4. Prove that the state graph is non-Hamiltonian for n ≥ 5. In other words, show that

there is no sequence of moves that visits each state exactly once. Find a Hamiltonian circuit
for the case n = 4.

5. The length of a path in a graph is usually defined as the number of edges the path
contains, as we have seen. However, once a graph has been embedded in the plane, we

can talk about the physical, or geometrical, distance along a path in the embedding. Let
d(n) be the physical distance of the minimal path from vertex An to vertex Cn, using the

embedding illustrated in Figure 1, where the shortest edges are defined to have length 1.
Prove that

d(n) = 7

2
2n − 3.19914 (1.85356)n − 0.10227 (−1.15673)n

− 0.19858 (0.96582)n cos(1.41320 n)

− 0.16606 (0.96582)n sin(1.41320 n)

= 7

2
2n + Θ(1.85356n),

while the straight line distance between these two vertices in the embedded graph is 2n −1.

Thus in the limit, as n grows large, this path becomes 7

2
times as long as the base of the

graph.

10



6. Write a computer program that generates the same sequence of moves that our

program does but without using recursion, either directly, indirectly through co-routines,
or implemented with a stack.

7. Determine the average distance between a pair of randomly chosen states.

References

[1] Brassard, Gilles and Paul Bratley, Algorithmics — Theory and Practice. Prentice Hall

(Englewood Cliffs, NJ), 1988.

[2] Harary, Frank, Graph Theory. Addison-Wesley (Reading, MA), 1969.

[3] Hinz, Andreas M. “The Tower of Hanoi”. Enseign. Math. 35 (1989), 289–321.

[4] Lucas, Édouard, Récréations Mathématiques, vol.III. Gauthier-Villars (Paris), 1893.

Reprinted, Albert Blanchard (Paris), several years.

[5] Scorer, R. S., P. M. Grundy, and C. A. B. Smith. “Some Binary Games”. Math. Gazette

28 (1944), number 280 (July), 96–103.

Current Affiliations:
Mr. Bateman, Mr. Harrison, and Mr. Rodriguez: University of Virginia;

Mr. Clark and Mr. Eyster: Massachusetts Institute of Technology;
Mr. Loehr: Virginia Polytechnic Institute and State University;

Mr. Simmons: Florida State University.

11


